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Abstract. A presentable ∞-category is defined as an accessible localization of an ∞-category
of presheaves over some small ∞-category. In ordinary category theory, the Representation
Theorem of Adámek and Rosický establishes that locally presentable categories are equivalent
to categories of models of limit sketches. In this article, we prove an analogous result for
∞-categories, by showing that an ∞-category is presentable if and only if it is limit-sketchable.
As a special case, we exhibit the sketchability of the ∞-category of complete dendroidal Segal
spaces, which serves as a model for ∞-operads.

1. Introduction

The concept of locally presentable categories, introduced by Gabriel and Ulmer [7], emerged as
an abstraction from the notion of presentations by generators and relations A locally presentable
category is a cocomplete category that is generated through filtered colimits by a set of compact
objects. By relaxing the requirement for cocompleteness to only include the presence of filtered
colimits, the broader notion of accessible categories is obtained.

A sketch in the sense of Bastiani and Ehresmann [4] is defined as a small category together
with a set of cones and a set of cocones in it. A model of a sketch Σ is a functor from Σ to the
category of sets that sends each specified cone to a limit cone and each specified cocone to a
colimit cocone. In this article, we focus on limit sketches, i.e., sketches that only include cones.

There are numerous examples in the literature of categories modeled on some limit sketch,
including colored operads and models of any Lawvere theory. Through categorical logic, the
models of limit sketches can be shown to be equivalent to the models of essentially algebraic
theories. A pivotal result by Adámek and Rosický [1] highlights the significance of sketches,
revealing that locally presentable categories are precisely categories sketchable by a limit sketch.

The primary objective of this article is to extend the equivalence between limit sketchability
and presentability to ∞-categories. Joyal [9, 10, 11] and Lurie [12] explored presentability and
accessibility in ∞-categories, paralleling classical definitions even though with subtle distinctions.
For example, defining accessible categories as those equivalent to a higher Ind-category arises as
a natural choice, though less conventional in classical contexts. In Section 2, we introduce the
necessary concepts of higher category theory, culminating in discussions on presentability and
accessibility.

The theory of sketches was first explored in homotopical contexts using the formalism of
Quilen model categories [3, 5, 15], by considering enriched sketches and their models up to weak
equivalence. In [15], Rosický studied models of finite weigthed limit sketches in combinatorial
monoidal model categories, and proved that their models are again combinatorial —hence locally
presentable— under mild assumptions. In the framework of ∞-categories, limit sketches first
appeared in the work of Joyal [9] on quasicategories. In [12], Lurie showed that the ∞-category
of models of a higher Lawvere theory (i.e., a sketch with only product cones) is presentable.

In Section 3, we expand upon Joyal’s results and present a collection of examples, some of
which are new, showcasing that many well-known ∞-categories are limit-sketchable. In Section 4,
we write down a proof of the equivalence between models of higher limit sketches and presentable
∞-categories. Our proof relies on ideas from [1] adapted to the higher categorical context. To
conclude, we collect some instances of this equivalence, including the fact that the ∞-category of
complete dendroidal Segal spaces is limit-sketchable, hence presentable.

The authors acknowledge support from the Departament de Recerca i Universitats de la Generalitat de Catalunya
(2021 SGR 00697) and from the Agencia Estatal de Investigación (AEI) under grant PID2020-117971GB-C22.
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2. Preliminaries

2.1. Quasi-categories. In this work, we implicitly use the formalism of quasi-categories [6, 9,
12] for ∞-category theory. Thus, we use the term ∞-groupoid to refer to a Kan complex. Every
∞-category C has a collection of objects C0, and we denote the fact that x is an object of C by
writing x ∈ C.

If C and D are ∞-categories, the simplicial set Fun(C,D) with
Fun(C,D)n = sSet(C ×∆n,D)

is an ∞-category, which we call the ∞-category of functors from C to D. Here sSet denotes the
category of simplicial sets and ∆n = ∆(−, [n]), where ∆ is the simplex category. We denote an
object F ∈ Fun(C,D)0 by F : C → D. A natural transformation α : C ×∆1 → D between two
functors F, G : C → D is a 1-simplex of Fun(C,D) whose restriction to C × {0} is F and whose
restriction to C × {1} is G.

Given two objects x, y of an ∞-category C, we denote by MapC(x, y) the ∞-groupoid of maps
(or mapping space) from x to y, which is defined by the following pullback of simplicial sets:

MapC(x, y) Fun(∆1, C)

∆0 ×∆0 C × C,(x,y)

⌟

where the right-hand map is obtained by applying Fun(−, C) to the map (d0, d1) : ∆1 → ∆0 ×∆0.
We denote by f : x→ y the fact that f ∈ MapC(x, y)0. A mapping space of a functor category
MapFun(C,D)(F, G) has as 0-simplices the natural transformations between F and G, and we
denote these by α : F ⇒ G.

Every ∞-category C has a homotopy category ho(C), with the same objects as C and with
ho(C)(x, y) = π0 MapC(x, y). Given a morphism f : x→ y, we denote by [f ] the corresponding
morphism in ho(C). A morphism f : x→ y in C is an isomorphism if it is invertible in ho(C).

As is common in the literature, we make two exceptions to this nomenclature: the isomorphisms
between ∞-categories and ∞-groupoids will be called equivalences. In this article, we call an
object or a map unique when it is unique up to isomorphism, i.e., the space it inhabits is
contractible. For example, the inverse of an isomorphism is unique. Given two composable
morphisms f : x → y and g : y → z in C, there exists a unique morphism h : x → z such that
[h] = [g] ◦ [f ]. Composition can also be studied at the level of mapping spaces, where there is a
unique (up to natural isomorphism) composition functor

− ◦ − : MapC(y, z)×MapC(x, y) −→ MapC(x, z)
defined by the construction given in [14, § 45.6]. It has the expected properties; namely, it is
associative up to homotopy and it matches with the composition defined in ho(C).

2.2. Cardinality assumptions. The main concepts studied in this article are related to sizes
of ∞-categories. For an infinite cardinal κ, an ∞-groupoid X is called κ-small if πn(X ) has
cardinality smaller than κ for all n ≥ 0. An ∞-category is called locally κ-small if all its mapping
spaces are κ-small ∞-groupoids. Furthermore, an ∞-category is called κ-small if it is locally
κ-small and its set of isomorphism classes of objects has cardinality smaller than κ. This definition
is found with the name of essentially small ∞-category in some references such as [12], but we
follow the conventions of [2, 6].

We assume the existence of a strongly inaccessible cardinal κ, and call small sets (or sometimes
just sets) the sets with cardinality smaller than κ. An ∞-category will be called small (resp.
locally small) if it is κ-small (resp. locally κ-small). The locally small ∞-category of all small
∞-groupoids is denoted by S, and the one of all small ∞-categories is denoted by ∞-Cat.

