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Abstract

Let Sn
+ denote the n-sphere with a disjoint basepoint. We give condi-

tions ensuring that a map h:X → Y that induces bijections of homotopy

classes of maps [Sn
+, X] ∼= [Sn

+, Y ] for all n ≥ 0 is a weak homotopy equiv-

alence. For this to hold, it is sufficient that the fundamental groups of

all path-connected components of X and Y be inverse limits of nilpotent

groups. This condition is fulfilled by any map between based mapping spaces

h:map∗(B,W )→ map∗(A, V ) if A and B are connected CW-complexes. The

assumption that A and B be connected can be dropped if W = V and the

map h is induced by a map A→ B.

From the latter fact we infer that, for each map f , the class of f -local

spaces is precisely the class of spaces orthogonal to f and f ∧ Sn
+ for n ≥ 1

in the based homotopy category. This has useful implications in the theory

of homotopical localization.
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0 Introduction

It is well known that unbased homotopy classes of maps from spheres are not suffi-

cient to recognize weak homotopy equivalences in general; see Section 1 for details

about this claim. Thus, there is no unbased analogue of the Whitehead theorem,

stating that a map h: X → Y between connected CW-complexes that induces bijec-

tions of based homotopy classes of maps [Sn, X] ∼= [Sn, Y ] for all n is a homotopy

equivalence [14, Theorem V.3.5].

In fact, there is no set of spaces Kα such that maps between CW-complexes

inducing bijections of unbased homotopy classes of maps from Kα for all α are

necessarily homotopy equivalences. This was proved by Heller in [11, Corollary 2.3].

(Of course, any family of representatives of all homotopy types of CW-complexes

suffices to recognize homotopy equivalences, but this is a proper class, not a set .)

On the other hand, in the homotopy theory praxis it is frequent to encounter

situations where one would like to prove that certain maps between function spaces

are homotopy equivalences; see e.g. [2], [9]. This can be an arduous task, since

function spaces usually fail to be path-connected and their components can be of

distinct homotopy types. The results in this article aim to simplify this task when-

ever possible.

We denote by [A, X] the set of based homotopy classes of maps from A to X,

and by A+ the union of A with a disjoint basepoint. Thus, [Sn
+, X] is identified with

the set of unbased homotopy classes of maps from the n-sphere Sn to X. All spaces,

including function spaces, are endowed with the compactly generated topology.

Suppose that a map h: X → Y induces bijections [Sn
+, X] ∼= [Sn

+, Y ] for all n. In

Section 1 we prove that such a map h is a weak homotopy equivalence if and only

if the induced homomorphism of fundamental groups, h∗: π1(X, x) → π1(Y, h(x)),

is surjective for every choice of a point x ∈ X. This condition is fulfilled in many

important cases, namely

• if π1(Y, y) is nilpotent for all y (see Theorem 1.8 below), or also

• if π1(X, x) and π1(Y, y) are both HZ-local for all x and y (see Theorem 4.2).

The reader is referred to [4] and [5] for a discussion of HZ-local groups.
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From these observations we infer the following general result about maps between

function spaces.

Theorem 0.1 Let h: map∗(B, X) → map∗(A, Y ) be any map of based function

spaces, where A and B are connected CW-complexes. Then the following statements

are equivalent:

(1) h is an integral homology equivalence.

(2) h is a weak homotopy equivalence.

(3) h induces bijections [Sn
+, map∗(B, X)] ∼= [Sn

+, map∗(A, Y )] for n ≥ 0.

Of course, this is not true if we remove the assumption that A and B be con-

nected, as every space X is homeomorphic to map∗(S
0, X). However, using other

methods, we prove the following.

Theorem 0.2 Let f : A→ B be any map between (not necessarily connected) CW-

complexes, and let h: map∗(B, X) → map∗(A, X) be induced by f , where X is any

space. Then h is a weak homotopy equivalence if and only if it induces bijections

[Sn
+, map∗(B, X)] ∼= [Sn

+, map∗(A, X)] for n ≥ 0. (0.1)

In view of these results, it is tempting to believe that a map h: X → Y inducing

bijections [Sn
+, X] ∼= [Sn

+, Y ] for all n is necessarily an integral homology equivalence.

