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PHILIPP LÜCKE AND PHILIPP SCHLICHT

Abstract. We use generalizations of concepts from descriptive set theory

to study combinatorial objects of uncountable regular cardinality, focussing

on higher Kurepa trees and the representation of the sets of cofinal branches
through such trees as continuous images of function spaces. For different types

of uncountable regular cardinals κ, our results provide a complete picture

of all consistent scenarios for the representation of sets of cofinal branches
through κ-Kurepa trees as retracts of the generalized Baire space κκ of κ. In

addition, these results can be used to determine the consistency of most of the

corresponding statements for continuous images of κκ.

1. Introduction

Given an infinite regular cardinal κ, the generalized Baire space of κ consists
of the set κκ of all functions from κ to κ equipped with the topology whose basic
open sets are of the form Ns = {x ∈ κκ | s ⊆ x}, where s is an element of the set
<κκ of all functions t : α −→ κ with α < κ. One of the most basic structural
features of the classical Baire space ωω is the fact that non-empty closed subsets
of ωω are retracts of ωω (see [7, Proposition 2.8]), i.e. for every such that C there
is a continuous surjection r : ωω −→ A with r � A = idA. In contrast, the results
of [10] show that such results cannot be generalized to higher cardinalities and this
failure highlights fundamental differences between ω and higher regular cardinals,
e.g. the existence of limit ordinals below the given cardinal and possible existence
of Aronszajn and Kurepa trees at these cardinals. First, [10, Proposition 1.4] shows
that for every uncountable regular cardinal κ, there is a non-empty closed subset
of κκ that is not a retract of κκ. Moreover, [10, Theorem 1.5] shows that for every
uncountable cardinal κ satisfying κ = κ<κ, there is a non-empty closed subset of
κκ that is not a continuous image of κκ.1 In particular, the classes of continuous
images of κκ and continuous images of non-empty closed subsets of κκ in κκ do
not coincide in this case. Finally, the various results of [10] strongly motivate an
investigation of the class of all closed subsets of κκ that are continuous images of
κκ. Since closed subsets of κκ canonically correspond to sets of cofinal branches
through trees of height κ, the study of this class of subsets turns out to be closely
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2 PHILIPP LÜCKE AND PHILIPP SCHLICHT

connected to the existence of certain combinatorial objects of the given cardinality
and the validity of combinatorial principles at the corresponding cardinals.

In this paper, motivated by results from [10] (see Theorem 2.1 below), we focus
on the representation of the sets of cofinal branches through κ-Kurepa trees as
continuous images of κκ. Our results will show that if κ is a successor of a cardinal
of countable cofinality, then κ-Kurepa trees provide more examples of closed subsets
of κκ that are not continuous images of κκ. In contrast, we will also show that for
other types of uncountable regular cardinals, various natural questions about such
continuous representations of sets of branches through Kurepa trees can have widely
different answers that depend heavily on the underlying model of set theory.

Remember that a partial order T is a tree if it has a unique minimal element and
for every element t of T, the set predT(t) = {s ∈ T | s <T t} is well-ordered by <T.
Given a tree T, t ∈ T and α ∈ Ord, we define lhT(t) = otp (predT(t), <T), Tα =
{s ∈ T | lhT(s) = α}, T<α =

⋃
{Tᾱ | ᾱ < α} and ht(T) = min{β ∈ Ord | Tβ = ∅}.

Next, we say that a subset b of a tree T is a branch if it <T-downwards-closed and
linearly ordered by <T and it is a cofinal branch if in addition otp (b,<T) = ht(T)
holds. Finally, given an uncountable regular cardinal κ, a tree T with ht(T) = κ is
a κ-Kurepa tree if |Tα| < κ holds for all α < κ and T has at least κ+-many cofinal
branches. We usually say Kurepa tree instead of ω1-Kurepa tree. Seminal results
of Jensen (see [2, Chapter III, Section 3]) show that, in the constructible universe
L, κ-Kurepa trees exist for every uncountable regular cardinal κ.2 In contrast, a
classical argument of Silver (see [5, Section 3]) shows that if κ is an uncountable
regular cardinal that is not inaccessible, θ > κ is inaccessible and G is Col(κ,<θ)-
generic over V, then there are no κ-Kurepa trees in V[G].