If K is small and C is locally small, then Fun(K, C) is a locally small ∞-category [12, Example
5.4.1.8]. Throughout this paper, unless explicitly specified, all ∞-categories are assumed to be
locally small. In the case where we need some ∞-category which is not necessarily locally small,
it will be called a large ∞-category.

2.3. Adjunctions and the Yoneda lemma. We say that a functor F : C → D is essentially
surjective if for every object y ∈ D there exists an object x ∈ C together with an isomorphism
y ∼= Fx. We say that F is fully faithful if the map

MapC(x, y) −→ MapD(Fx, Fy)
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is an equivalence for every pair of objects x, y ∈ C. We say that K is a full subcategory of C if
there is a fully faithful functor J : K → C. Sometimes we refer to J as the inclusion of K into C.

Adjunctions between functors can be generalized to the setting of ∞-categories using the
following characterization of the unit and the counit. Given two functors F : C → D and G : D → C,
we say that F is a left adjoint to G (or that G is a right adjoint to F ) if there exist natural
transformations η : idC ⇒ G ◦ F and ϵ : F ◦G⇒ idD such that the following diagrams commute:

F ◦G ◦ F G = idD ◦G G ◦ idC = G

F = F ◦ idC idD ◦F = F G ◦ F ◦GidF

idF ◦η ϵ◦idF

idG

η◦idG idG ◦ϵ

In this case, we refer to η as the unit of the adjunction and to ϵ as the counit of the adjunction.
Every simplicial set X has an opposite simplicial set Xop [6, Definition 1.5.7], defined for each

n ∈ N by (Xop)n = Xn,
di

op = dn−i : (Xop)n → (Xop)n−1 and si
op = sn−i : (Xop)n → (Xop)n+1.

The opposite simplicial set satisfies that (Xop)op = X. If a simplicial set C is an ∞-category,
then the opposite simplicial set Cop is also an ∞-category with the same objects as C, but with
MapCop(x, y) = MapC(y, x)op. We call Cop the opposite ∞-category of C.

For any small ∞-category K, we denote PSh(K) = Fun(Kop,S) and call it the ∞-category of
presheaves on K.
Theorem 2.1 (Yoneda Embedding [12, Proposition 5.1.3.1]). For every ∞-category C, there
exists a unique functor

h• : C −→ Fun(Cop,S)
such that hx(y) ∼= MapC(y, x) for all x, y ∈ C. This functor h• is fully faithful.

We refer to h• as the covariant Yoneda embedding.
Theorem 2.2 (Yoneda Lemma [12, Lemma 5.5.2.1]). Let K be a small ∞-category and x ∈ K be
any object. For any functor F : Kop → S, there is an isomorphism

MapFun(Kop,S)(hx, F ) ∼= Fx.

Conversely, the covariant Yoneda embedding applied to the opposite of an ∞-category C yields
a unique (and fully faithful) functor

h• : Cop −→ Fun(C,S)
such that hx(y) ∼= MapC(x, y) for all x, y ∈ C. We refer to h• as the contravariant Yoneda
embedding. It satisfies the dual of the Yoneda Lemma: for every functor G : K → S, there is an
isomorphism

MapFun(K,S)(hx, G) ∼= Gx.

2.4. Limits and colimits. Let K be a small ∞-category. A K-diagram in an ∞-category C
is a functor K → C. For any small ∞-category K and any object x ∈ C, the constant diagram
∆x : K → C sends all objects of K to x and higher morphisms of K to higher identities over x, i.e.,
the iterated application of the first degeneracy over x. By applying Fun(−, C) to the terminal map
K → ∆0, we obtain the diagonal functor ∆: C → Fun(K, C), which sends any object x ∈ C to the
constant diagram ∆x, and any morphism f : x→ y to a natural transformation ∆f : ∆x→ ∆y
defined by post-composition with f .
Definition 2.3. Let K be a small ∞-category and C an ∞-category. A K-cone in C is a triple
(D, x, α), where D : K → C is a K-diagram, x ∈ C is the apex and α : ∆x ⇒ D is a natural
transformation. Moreover, a K-cone (D, x, α) is a limit K-cone if, for all y ∈ C, the map

MapC(y, x) ∆−→ MapFun(K,C)(∆y, ∆x) α◦−−−−→ MapFun(K,C)(∆y, D)
is an equivalence of ∞-groupoids.

A K-cocone in C is a K-cone in the opposite ∞-category Cop, and a colimit cocone is a limit
cone in Cop. The following results show that the apex of a limit cone is unique in the infinity
categorical sense.
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Lemma 2.4. Let C be an ∞-category, K a small ∞-category, D : K → C a diagram, and
f : x→ y a morphism in C. If there exists a K-cone α : ∆y → D and we denote by β : ∆x→ D a
composition of α with ∆f : ∆x→ ∆y, then any two of the following three properties implies the
third:

(1) α exhibits y as a limit of the diagram D.
(2) β exhibits x as a limit of the diagram D.
(3) The morphism f : x→ y is an isomorphism.

Proof. By definition of f , α and β, the following diagram commutes:

MapC(z, y) MapFun(K,C)(∆z, ∆y)

MapFun(K,C)(∆z, D).

MapC(z, x) MapFun(K,C)(∆z, ∆x)

f◦9 ∆f◦9

∆z,y

∆z,x
β◦9

α◦9

The commutativity of the right triangle follows from the definition of β as a composition, and the
commutativity of the left square follows by the definition of the functor ∆ on morphisms as a
natural transformation. The covariant Yoneda functor applied to f is hf = f ◦ 9, and because h•
is fully faithful by Theorem 2.1, f is an isomorphism if and only if f ◦ 9 is an isomorphism. Thus,
we have a commutative triangle with f ◦ 9, α ◦∆z,y and β ◦∆z,x, where, by the two-out-of-three
property, the desired result follows. □

Proposition 2.5. Let C be an ∞-category and let D : K → C be a diagram. If D has a (co)limit
with apex y ∈ C, then an object x ∈ C is an apex of a (co)limit of D if and only if it is isomorphic
to y.

Proof. Let D : K → C be a diagram which has a limit with apex y ∈ C and natural transformation
β : ∆y → D. Assume that an object x ∈ C is another apex of a limit cone α : ∆x → D of D.
By the natural property of a limit cone applied to x and the cone α, there exists a morphism
f : x→ y such that α is a composition of β with ∆f : ∆x→ ∆y. Then, by Lemma 2.4, f must be
an isomorphism. Conversely, assume given an isomorphism f : x→ y. Then, by Lemma 2.4, the
composition of α with ∆f : ∆x→ ∆y is a limit cone with apex x. The case of colimits follows by
applying the same argument to the opposite ∞-category. □

Hence, when it is clear from the context, we refer to the unique apex of a limit K-cone with
base D : K → C as limK D (or simply lim D). In the dual case, we denote the unique apex of a
colimit as colimK D (or simply colim D).