We show that this is not the case, by exhibiting a counterexample in Section 1.

Our main motivation for embarking in this study was Dror Farjoun’s approach to

homotopical localization [9], [10]. For a map f : A→ B of CW-complexes, a space X

is called f -local [9] if the map of function spaces map∗(B, X)→ map∗(A, X) induced

by f is a weak homotopy equivalence. Thus, Theorem 0.2 asserts precisely that

unbased homotopy classes of maps from spheres suffice to recognize f -local spaces.

Moreover, note that (0.1) can also be written as

[B ∧ Sn
+, X] ∼= [A ∧ Sn

+, X] for n ≥ 0. (0.2)
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The fact that (0.2) characterizes f -local spaces is very useful in certain constructions

of homotopy idempotent functors. Indeed, the results contained in a preliminary

version of this article have been exploited in [10, p. 14].

Similarly, if A is any CW-complex, then a map g: X → Y is said to be an

A-equivalence if the arrow map∗(A, X) → map∗(A, Y ) induced by g is a weak ho-

motopy equivalence [3], [10, Section 2.A]. From Theorem 0.1 it follows that unbased

homotopy classes of maps from spheres suffice again to characterize A-equivalences,

provided that the space A is connected. This is useful, for instance, in the context

of [10, p. 54].

Acknowledgements We thank E. Dror Farjoun for providing stimulating ideas

and for his encouragement, that we appreciate.

1 Unbased homotopy classes of maps

We keep denoting by X+ the union of a space X with a disjoint basepoint. Recall

from [14, Section III.1] that, if a space Y is path-connected, then for each space X

the set [X+, Y ] of unbased homotopy classes of maps from X to Y can be identified

with the set of orbits of [X,Y ] under the usual action of π1(Y ). In particular, [S1
+, Y ]

corresponds bijectively with the set of conjugacy classes of elements in π1(Y ).

A map h: X → Y between topological spaces is a weak homotopy equivalence if

it induces a bijection of path-connected components π0(X) ∼= π0(Y ) together with

isomorphisms

πn(X, x) ∼= πn(Y, h(x)) for n ≥ 1 and every x ∈ X. (1.1)

Even though it might seem plausible, condition (1.1) cannot be replaced by the

condition that h induces bijections

[Sn
+, X] ∼= [Sn

+, Y ] for n ≥ 1. (1.2)

The following source of counterexamples is extracted from [11, § 2].

Example 1.1 Let N be a torsion-free group such that any two nontrivial elements

are conjugate; embed N into a larger group G with a single nontrivial conjugacy
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class of elements as well (this can be done by iterating suitable HNN constructions;

see [13, Theorem 6.4.6]). Then the induced map of classifying spaces h: BN → BG

induces bijections [Sn
+, BN ] ∼= [Sn

+, BG] for all n. However, h is not a weak homotopy

equivalence, as it fails to be surjective on the fundamental group.

Constructions of this kind also serve to discard the belief that a map h: X → Y

inducing bijections [Sn
+, X] ∼= [Sn

+, Y ] for n ≥ 0 is an integral homology equivalence.

Here is a counterexample.

Example 1.2 Let G be the union of an ascending chain of groups

N = N0 ⊂ N1 ⊂ N2 ⊂ . . .

where, for each i ≥ 0, the group N2i has precisely one nontrivial conjugacy class of

elements and N2i+1 is acyclic. Then the inclusion of N into G induces bijections

[Sn
+, BN ] ∼= [Sn

+, BG] for all n. Yet, BG is acyclic and BN need not be.

We next give conditions under which (1.2) suffices to guarantee that h is a weak

homotopy equivalence.

Lemma 1.3 Let G be any group and let ϕ: A→ B be a ZG-module homomorphism

inducing a bijection of orbits. Then ϕ is an isomorphism.