Fix an infinite regular cardinal κ and 0 < n < ω. A subset T of (<κκ)n is a
subtree of (<κκ)n if dom(t0) = . . . = dom(tn−1) and 〈t0 � α, . . . , tn−1 � α〉 ∈ T for
all 〈t0, . . . , tn−1〉 ∈ T and α < dom(t0). Note that for every such subtree T , the
partial order TT = 〈T,C〉 with

〈s0, . . . , sn−1〉C 〈t0, . . . , tn−1〉 ⇐⇒ s0 ( t0 ∧ . . . ∧ sn−1 ( tn−1

for all 〈s0, . . . , sn−1〉, 〈t0, . . . , tn−1〉 ∈ T is a tree with (TT )α = T ∩ (ακ)n for all
α < κ. Set ht(T ) = ht(TT ) ≤ κ. If ht(T ) = κ, then there is a canonical bijection
between the set of cofinal branches through TT and the set

[T ] = {〈x0, . . . , xn−1〉 ∈ (κκ)n | ∀α < κ 〈x0 � α, . . . , xn−1 � α〉 ∈ T}
given by restrictions. It is easy to see that for every subtree T of (<κκ)n of height
κ, the set [T ] is closed in the product space (κκ)n. Moreover, for every non-empty
closed subset C of (κκ)n, the set

TC = {〈t0, . . . , tn−1〉 ∈ (<κκ)n | C ∩ (Nt0 × . . .×Ntn−1
) 6= ∅}

is a subtree of (<κκ)n with C = [TC ].
Now, let κ be an uncountable regular cardinal and let T be a tree of height κ

with the property that every node in T has at most κ many direct successors. If T
is extensional at limit levels (i.e. if s = t holds for all s, t ∈ T with lhT(s) = lhT(t) ∈
Lim and predT(s) = predT(t)), then it is easy to construct a subtree T of <κκ with
the property that the tree T and TT are isomorphic. In general, we can consider the

2Note that for all inaccessible cardinals κ, the existence of κ-Kurepa trees is trivial. Therefore,
one usually considers trees with stronger restrictions on the size of levels at inaccessible cardinals

(see [6] and Section 1.1 below).



DESCRIPTIVE PROPERTIES OF HIGHER KUREPA TREES 3

tree T̄ that consists of all non-empty branches b through T with the property that
there exists t ∈ T with s ≤T t for all s ∈ b and is ordered by inclusion. Then T̄ is
extensional at limit levels, the map [t 7→ predT(t)∪{t}] is an isomorphism between
T and a cofinal subtree of T̄ and hence there is a canonical isomorphism between
the sets of cofinal branches through T and T̄. Moreover, it is easy to see that the
assumption that T is a κ-Kurepa tree implies that T̄ is a κ-Kurepa tree too. In
combination, this shows that the existence of a κ-Kurepa tree is equivalent to the
existence of a κ-Kurepa subtree of <κκ, i.e. a subtree T of <κκ with the property
that the tree TT is a κ-Kurepa tree.

1.1. Kurepa trees that are not continuous images. The following result pro-
vides several scenarios in which the closed sets induced by Kurepa trees are not
continuous images of the corresponding generalized Baire space. The statement
of Corollary 1.2 below was our original motivation for the work presented in this
paper.

Theorem 1.1. If κ is an uncountable regular cardinal with µω ≥ κ for some µ < κ
and T is a κ-Kurepa subtree of <κκ with |[T ]| > κ<κ, then the set [T ] is not a
continuous image of κκ.