An ∞-category C is (co)complete if, for every small ∞-category K, each diagram D : K → C
admits a (co)limit. If a functor preserves terminal objects and all fiber products, it is called left
exact (or lex). The preservation of terminal objects and all fiber products is equivalent to the
preservation of all finite limits, where a limit is finite if its base has a finite index ∞-category.

Let A and K be small ∞-categories and κ be a regular cardinal. A K-diagram, K-cone or limit
K-cone is κ-small if K is κ-small as an ∞-category. A functor F : A → S is called κ-continuous if
it preserves κ-small limits. In particular, it is called continuous if it is ℵ0-continuous. We denote
by ContκA the full subcategory of Fun(A,S) spanned by all κ-continuous functors.

Let F : C → D be a functor of ∞-categories which admits a right adjoint G : D → C. For every
small ∞-category K, the functor F preserves colimit K-cocones and the functor G preserves limit
K-cones [12, Proposition 5.2.3.5].

Proposition 2.6 ([12, Proposition 5.1.3.2]). Let C be an ∞-category. The covariant Yoneda
embedding h• : C → Fun(Cop,S) preserves all limits that exist in C.

As a direct consequence, the contravariant Yoneda embedding sends colimits in C to limits in S.
Given an object c ∈ C, define the evaluation functor evc : Fun(C,D) → Fun(∆0, C) ∼= C as the
functor resulting from applying the contravariant functor Fun(−,D) to the morphism c : 1→ C
in sSet.

Proposition 2.7 ([12, Proposition 5.1.2.3]). Let K and A be small ∞-categories and let C be an
∞-category which admits K-indexed colimits. Then:

(i) Fun(A, C) admits K-indexed colimits.
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(ii) For every diagram D : K → Fun(A, C), a cone α : ∆F ⇒ D is a colimit cocone if and
only if, for each a ∈ A, the induced cocone αa : ∆ eva(F )⇒ (eva ◦D) is a colimit cocone.

The dual of Proposition 2.7 also holds for limits. As a direct conclusion of this fact, the
∞-category of presheaves over any small ∞-category is complete and cocomplete. Furthermore,
part (ii) of Proposition 2.7 and its dual implies that the functor eva : Fun(A, C)→ C preserves
limits and colimits for all a ∈ A.

Lemma 2.8. Let C be an ∞-category and let x ∈ C. The image of the covariant Yoneda functor
hx : Cop → S preserves limits in Cop, i.e., hx sends colimits to limits.

Proof. By Theorem 2.1, hx is equivalent to the composite of h• : Cop → Fun(Cop,S) with
evx : Fun(Cop,S) → S. In addition, h• and evx preserve limits, by Propositions 2.6 and 2.7
respectively. Therefore, hx preserves limits. □

2.5. Localizations. A functor L : C → D between ∞-categories is a reflective localization if it
has a fully faithful right adjoint J : D → C. Hence, L is a reflective localization if and only if D
embeds as a reflective subcategory into C, that is, for every object x ∈ C there exists an object
x′ ∈ D and a map r : x→ Jx′ such that the pre-composition map

MapC(r, z) : MapC(Jx′, z) −→ MapC(x, z)

is an equivalence of ∞-groupoids for all z ∈ D.
If L is a reflective localization, then the counit of the adjunction ϵ : LJ → idD is a natural

isomorphism. The endofunctor JL : C → C is called a reflector on C.
The terminology around reflective localizations is not consistent in the literature, where some

authors [12] call localization what we call here a reflective localization. We choose to follow
the convention of [2], using the more general term localization to mean the following: a functor
L : C → D is a localization if there exists a class of morphisms S such that L inverts S and the
induced functor

(−) ◦ L : Fun(D, E) −→ FunS(C, E)
is an equivalence for every ∞-category E , where FunS(C, E) denotes the full subcategory of
Fun(C, E) spanned by functors inverting S. As shown in the following proposition, every reflective
localization is a localization, but the converse is not true in general.

Proposition 2.9. Every reflective localization L : C → D with right adjoint J is a localization at
the class of maps S = {ηx : x→ JLx | x ∈ C}.

Proof. First, we want to show that L inverts S, i.e., Lηx is an isomorphism for all x ∈ C. By
the adjunction identities of L ⊣ J , the map Lηx : Lx → LJLx has a left inverse, namely ϵLx.
Furthermore, since L is a localization, the counit of the adjunction ϵ : LJ → idD is a natural
isomorphism. Using the inverse of ϵ, we find that ϵLx is also a right inverse of Lηx, and hence Lη
is an isomorphism.

Therefore, the induced composition functor factors through FunS(C, E):

(−) ◦ L : Fun(D, E) −→ FunS(C, E).

We want to show that (−) ◦L is an equivalence. On one hand, the counit isomorphism LJ ∼= idD
implies that

((−) ◦ J) ◦ ((−) ◦ L) ∼= ((−) ◦ LJ) ∼= ((−) ◦ idD) ∼= idFun(D,E) .

On the other hand, we need to prove that ((−) ◦ L) ◦ ((−) ◦ J) ∼= idFunS(C,E). Observe that, for
all F ∈ FunS(C, E),

(((−) ◦ L) ◦ ((−) ◦ J))(F ) ∼= ((−) ◦ JL)(F ) ∼= F ◦ JL ∼= F,

because F inverts ηx : x→ JLx for all x ∈ C, i.e., it inverts η : idC → JL. Therefore, (−) ◦ L is
an equivalence and L is a localization. □

Let S be a class of maps in an ∞-category C. An object z ∈ C is S-local if, for every f : x→ y
in S, there is an equivalence of ∞-groupoids induced by composition with f :

f∗ : MapC(y, z) ≃−→ MapC(x, z).
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We denote by Loc(C, S) the full subcategory of C spanned by S-local objects. A morphism
f : x → y is an S-equivalence if, for every S-local object z, composition with f induces an
equivalence of ∞-groupoids

f∗ : MapC(y, z) ≃−→ MapC(x, z).
In general, Loc(C, S) need not be reflective.

A class of maps S in C is called strongly saturated if it contains the isomorphisms of C and has
the two-out-of-three property, and the full subcategory of Fun(∆1, C) spanned by the maps in S
is closed under colimits.