Proof. If ϕ(a) = 0 = ϕ(0), then a is in the orbit of 0 and hence a = 0. This shows

that ϕ is a monomorphism. Moreover, for every b ∈ B we may write b = x · ϕ(a) =

ϕ(x · a) for some a ∈ A and x ∈ G, showing that ϕ is an epimorphism. ]

Theorem 1.4 Suppose that a map h: X → Y induces bijections [Sn
+, X] ∼= [Sn

+, Y ]

for n ≥ 0. Then h is a weak homotopy equivalence if and only if the induced homo-

morphism of fundamental groups is surjective on each path-connected component.

Proof. One implication is obvious. To prove the converse, we may assume without

loss of generality that X and Y are path-connected. By assumption, the homo-

morphism h∗: π1(X)→ π1(Y ) induces a bijection of conjugacy classes. Then h∗ is a
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monomorphism, since h∗(x) = 1 = h∗(1) forces x = 1; hence, our additional assump-

tion guarantees that h∗ is in fact an isomorphism. Now, for each n ≥ 2, we have

a homomorphism h∗: πn(X) → πn(Y ) of ZG-modules, where G = π1(X) ∼= π1(Y ),

and each of these is bijective on orbits. It then follows from Lemma 1.3 that h

induces isomorphisms of all homotopy groups. ]

We denote the lower central series of a group G by Γ0G = G and ΓiG =

[G, Γi−1G] for i ≥ 1. The proof of the next result is an exercise on commutator

calculus and induction, that we omit.

Lemma 1.5 Suppose that a group homomorphism ϕ: G → K is surjective on con-

jugacy classes. Then, for every i ≥ 1, each element y ∈ K can be written as

y = γi ϕ(ξi), where γi ∈ ΓiK and ξi = ηi−1ξi−1 with ηi−1 ∈ Γi−1G. ]

As an immediate consequence, we have

Proposition 1.6 If a group homomorphism ϕ : G→ N is surjective on conjugacy

classes and N is nilpotent, then ϕ is an epimorphism. ]

We also record the following variation, which will be used later.

Proposition 1.7 Suppose given a commutative diagram

G . . . → Gi+1

αi→ Gi

αi−1→ . . . → G2

α1

→ G1

↓ϕ ↓ ϕi+1 ↓ ϕi ↓ ϕ2 ↓ ϕ1

K . . . → Ki+1
βi

→ Ki
βi−1

→ . . . → K2
β1

→ K1,

where ϕ is induced by passage to the inverse limit. If all Gi and Ki are nilpotent

and ϕ is surjective on conjugacy classes, then ϕ is an epimorphism.

Proof. By refining the inverse systems if necessary, we may assume that Gi and Ki

have nilpotency class less than or equal to i. Take any element y ∈ K, and denote

it by (y1, y2, y3, . . .), with yi ∈ Ki, and βi−1(yi) = yi−1. We are going to construct an

element x ∈ G such that ϕ(x) = y. By Lemma 1.5, we can write y = γ1ϕ(ξ1) with

γ1 ∈ Γ1K. Set x1 = (ξ1)1 ∈ G1. Then ϕ1(x1) = y1, since Γ1K1 is trivial. Next, write
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y = γ2ϕ(ξ2) with γ2 ∈ Γ2K, ξ2 = η1ξ1, η1 ∈ Γ1G. Set x2 = (ξ2)2. Then ϕ2(x2) = y2

and, moreover, α1(x2) = x1, since Γ1G1 is trivial. By continuing the same way, we

obtain an element x = (x1, x2, x3, . . .) ∈ G such that ϕi(xi) = yi for all i, so that

ϕ(x) = y. ]

Note that Propositions 1.6 and 1.7 can also be proved by resorting to Lemma 4.1

below, since every inverse limit of nilpotent groups is HZ-local.