This theorem has the following two direct corollaries:

Corollary 1.2. Assume that CH holds. If T is a subtree of <ω1ω1 that is a Kurepa
tree, then [T ] is not a continuous image of ω1ω1. �

Corollary 1.3. Assume that κ = µ+ = 2µ for some singular cardinal µ of countable
cofinality. If T is a subtree of <κκ that is a κ-Kurepa tree, then [T ] is not a
continuous image of κκ. �

Note that the above notion of Kurepa trees trivializes at inaccessible cardinals
κ, because the complete binary tree <κ2 obviously satisfies the listed properties.
Moreover, it is easy to see that the unique function r : κκ −→ κ2 with r(x)(α) =
min{1, x(α)} for all x ∈ κκ and α < κ is a retraction from κκ to κ2 in this case.
In the other direction, it is also possible to use a result from [10] to show that not
every Kurepa tree at an inaccessible cardinal is a continuous image. Moreover, this
statement can be extended to certain regular cardinals that are only inaccessible in
some inner model computing the successor of the given cardinal correctly.

Theorem 1.4. Let M be an inner model and let κ be a cardinal with κ = κ<κ.
If κ is inaccessible in M and (κ+)M = κ+ holds, then there is a κ-Kurepa subtree
T of <κκ with T ⊆ (<κ2)M and the property that the set [T ] is not a continuous
image of κκ.

Motivated by these results about inaccessible cardinals, we also consider the
following strengthening of the definition of Kurepa trees: given an uncountable
regular cardinal κ, a tree T of height κ is called slim if |T (α)| ≤ |α| holds for
co-boundedly many α < κ. Classical results of Jensen and Kunen in [6] show that
there are no slim κ-Kurepa trees at ineffable cardinals κ and, in the constructible
universe L, slim κ-Kurepa trees exist at every uncountable regular cardinal κ that
is not ineffable.

The proof of Theorem 1.1 also allows us to derive the following statement.

Theorem 1.5. If κ is an inaccessible cardinal and T is a slim Kurepa subtree of
<κκ, then [T ] is not a continuous image of κκ.
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Finally, the results of this paper allow us to use results of Donder from [3] and
Velleman from [14] to show that the absence of large cardinals in the constructible
universe implies the existence of Kurepa trees whose induced closed subsets are not
continuous images.

Theorem 1.6. Let κ be an uncountable regular cardinal such that κ = κ<κ holds
and neither κ nor κ+ are inaccessible in L. Then there is a κ-Kurepa subtree of κκ
with the property that [T ] is not a continuous image of κκ.

1.2. Kurepa trees that are continuous images. Somewhat surprisingly, Corol-
laries 1.2 and 1.3 in previous section turn out to be the only provable restrictions
on the existence of κ-Kurepa trees whose sets of cofinal branches are continuous
images of κκ. The proof of the following theorem relies on a result of Donder on the
structural properties of the Kurepa trees constructed from the canonical morasses
at successor cardinals in the constructible universe. This result can be combined
with Theorem 1.1 to show that the statement that there is an ω2-Kurepa subtree
T of <ω2ω2 with the property that [T ] is a continuous image of ω2ω2 is independent
of the axioms of ZFC by considering the constructible universe L and models of the
negation of the Continuum Hypothesis.

Theorem 1.7. Assume that V = L holds. Then the following statements are
equivalent for every uncountable regular cardinal κ:

(i) The cardinal κ is not the successor of a cardinal of countable cofinality.
(ii) There is a κ-Kurepa subtree of <κκ with the property that [T ] is a retract

of κκ.
(iii) There is a κ-Kurepa subtree of <κκ with the property that [T ] is a contin-

uous image of κκ.

In combination with Theorem 1.5, the previous result directly implies an analo-
gous characterization for slim Kurepa trees.

Corollary 1.8. Assume that V = L holds. Then the following statements are
equivalent for every uncountable regular cardinal κ:

(i) The cardinal κ is neither inaccessible nor the successor of a cardinal of
countable cofinality.

(ii) There is a slim κ-Kurepa subtree of <κκ with the property that [T ] is a
retract of κκ.