The smallest strongly saturated class in C is the one containing only the isomorphisms of C.
Since the intersection of strongly saturated classes is a strongly saturated class, for every collection
S of morphisms the intersection of all the strongly saturated classes containing S is the smallest
strongly saturated class S containing S. We call it the strongly saturated class generated by S. If
S is a set, then S is said to be of small generation.

2.6. Presentablility. Let κ be a regular cardinal. An ∞-category K is κ-filtered if the colimits
of shape K on S commute with all κ-small limits in S, i.e., if the functor

colim
K

: Fun(K,S) −→ S

preserves κ-small limits. A diagram F : K → C where K is a κ-filtered ∞-category is called a
κ-filtered diagram, and a κ-filtered colimit is a colimit over a κ-filtered diagram. An object x ∈ C
is κ-compact if hx : C → S preserves κ-filtered colimits. We denote by Cκ the full subcategory of
C spanned by κ-compact objects.

If C is a cocomplete ∞-category, we say that a class of objects G ⊆ Obj(C) generates C under
colimits if every object in C is the colimit of a diagram with objects in G. If C is not cocomplete
but admits κ-filtered colimits for some regular cardinal κ, we say that G generates C under
κ-filtered colimits if every object in C is the colimit of a κ-filtered diagram with objects in G. For
example, for every small ∞-category A, the image of the Yoneda embedding h• : A → PSh(A)
generates PSh(A) under colimits.

As in the case of ordinary categories, there are two equivalent characterizations of accessible
∞-categories: one with filtered colimits and compact objects, and another with Ind-objects.

Definition 2.10. For a regular cardinal κ, an ∞-category C is κ-accessible if C is locally small,
it admits κ-filtered colimits, the full subcategory Cκ ⊆ C of κ-compact objects is small, and Cκ

generates C under κ-filtered colimits. Furthermore, a functor F : C → D is κ-accessible if C is
κ-accessible and F preserves κ-filtered colimits.

We say that an ∞-category C (resp. a functor F : C → D) is accessible if it is κ-accessible for
some regular cardinal κ.

Definition 2.11. Let A be a small ∞-category and κ a regular cardinal. The ∞-category of
Ind-objects Indκ(A) is the full subcategory of PSh(A) spanned by those functors F : Aop → S for
which there exists a small κ-filtered ∞-category K and a diagram p : K → A such that F is a
colimit of the composition h• ◦ p : K → PSh(A).

Lemma 2.12 ([12, Proposition 5.3.5.4]). Let A be a small ∞-category and let κ be a regular
cardinal. Then:

(i) Indκ(A) ⊆ Contκ(A).
(ii) If A admits κ-small colimits, then Indκ(A) = Contκ(A).

Theorem 2.13 ([12, Proposition 5.4.2.2]). Let C be an ∞-category. The following are equivalent:
(i) C is an accessible ∞-category.
(ii) C is equivalent to IndκA for some regular cardinal κ and some small ∞-category A.

Proposition 2.14 ([12, Proposition 5.4.7.7]). If a functor between accessible ∞-categories has a
left or right adjoint functor, then it is itself accessible.

Examples of accessible∞-categories include S [12, Example 5.4.2.7] and any accessible category.
In addition, if A is a small ∞-category and C is an accessible ∞-category, then Fun(A, C) is
accessible [12, Proposition 5.4.4.3]. In particular, PSh(A) and Fun(A,S) are accessible for every
small ∞-category A.
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Definition 2.15. An ∞-category is presentable if it is accessible and cocomplete.

As in the case of accessibility, there are other equivalent definitions of presentability. Most
notably, presentability can be characterized in terms of a certain type of localization of an
∞-category of presheaves. Thus, we say that a reflective localization L : C → D is an accessible
reflective localization if the right adjoint to L is an accessible functor. As a consequence
of Proposition 2.14, we have the following characterization of accessible reflective localizations:

Proposition 2.16 ([12, Proposition 5.5.1.2]). Let C be an accessible ∞-category and L : C → D a
reflective localization with fully faithful right adjoint J : D ↪→ C. Then, the following are equivalent:

(i) J is an accessible functor.
(ii) D is accessible.
(iii) The reflector JL : C → C is an accessible functor.

Therefore, any reflective localization between accessible ∞-categories is accessible.

Theorem 2.17 (Simpson [16] and Lurie [12, Theorem 5.5.1.1]). The following are equivalent:
(i) C is a presentable ∞-category.
(ii) C is equivalent to IndκA for some regular cardinal κ and some small ∞-category A which

admits κ-small colimits.
(iii) C is equivalent to an accessible reflective localization of the ∞-category of presheaves

PSh(A) on some small category A.

Examples of presentable ∞-categories include S, any ∞-topos, and any presentable category.
If A is a small ∞-category and C is a presentable ∞-category, then Fun(A, C) is presentable [12,
Proposition 5.5.3.6]. In particular, PSh(A) and Fun(A,S) are presentable for every small
∞-category A. Furthermore, every presentable ∞-category is complete and cocomplete [12,
Corollary 5.5.2.4].

In addition, presentable ∞-categories provide a convenient ambient for localization. As
explained in the previous section, every reflective localization induces a reflector which inverts a
class of morphisms. Conversely, if we choose a set of morphism S0 in a presentable ∞-category,
then the following result proves that there exists a reflective localization inverting the strongly
saturated class S generated by S0.

Theorem 2.18 ([12, Proposition 5.5.4.15]). Let C be a presentable ∞-category and S0 a set
of morphisms in C. Let S be the strongly saturated class of morphisms generated by S0 and
Loc(C, S0) the full subcategory of C consisting of S0-local objects. Then, Loc(C, S0) is presentable
and the inclusion Loc(C, S0) ⊆ C has a left adjoint L. Furthermore, for every f : x→ y in C, the
following are equivalent:

(i) f is an S0-equivalence.
(ii) f belongs to S.
(iii) The induced morphism Lf is an equivalence.

Therefore, L : C → Loc(C, S0) is a reflective localization and S is the class of maps inverted by L.

3. Limit sketches

Definition 3.1. Let A be a small ∞-category and C be a complete ∞-category. A limit sketch
Σ = (A,L) is a pair consisting of a small ∞-category A and a set of cones L in A. A model of a
limit sketch Σ in C is a functor F : A → C that sends cones of L to limit cones in C.

The ∞-category of all models of Σ in C is a subcategory of Fun(A, C) which is denoted by
Mod(Σ, C). If C is not specified, it is assumed to be S, and the ∞-category of all models of Σ
in S is denoted by Mod(Σ). We say that an ∞-category is limit-sketchable if it is equivalent to
Mod(Σ) for some limit sketch Σ.