From Theorem 1.4 and Proposition 1.6 we infer the main result of this section:

Theorem 1.8 Let h: X → Y induce bijections [Sn
+, X] ∼= [Sn

+, Y ] for n ≥ 0. Suppose

that the fundamental group of each path-connected component of Y is nilpotent. Then

h is a weak homotopy equivalence. ]

2 Maps between function spaces

Given topological spaces B and X with basepoint, we denote by map∗(B, X) the

space of all based maps from B to X with the compactly generated topology. The

space map∗(B+, X) of unbased maps is denoted, as usual, by map(B, X). For a

based map g: B → X, we denote by map∗(B, X)g the path-connected component

containing g, and similarly for unbased maps.

We recall from [14, Theorem I.7.8] that, if B is well pointed, then for any X the

following sequence is a fibre sequence, where the second arrow is evaluation at the

basepoint:

map∗(B, X)→ map(B, X)→ X. (2.1)

In fact, for every map g: B → X we have a fibre sequence

⋃
j

map∗(B, X)j → map(B, X)g → X, (2.2)

where j ranges over a set of representatives of based homotopy classes of maps such

that j ' g by an unbased homotopy.

We shall exploit the crucial fact, explained in [12, Theorem II.2.5], that if A

is a connected CW-complex of finite dimension, then for every space X the path-

connected components of map∗(A, X) are nilpotent. In view of Theorem 1.8, this
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remark proves Theorem 0.2 in the special case when A is finite-dimensional and

connected. In the rest of this section we prove Theorem 0.2 in its full generality.

Proof of Theorem 0.2:

Suppose given a map f : A→ B of CW-complexes, not necessarily connected. Let X

be an arbitrary space, and assume that the induced map

h: map∗(B, X)→ map∗(A, X)

gives rise to a bijection [B, X] ∼= [A, X] together with bijections

[Sn
+, map∗(B, X)] ∼= [Sn

+, map∗(A, X)] for n ≥ 1.

We can write

map∗(B, X) = map∗(B0, X)×
∏
b

map(Bb, X),

where B0 denotes the basepoint component and a point b has been chosen in each

of the other connected components of B; indeed, we denote by Bb the connected

component containing b. The same notation is used with A.

We start by showing that there is no restriction in assuming that f induces a

bijection of connected components π0(A) ∼= π0(B). Firstly, suppose that B has a

component Bb which does not intersect f(A). Then the condition [B, X] ∼= [A, X]

forces [(Bb)+, X] to be trivial. In addition, the exponential law yields

[B, map∗(S
n
+, X)] ∼= [A, map∗(S

n
+, X)] (2.3)

for all n ≥ 1. Hence, for each n ≥ 1, the set [(Bb)+, map∗(S
n
+, X)] has a single

element, and this implies that πnmap(Bb, X) is zero, since all its elements lie in a

single orbit under the action of the fundamental group. It follows that map(Bb, X)

is weakly contractible. Secondly, suppose that two components Aa, Ac map into

the same component Bb. Then (2.3) forces map∗(S
n
+, X) to be path-connected for

n ≥ 1. This implies that [Sn
+, X] is trivial for all n; therefore, πn(X) is also trivial

for all n, and X is weakly contractible.
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We therefore assume that f induces a bijection π0(A) ∼= π0(B). Then h deter-

mines a collection of maps

map∗(B0, X0)→ map∗(A0, X0)

map(Bf(a), Xx)→ map(Aa, Xx),
(2.4)

and we are led to showing that each of these is a weak homotopy equivalence. By

Theorem 1.4, it suffices to prove that the induced homomorphisms of fundamental

groups are surjective. For simplicity of notation, we shall assume from now on that

A, B and X are path-connected, and drop most subscripts. Using (2.2), for each

choice of a based map g: B → X we obtain a commutative diagram with exact rows

π2(X)
ϕ1

→ π1map∗(B, X)g

ϕ2

→ π1map(B, X)g

ϕ3

→ π1(X)

↓ = ↓ ϕ7 ↓ ϕ8 ↓ =

π2(X)
ϕ4

→ π1map∗(A, X)gf
ϕ5

→ π1map(A, X)gf
ϕ6

→ π1(X).