A functor F : A → S is a model of a limit sketch Σ if and only if, for every K-cone (D, x, α) ∈ L
with base D : K → A, apex x ∈ A and natural transformation α : ∆x⇒ D, the map

t : Fx −→ lim(F ◦D)

induced by the limit in S is an equivalence of ∞-groupoids.
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Example 3.2 (Pointed objects). Let 2 be the nerve of the small category generated by a
morphism a : 0→ 1, and let C be an ∞-category with terminal object 1C . Let Σ = (2,L) be the
limit sketch with set of cones L consisting of the empty diagram D : ∅ → 2, the apex 0 ∈ 2, and
the unique natural transformation α : ∆0⇒ D. A model F : 2→ C of Σ in C sends

(a : 0→ 1) 7−→ (f : x0 → x1),

and it also sends the only cone of L to a limit cone of the diagram F ◦D : ∅ → C. It follows that
x0 ∼= lim(F ◦D) ∼= 1C. Therefore, each model F exhibits an object x1 ∈ C as a pointed object
f : 1C → x1 of C, and Mod(Σ, C) can be viewed as the ∞-category of pointed objects of C. In
particular, Mod(Σ) is the ∞-category of pointed spaces.

Example 3.3 (Morphisms). Take 2 as in the previous example, and let Σ = (2, ∅) be the
trivial limit sketch over 2. A model F : 2 → C of Σ in any ∞-category C exhibits a morphism
of C. Therefore, Mod(Σ, C) = Fun(2, C) is the ∞-category of morphisms in C. The same
construction can be carried out with any small ∞-category A; hence Mod((A, ∅), C) = Fun(A, C)
is limit-sketchable.

Example 3.4 (Pullback diagrams). Let A be the nerve of the small category generated by a
commutative square

3 2

1 0.
Consider a limit sketch Σ = (A,L) with set of cones L consisting of the inclusion diagram
D : {1 → 0 ← 2} → A, the apex 3 ∈ A, and the natural transformation α : ∆3 ⇒ D. A model
F : A → C in a complete ∞-category C for the sketch Σ sends

3 2

1 0

F
x3 x2

x1 x0

⌟

where the image commutative square is a pullback diagram. Therefore, each model of Σ corre-
sponds to a pullback diagram in C.

Example 3.5 (Pre-spectrum and spectrum objects). Let A be the nerve of the small category
with objects N⊔ (N× {0, 1}) and generating morphisms fi,j : i→ (i + 1, j) and gi,j : (i, j)→ i for
every i ∈ N and j ∈ {0, 1}, i.e., the category of the following shape:

(0, 0) (1, 0) (2, 0)

0 1 2 · · ·

(0, 1) (1, 1) (2, 1)

Consider the limit sketch Σ = (A,L) with set of cones L consisting of, for each i ∈ N
and j ∈ {0, 1}, the empty diagram Di,j : ∅ → A, the apex (i, j) ∈ A, and the unique natural
transformation αi,j : ∆(i, j) ⇒ Di,j . A model F : A → C in a complete ∞-category C for the
sketch Σ is a diagram

1C 1C 1C

x0 x1 x2 · · ·

1C 1C 1C

where each (i, j) is replaced by the terminal object 1C of C, and a sequence of objects xn ∈ C is
selected. Giving a model of Σ amounts to choosing pointed objects 1C → xn for all n ∈ N and
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maps xn → Ωxn+1 (by the universal property of the pullback):

1C

xn Ωxn+1 xn+1.

1C

⌟

Hence, each model of Σ is, by definition, a pre-spectrum object, and Mod(Σ, C) is the ∞-category
of pre-spectrum objects in C.

If we want to obtain spectrum objects, we need to add more cones to Σ. Consider a limit
sketch Σ′ = (A,L ⊔ L′) where L′ consists of, for each n ∈ N, a diagram

Dn : {1→ 0← 2} −→ A
1→ 0← 2 7−→ (n, 1)→ n← (n, 0);

the apex n − 1 ∈ A, and a natural transformation βn : ∆(n − 1) ⇒ Dn. A model for Σ′ is a
pre-spectrum object in C such that

xn ≃ pullback of {1C → xn+1 ← 1C} ≃ Ωxn+1.

In other words, a model for Σ′ is a spectrum object, and Mod(Σ′, C) is the∞-category of spectrum
objects in C. In particular, Mod(Σ′) is the ∞-category of spectra Sp.

In the next examples, we view categories such as the simplex category ∆, the category Γ of
finite pointed sets and pointed maps, or the tree category Ω defined in [8, § 3.2] as ∞-categories
by passing to their respective nerves. In all the sketches (A,L) discussed in this section, except
Example 3.15, the corresponding ∞-category A is the nerve of a small category.

Example 3.6 (Pre-category objects and Segal spaces). Define a limit sketch Σ = (∆op,L) with
set of cones L consisting of, for each n ∈ N,

• an index category Wn generated by

(0, 0) (0, 1) (0, n− 1)

(1, 0) (1, 1) (1, 2) (1, n− 1) (1, n);

rn−1ln−1r0l0 l1 r1 ···

• a diagram Dn : Wn →∆op sending (0, i) to [0], (1, i) to [1], li to δ0, and ri to δ1,
• and a natural transformation αn : ∆[n]→ Dn with apex [n] defined by composition with

the unique morphism from [n] to [0] or [1].
A model F : ∆op → C of Σ in a complete ∞-category C sends the cones of L to limit cones in C,
i.e., it is equivalent to a simplicial object F in C such that there is an equivalence

Fn
∼−→ F1 ×F0 F1 ×F0 · · · ×F0 F1.

Therefore, Mod(Σ, C) is the ∞-category of pre-category objects in C. If C = S, then Mod(Σ) is
the ∞-category of Segal spaces.

Example 3.7 (Univalent category objects and complete Segal spaces). Let C be a complete
∞-category and Σ = (∆op,L) be the sketch of Example 3.6. By the characterization found in [13,
§ 5.5] and [13, Proposition 6.4], a Segal space F is a complete Segal space if and only if the
following is a pullback square in S:

(1)
F0 F3

F1 F1 ×d1, d1
F0

F1 ×d0, d0
F0

F1
f

g

⌟

where f = (s0d0, idF1 , s0d1) and g = (d1d3, d0d3, d1d0).
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Define a sketch Σ′ = (∆op,L′) where L′ is the union of L with the cone represented by the
following diagram:

(2)

[0]

[1] [3]

[1] [1] [1]

[0] [0]
δ1 δ1

σ0δ0
id[1]

σ0δ1 δ1δ3
δ0δ3 δ1δ0

δ0 δ0

with apex [0]. A model F : ∆op → C of Σ′ exhibits a pre-category object in C and the image
of (2) is a limit cone, which is equivalent to the pullback square (1). Therefore, Mod(Σ′, C) is the
∞-category of univalent category objects in C. In the particular case when C = S, we have that
Mod(Σ′) is the ∞-category of complete Segal spaces.

Example 3.8 (Monoid objects and A∞-spaces/rings). Let C be a complete ∞-category and
Σ = (∆op,L) be the sketch of Example 3.6. Define a sketch Σ′ = (∆op,L′) where L′ is the union
of L and a cone with empty diagram and apex [0]. Each model of Σ′ is a pre-category object
F in C such that F0 ≃ 1C. Hence, Mod(Σ′, C) is the ∞-category of monoid objects in C. In
the case when C = S, we have that Mod(Σ′) is the ∞-category of A∞-spaces. If C = Sp, then
Mod(Σ′, Sp) is the ∞-category of A∞-ring spectra.

Example 3.9 (Groupoid objects). Let C be a complete ∞-category and Σ = (∆op,L) be the
sketch of Example 3.6. Define a sketch Σ′ = (∆op,L′) where L′ is the union of L with a diagram

D : {1→ 0← 2} −→ ∆op

(1→ 0← 2) 7−→
(

[1] δ0−→ [0] δ0←− [1]
)

and a natural transformation α with apex [2] defining the following commutative square:

[2] [1]

[1] [0].
δ0

δ0δ0

δ1

A model of Σ′ defines a pre-category object and sends these squares to pullback squares. Therefore,
Mod(Σ′, C) is the ∞-category of groupoid objects in C.

Example 3.10 (Group objects and grouplike A∞-spaces). Following the construction used
in Example 3.8 but replacing the sketch of pre-categories with the one of groupoids, it follows
that Mod(Σ′, C) is the ∞-category of group objects in C. In the particular case when C = S, we
have that Mod(Σ′) is the ∞-category of grouplike A∞-spaces.

Example 3.11 (Commutative monoid objects and E∞-spaces/rings). Let Γ be the category of
finite pointed sets and pointed maps, where every object is isomorphic to a set [n] pointed by
0 ∈ [n]. For each 1 ≤ k ≤ n, there is a pointed map δk : [n]→ [1] defined by

δk(i) =
{

1 if i = k,

0 if i ̸= k.

A Γ-object in an ∞-category C is a map E : Γ → C. If C has finite products, we can take the
product of the morphisms E(δk) : En → E1, which we denote by

pn : En −→
n∏

k=1
E1.

By definition, E is a commutative monoid object if pn is invertible for every n ≥ 0.
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Consider a sketch Σ = (Γ,L), where the set of cones L consists of, for each n ∈ N, a diagram

Dn :
n⊔

k=1
{k} −→ Γ

k 7−→ [1],

the apex [n] ∈ Γ, and the natural transformation δn
• : ∆[n]⇒ Dn induced by δk at each object k.

Therefore, Mod(Σ, C) is the ∞-category of commutative monoid objects in C. If C = S, then
Mod(Σ) is the ∞-category of E∞-spaces, and if C = Sp, then Mod(Σ, Sp) is the ∞-category of
E∞-ring spectra.

Example 3.12 (Abelian group objects and infinite loop spaces). Let C be a complete∞-category
and Σ = (Γ,L) be the sketch of Example 3.11. Consider the functor

i : ∆op −→ Γ
[n] 7−→ HomsSet∗(∆n

+, S1)

where S1 is the pointed simplicial circle ∆1/∂∆1. Since C is complete, the map

i∗ : Fun(Γ, C) −→ Fun(∆op, C)

sends every commutative monoid object E ∈ Mod(S, C) ⊆ Fun(Γ, C) to its underlying monoid
i∗E : ∆op → C. We say that E is an abelian group object if i∗E is a group.

Define a sketch Σ′ = (Γ,L′) where L′ is the union of L and a cone consisting of a diagram
i ◦DGrp, where

DGrp : {1→ 0← 2} −→ ∆op

(1→ 0← 2) 7−→
(

[1] δ0−→ [0] δ0←− [1]
)

,

and a natural transformation with apex i[2] ∈ Γ defining the following commutative square:

i[2] i[1]

i[1] i[0].
i(δ0)

i(δ0)i(δ0)

i(δ1)

A model of S′ defines an abelian group object by sending these squares to pullback squares.
Therefore, Mod(Σ′, C) is the ∞-category of abelian group objects in C. In the particular case
when C = S, we have that Mod(Σ′) is the ∞-category of infinite loop spaces.

Example 3.13 (Dendroidal Segal spaces). Let Ω be the tree category of Moerdijk–Weiss [8,
§ 3.2]. Given two trees T1 and T2 sharing an edge e which is a leaf of T1 and the root of T2, the
grafting T1 ∪e T2 is the pushout of T1 and T2 along the common edge e.

Define a limit sketch Σ = (Ωop,L) with the set L consisting of, for each tree T ∈ Ω and each
decomposition of T as a grafting of subtrees T = T1 ◦e T2, a cone with apex T represented by the
following pushout in Ω:

η T1

T2 T .

e

e

⌜

A model for the sketch Σ is equivalent to a dendroidal space X : Ωop → S such that the squares
of the form

X(T ) X(T1)

X(T2) X(η)
e∗

⌟
e∗

are pullbacks for any tree T and any decomposition of T as a grafting of subtrees T = T1 ◦e T2.
By [8, Lemma 12.7], this condition is equivalent to claiming that X is a dendroidal Segal space,
and hence Mod(Σ) is the ∞-category of dendroidal Segal spaces.
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Example 3.14 (Complete dendroidal Segal spaces). Consider the inclusion J : ∆op → Ωop

sending [n] to the linear tree Ln. The induced map

J∗ : Fun(Ωop,S) −→ Fun(∆op,S)

sends every dendroidal space X to its underlying simplicial space J∗X. By [8, Remark 12.15],
a dendroidal Segal space X : Ωop → S is complete if and only if its underlying simplicial space
J∗X is complete.

Let ΣdS = (Ωop,LdS) be the sketch of Example 3.13, which models dendroidal Segal spaces,
and let (D, [0], α) be the cone added in Example 3.7, which models the completeness condition on
simplicial spaces. Define a sketch Σ = (Ωop,L) where L is the union of LdS and a cone consisting
of a diagram J ◦D and a natural transformation J ◦ α with apex J [0] = L0 ∈ Ωop. A model of Σ
is a dendroidal space X : Ωop → S such that the map

(J∗X)[0] = XJ [0] −→ lim(X ◦ J ◦D) = lim((J∗X) ◦D)

is an equivalence. This condition is equivalent to imposing that the underlying simplicial space
J∗X be complete, according to Example 3.7. Hence, X is a model of Σ if and only if it is a
complete dendroidal Segal space, and Mod(Σ) is the ∞-category of complete dendroidal Segal
spaces.