Lemma 2.1 Suppose given a commutative diagram where the rows are exact,

M >→ G →→ Q

↓ ϕ′ ↓ ϕ ↓ ϕ̄

N >→ K →→ R.

Then the following hold:

(a) If ϕ is surjective on conjugacy classes, so is ϕ̄.

(b) If N ⊆ im ϕ and ϕ̄ is an epimorphism, then ϕ is an epimorphism.

(c) If N is nilpotent, ϕ̄ is an epimorphism, and ϕ is surjective on conjugacy

classes, then ϕ is an epimorphism.

(d) If ϕ̄ is an isomorphism and ϕ is surjective on conjugacy classes, then ϕ′ is

surjective on conjugacy classes.

(e) If N ⊆ im ϕ and ϕ̄ is surjective on conjugacy classes, then ϕ is surjective on

conjugacy classes.
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Proof. Parts (a) and (b) are straightforward. In order to prove (c), we show that

N ⊆ im ϕ and apply (b). Thus, pick any element y ∈ N . By assumption, we may

write y = zϕ(u)z−1 with z ∈ K and u ∈ G. Then z̄ = ϕ̄(v̄) for some v ∈ G, and

y1 = zϕ(v)−1 belongs to N . Hence, if we set x0 = vuv−1, then we have

y = y1ϕ(vuv−1)y−1
1 = [y1, ϕ(x0)]ϕ(x0),

where both y1 and ϕ(x0) belong to N . By arguing as in Lemma 1.5, we find that

y = γiϕ(ξi) for all i ≥ 1, with γi ∈ ΓiN , which finishes the argument.

We next prove (d). As in the previous part, start with an element y ∈ N and

write it as y = y1ϕ(vuv−1)y−1
1 with y1 ∈ N and u, v ∈ G. Now the injectivity of ϕ̄

ensures that vuv−1 ∈M , as required. Part (e) is straightforward. ]

In our situation, the assumption that f induces a bijection [B, X] ∼= [A, X]

guarantees that the arrow im ϕ3 → im ϕ6 is an isomorphism. Since ϕ8 is surjective

on conjugacy classes, the restriction

im ϕ2 → im ϕ5

is surjective on conjugacy classes, by part (d) of the above lemma. Furthermore,

the commutative diagram

im ϕ1 >→ π1map∗(B, X)g →→ im ϕ2

↓ ↓ ϕ7 ↓
im ϕ4 >→ π1map∗(A, X)gf →→ im ϕ5,

in view of part (e) of the above lemma, shows that ϕ7 is surjective on conjugacy

classes. This argument reduces our problem to the case of based mapping spaces.

Denote by Ai the ith skeleton of A, and similarly for B. Assuming that f is a

cellular map, there is a commutative diagram with exact rows,

lim
←

1 π2map∗(B
i, X)g >→ π1map∗(B, X)g →→ lim

←
π1map∗(B

i, X)g

↓ ϕ7↓ ↓
lim
←

1 π2map∗(A
i, X)gf >→ π1map∗(A, X)gf →→ lim

←
π1map∗(A

i, X)gf .

For every i, the spaces map∗(B
i, X)g and map∗(A

i, X)gf are nilpotent. By assump-

tion, ϕ7 is surjective on conjugacy classes. Thus, parts (a) and (c) of Lemma 2.1,
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together with Proposition 1.7, imply that ϕ7 is in fact surjective, hence completing

the proof of Theorem 0.2. ]

3 Characterizing local spaces

The half-smash product X×|Y of two spaces is a standard notation for X∧Y+ (cf. [10,

Section 2.D]). For a map f : A → B, a space X is called f -local if map∗(f, X) is a

weak homotopy equivalence [9]. Since [Sn
+, map∗(A, X)] ∼= [A×|Sn, X], Theorem 0.2

can be reformulated as follows. This answers in the affirmative a question posed

in [6, p. 15].