Example 3.15 (∞-Sheaves). Let A be a small ∞-category, and let A/x denote the slice category
over an object x ∈ A. A sieve on an object x ∈ A is a full subcategory Dx ⊆ A/x closed under
precomposition with morphisms in A/x. For S a sieve on x ∈ A and f : y → x a morphism, the
pullback sieve f∗S on y is the sieve spanned by the morphisms into y that become equivalent to
a morphism in S after composition with f .

A Grothendieck topology T on an ∞-category A, as defined in [12, § 6.2.2], is an assignment to
each object x ∈ A of a collection Tx of sieves on x, called covering sieves, such that:

(1) For each x ∈ A, the trivial sieve A/x ⊆ A/x on x is a covering sieve.
(2) If S is a covering sieve on x and f : y → x is a morphism, then the pullback sieve f∗S is

a covering sieve on y.
(3) For a covering sieve S on x and any sieve R on x, if the pullback sieve f∗R is covering

for every f ∈ S, then R itself is covering.
By [12, Proposition 6.2.2.5], there is a natural bijection between sieves on x in A and equivalence

classes of monomorphisms U → hx in PSh(A), where hx is the Yoneda functor, as in Theorem 2.1,
and a morphism U → V is a monomorphism if it is a (−1)-truncated object of PSh(A)/V .

Let S(T ) be the class of monomorphisms in PSh(A) corresponding to the covering sieves of T .
A presheaf F ∈ PSh(A) is an ∞-sheaf with Grothendieck topology T if it is an S(T )-local object,
i.e., if for every map f : U → hx in S(T ), the morphism

Fx ≃ MapPSh(A)(hx, F ) −→ MapPSh(A)(U, F )

is an equivalence. In fact, this last condition can be rewritten in terms of limits as follows.

Lemma 3.16. Let {ui → x}i∈I be a family of morphisms of A that generate the covering sieve
corresponding to a monomorphism η : U → hx, and let U• be the underlying simplicial object of
the Čech nerve of the induced map

∐
i∈I hui

→ hx. Then, a presheaf F is η-local if and only if
the induced map Fx −→ lim F (U•) is an equivalence.

Proof. Let I be a set, and {ui → x}i∈I be a family of morphisms of C that generate the covering
sieve corresponding to a monomorphism η : U → hx of S(T ). By [12, Lemma 6.2.3.18], f : U → hx

can be identified with the (−1)-truncation of the induced map
∐

i∈I hui
→ hx in PSh(A)/hx

.
Since PSh(A) is an∞-topos, by [12, Proposition 6.2.3.4], the (−1)-truncation of a map p : V → hx

can be identified with the map colim V• → hx, where V• is the underlying simplicial object of the
Čech nerve of p. Hence, f : U → hx can be identified with a map colim U• → hx, where U• is the
underlying simplicial object of the Čech nerve of the induced map

∐
i∈I hui

→ hx. By Lemma 2.8,
a presheaf F is η-local if and only if the following map is an equivalence:

Fx ≃ MapPSh(A)(hx, F ) −→ MapPSh(A)(U, F ) ≃ MapPSh(A)(colim U•, F )
≃ lim MapPSh(A)(U•, F ) ≃ lim F (U•),

which proves the statement. □
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Let A be a small ∞-category with a Grothendieck topology T . Let Σ = (Aop,L) be a limit
sketch where the set L consists of, for each covering sieve generated by a family {ui → x}i∈I , a
cone over the underlying simplicial object of the Čech nerve of the induced map

∐
i∈I hui

→ hx,
with apex x ∈ A. A model of Σ is a presheaf F : Aop → S such that

Fx −→ lim F (U•)

is an equivalence for every (U•, x) in L. By Lemma 3.16, this condition is equivalent to claiming
that F is an ∞-sheaf, and hence Mod(Σ) is equivalent to the ∞-category Sh(A, T ).

4. Representation theorem

Our goal in this section is to generalize the well-known characterization of presentable categories
as limit-sketchable categories to the higher setting. Thus, we aim to prove that an ∞-category is
presentable if and only if it is equivalent to the ∞-category of models of a limit sketch.

Theorem 4.1 (Sketch Representation Theorem). An ∞-category C is presentable if and only if
it is limit-sketchable.

Proof. We first want to prove that if C is presentable, then there exists some limit sketch Σ
such that C ≃ Mod(Σ). By Theorem 2.17, C being presentable is equivalent to the existence of
some small ∞-category A such that A admits κ-small colimits and C ≃ IndκA for some regular
cardinal κ. Since A admits κ-small colimits, using Lemma 2.12, we obtain that IndκA is equal
to Contκ(Aop).

Consider a sketch Σ = (Aop,L) where L is the set of all limit cones of κ-small diagrams in Aop.
It follows directly from the definitions that Contκ(Aop) is the ∞-category of models of Σ, i.e.,
the category of functors preserving all limit cones of κ-small diagrams in Aop. Observe that L is
well-defined as a set because A is small, which implies that there is only a set of distinct limit
cones of κ-small diagrams in Aop. Therefore, C is equivalent to the ∞-category of models of Σ.

Now let us consider the reverse implication. Given any ∞-category C which is equivalent
to Mod(Σ) for a limit sketch Σ = (A,L), we want to prove that Mod(Σ) is presentable, which
directly implies that C is presentable, since equivalences of ∞-categories preserve presentability.

First, observe that the ∞-category Fun(A,S) is presentable. Our goal is to find a set of
morphisms M such that Mod(Σ) = Loc(Fun(A,S), M), i.e., such that Mod(Σ) is precisely
the full subcategory of Fun(A,S) consisting of M -local objects. If such a set exists, then,
by Theorem 2.18, we may conclude that Mod(Σ) is presentable.

The cones in the set L have the form (Di, xi, αi), where Di : Ki → A is a diagram, xi ∈ A is
an apex, and αi : ∆xi ⇒ Di is a cone. For every such Ki-cone (Di, xi, αi) ∈ L, by whiskering
h• with αi we obtain a natural transformation h• · αi : h• ◦ Di → ∆hxi . Since Fun(A,S) is
cocomplete, there exists a colimit βi : h• ◦Di → ∆ colim(h• ◦Di), which induces a morphism
mi : colim hDi → hxi such that [βi] ◦ [mi] = [hαi ], i.e., the following diagram commutes:

Di h• ◦Di

∆xi ∆hxi ∆ colim(h• ◦Di).

αi h•·αi βi

∆mi

h•

We pick the collection of morphisms M = {mi}i. Since there is one mi for each cone in L, we
have that M is a set of the same cardinality as L.

Now Mod(Σ) ⊂ Fun(A,S) is the full subcategory of functors sending cones of L to limit cones
in S. We want to prove that Mod(Σ) coincides with the full subcategory of Fun(A,S) consisting
of M -local objects. Given a functor F : A → S, we need to show that F sends cones of L to limit
cones in S if and only if F is M -local. Recall that F is M -local if, for any mi ∈M , the induced
map by the covariant Yoneda embedding

hF (mi) ∼= MapFun(A,S)(mi, F ) : MapFun(A,S) (hxi , F ) −→ MapFun(A,S)

(
colim
k∈Ki

hDi(k), F

)
is an equivalence of ∞-groupoids. On the other hand, a functor F : A→ S sends cones of L to
limit cones in S if (F ◦Di, Fxi, Fαi) is a limit cone in S, i.e., for each Ki-cone (Di, xi, αi) ∈ L
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and each y ∈ S, the induced map

θi
y : MapS(y, Fxi) −→ MapFun(K,S)(∆y, F ◦Di)

is an equivalence of ∞-groupoids. By Proposition 2.5, this condition is equivalent to asking that
ti : Fxi → lim(F ◦Di) be an equivalence of ∞-groupoids, where ti is the induced morphism in
the following diagram:

Di F ◦Di

∆xi ∆Fxi ∆ lim(F ◦Di).

αi F ·αi ℓi

∆ti

F

Our goal is to compare when ti and mi are equivalences. To this end, we need a third natural
construction, which will be used as a bridge. Consider again a Ki-cone (Di, xi, αi) ∈ cL. By
whiskering H = (hF ◦ h•) ∼= Map[A,S](h•, F ) with αi we obtain a natural transformation

H · αi : ∆ Map[A,S](hxi , F )⇒ Map[A,S](h• ◦Di, F ).

Since Fun(A,S) is cocomplete, there exists a limit

γi : ∆ lim Map[A,S](h• ◦Di, F )⇒ Map[A,S](h• ◦Di, F ),

which induces a morphism

ni : Map[A,S](hxi , F ) −→ lim Map[A,S](h• ◦Di, F )

such that [γi] ◦ [ni] = [H · αi], i.e., the following diagram commutes:

Di Map(h• ◦Di, F )

∆xi ∆ Map(hxi , F ) ∆ lim Map(h• ◦Di, F ).

αi H·αi γi

∆ni

H

We prove that ti is an isomorphism if and only if ni is an isomorphism. By the contravariant
Yoneda lemma, there exist natural morphisms

yF,Di(k) : Map(hDi(k), F ) −→ F (Di(k))

for any k ∈ K. By composing yF,Di(k) with γi
k, we obtain a new cone of F ◦Di. By the universal

property of the limit, there exists a commuting morphism τi : lim Map(h• ◦Di, F )→ lim(F ◦Di).
In addition, by Lemma 2.4, τi must be an isomorphism.

Map(hDi(k), F ) F (Di(k))

Map(hxi , F ) lim Map(h• ◦Di, F ) lim(F ◦Di) Fxi.
F ·αi

ℓi

ti

H·αi
γi

ni

∼=

yF,Di(k)

τi

Consider the composite of τi and ni, and the contravariant Yoneda lemma map

yF,xi : Map(hxi , F ) −→ Fxi.

These two morphisms form a diagram together with ti, and furthermore the diagram commutes,
because of the naturality of the contravariant Yoneda lemma. Then, thanks to τi being an
isomorphism, and the two-out-of-three property, ni is an isomorphism if and only if ti is one:

Map(hxi , F ) Fxi

lim(F ◦Di).
tiτi◦ni

yF,xi

∼=
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Finally, we prove that ni is an isomorphism if and only if Map(mi, F ) is an isomorphism.
By Lemma 2.8, Map(colim(h• ◦ Di), F ) is a limit of the diagram Map(h• ◦ Di, F ). By the
uniqueness of limits up to isomorphism, there exists an isomorphism

σ : Map(colim(h• ◦Di), F ) −→ lim (Map(h• ◦Di, F )) .

Since the two objects are limits of the same diagram, the universal morphisms ni and Map(mi, F )
from Map(hxi , F ) must commute. Therefore, by the two-out-of-three property, the following
diagram commutes:

hxi colim(h• ◦Di)

Map(hxi , F ) Map(colim(h• ◦Di), F )

lim Map(h• ◦Di, F ).

Map(mi,F )

ni

mi

hF hF

σ ∼=

Consequently, Mod(Σ) = Loc(Fun(A,S), M), and it follows from Theorem 2.18 that Mod(Σ)
is presentable. □

Example 4.2. Every ∞-topos is a left-exact accessible reflective localization of PSh(A) for some
small ∞-category A. Therefore, Theorem 4.1 implies that every ∞-topos is limit-sketchable.

The ∞-category Sh(A, T ) of sheaves on a small ∞-category A equipped with a Grothendieck
topology T is a special case. A more explicit sketch whose ∞-category of models is equivalent to
Sh(A, T ) has been given in Example 3.15.

Corollary 4.3. If C is a presentable ∞-category, then, for every limit sketch Σ = (A,L), the
∞-category of models Mod(Σ, C) over C is presentable.

Proof. Assume that C is κ-presentable for a regular cardinal κ. By Theorem 4.1, if C is presentable,
it is equivalent to Contκ B for some small ∞-category B. Consider the sketch Σ′ = (A× B,L′)
where L′ consists of a set of diagrams D ×D′, with D the diagrams of L and D′ the κ-small
diagrams in B, and a set of natural transformations N × N ′, with N the cones of L and N ′

the limit cones of all the diagrams of D′ in B. Then it follows that Mod(Σ′) = Mod(Σ, C), and,
by Theorem 4.1, we infer that Mod(Σ, C) is presentable. □

From the examples given in Section 3, we can conclude, using Theorem 4.1, that the following
full subcategories of any presentable ∞-category C are presentable: pointed objects, spectrum
objects, pre-category objects, univalent category objects, monoid objects, groupoid objects, group
objects, commutative monoid objects, and abelian group objects.

Consequently, the following ∞-categories are presentable: pointed ∞-groupoids, spectra, Segal
spaces, complete Segal spaces, A∞-spaces, grouplike A∞-spaces, A∞-ring spectra, E∞-spaces,
infinite loop spaces, and E∞-ring spectra.

Although these categories are extensively discussed in various forms throughout the literature,
their sketchability is seldom explicitly addressed. The initial examples in Section 3 of this article
draw on similar examples from unpublished work of Joyal [10, 11]. Our treatment of complete
Segal spaces, dendroidal Segal spaces, and complete dendroidal Segal spaces in Examples 3.7,
3.13 and 3.14 is new.
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