Corollary 3.1 Let f : A→ B be any map between CW-complexes. Then a space X

is f -local if and only if f induces a bijection [B, X] ∼= [A, X] together with bijections

[B×|Sn, X] ∼= [A×|Sn, X] for n ≥ 1. ]

In a more categorical language, this result implies the following. If C is any

category, we say that an object X and a morphism f : A → B are orthogonal, as

in [1] or [8], if the map of sets C(B, X)→ C(A, X) induced by f is bijective. A class

of objects D is called a small-orthogonality class [1, Section 1.C] if there is a set

of morphisms fα such that D is precisely the class of objects orthogonal to all fα.

Thus, Corollary 3.1 yields:

Corollary 3.2 For each map f between CW-complexes, the class of f -local spaces

is a small-orthogonality class in the based homotopy category. ]

Indeed, a space X is f -local if and only if it is orthogonal to the set consisting of

f and f×|Sn for n ≥ 1. This remark sheds light on Dror Farjoun’s argument in [9]

or [10, Section 1.B], where it is shown that the class of f -local spaces is reflective in

the based homotopy category for every map f , i.e., that f -localization exists for all

spaces.
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4 Homology equivalences of function spaces

The possibility of the following improvement of our previous results was suggested

by Dror Farjoun. The reader is referred to [4] for the definition and properties of

HZ-localization, i.e., localization with respect to ordinary integral homology. Recall

that a space L is HZ-local if every integral homology equivalence W → V of CW-

complexes induces a bijection of based homotopy classes of maps [V, L] ∼= [W, L],

and a group G is HZ-local if and only if it is isomorphic to the fundamental group

of an HZ-local space.

Lemma 4.1 If a group homomorphism ϕ: G→ K between HZ-local groups is sur-

jective on conjugacy classes, then it is an epimorphism.

Proof. The assumption that ϕ is surjective on conjugacy classes implies that the

induced homomorphism of abelianizations, ϕ∗: H1(G) → H1(K), is surjective. Ac-

cording to [5, Corollary 2.13], a homomorphism between HZ-local groups which

becomes surjective after abelianizing is itself surjective. ]

In view of Theorem 1.4, we have

Theorem 4.2 Suppose that a map h: X → Y induces bijections [Sn
+, X] ∼= [Sn

+, Y ]

for n ≥ 0. If the fundamental groups of all path-connected components of X and Y

are HZ-local, then h is a weak homotopy equivalence. ]

We can now prove Theorem 0.1 as a corollary.

Proof of Theorem 0.1:

Let h: map∗(B, X)→ map∗(A, Y ) be any map between function spaces, where A and

B are now assumed to be connected (and this is essential). As before, denote by Ai

the ith skeleton of A and similarly for B. The space map∗(A, Y ) is weakly equivalent

to the inverse limit of the spaces map∗(A
i, Y ), under the inclusions Ai ↪→ Ai+1. Since

each space map∗(A
i, Y ) is a disjoint union of nilpotent spaces for i ≥ 1, it follows

from [4, § 12] that the space map∗(A, Y ) is HZ-local. Of course, we can argue

the same way with map∗(B, X). If h is an integral homology equivalence, then,
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since its source and target are HZ-local spaces, h is a weak homotopy equivalence.

The converse implication is well known, as it is also the fact that a weak homotopy

equivalence induces bijections of unbased homotopy classes of maps from all spheres.

To prove the converse of the latter claim in our case, observe that the fundamental

group of each path-component of map∗(A, Y ) or map∗(B, X) is an HZ-local group,

so that Theorem 4.2 applies. ]

Recall that a map g: X → Y is said to be an A-equivalence if map∗(A, g) is a

weak homotopy equivalence; cf. [3], [10, Section 2.A]. As a corollary of Theorem 0.1,

we obtain the following.

Corollary 4.3 Let A be any connected CW-complex. Then a map g: X → Y is

an A-equivalence if and only if it induces a bijection [A, X] ∼= [A, Y ] together with

bijections [A×|Sn, X] ∼= [A×|Sn, Y ] for n ≥ 1. ]

Since [A×|Sn, X] ∼= [A, map(Sn, X)], the latter condition can of course be refor-

mulated in terms of iterated free loops of g.
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