(iii) There is a slim κ-Kurepa subtree of <κκ with the property that [T ] is a
continuous image of κκ. �

The next result shows that the positive implications of Theorem 1.7 for successors
of regular cardinals can also be obtained by collapsing an inaccessible cardinal to
become the successor of an uncountable regular cardinal.

Theorem 1.9. If κ is an inaccessible cardinal and µ < κ is an uncountable regular
cardinal, then there is a generic extension V[G] of the ground model V that preserves
all cofinalities less than or equal to µ and greater than or equal to κ, such that the
following statements hold in V[G]:

(i) κ = µ+.
(ii) There is a κ-Kurepa subtree T0 of <κκ with the property that the set [T0]

is a retract of κκ.
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(iii) There is a κ-Kurepa subtree T1 of <κκ with T1 ⊆ T0 and the property that
the set [T1] is not a continuous image of κκ.

The notion of slimness considered in Theorem 1.5 has a natural weakening that
only requires |T (α)| ≤ |α| to hold in a stationary set of α < κ. We refer to this
property as stationary slimness. The following result shows that, in general, it
is not possible to replace slimness by stationary slimness in the assumptions of
Theorem 1.5. Remember that an inaccessible cardinal κ is a 2-Mahlo cardinal if
the set of Mahlo cardinals less than κ is stationary in κ.

Theorem 1.10. If κ is a 2-Mahlo cardinal, then the following statements hold in
a generic extension of the ground model V:

(i) κ is inaccessible.
(ii) There is a stationary slim κ-Kurepa subtree T of <κκ with the property

that [T ] is a retract of κκ.

1.3. Kurepa trees that are not retracts. The trees constructed in the proofs of
the results of the previous section have many isolated points. The next result shows
that this is a necessary condition. Note that, throughout this paper, inaccessible
means strongly inaccessible and, if κ is an inaccessible cardinal, then <κ2 is a κ-
Kurepa subtree of <κκ and the set [<κ2] = κ2 is a retract of κκ without isolated
points.

Theorem 1.11. Let κ be an uncountable regular cardinal and let T be a κ-Kurepa
subtree of κκ. Assume that either κ is not inaccessible or T is stationary slim. If
the set [T ] is a retract of κκ, then it contains isolated points.

This result allows us to show that the existence of Kurepa trees implies the
existence of Kurepa trees that are not retracts.

Theorem 1.12. Let κ be an uncountable regular cardinal with κ<κ = κ. If there
is a κ-Kurepa tree S, then there is a κ-Kurepa subtree T of <κκ with the property
that the set [T ] is not a retract of κκ. Moreover, if S is stationary slim, then T can
be taken to be stationary slim.

Finally, our techniques allow us to show that for higher Kurepa trees, the prop-
erty of being a continuous image neither implies the existence of isolated branches
nor the property of being a retract.

Theorem 1.13. Let κ be an uncountable regular cardinal. If there is a κ-Kurepa
tree S with the property that the set [S] is a continuous image of κκ, then there is a
κ-Kurepa subtree T of <κκ with the property that the set [T ] does not contain isolated
points, it is a continuous image of κκ and it is not a retract of κκ. Moreover, if S
is stationary slim, then T can be taken to be stationary slim.

2. Wide subtrees

The following result from [10] will be our main tool for showing that the closed
subsets induced by certain Kurepa trees are not continuous images of the whole
space.

Theorem 2.1 ([10, Theorem 7.1]). Let κ be an uncountable regular, let A be an
unbounded subset of κ and let T be a subtree of <κκ. If µ is a cardinal with µ<κ <
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|[T ]| and c : κµ −→ [T ] is a continuous surjection, then there is a strictly increasing
sequence 〈λn ∈ A | n < ω〉 with least upper bound λ and an injection

i :
∏
n<ω

λn −→ T (λ).

such that

x � n = y � n ⇐⇒ i(x) � λn = i(y) � λn

holds for all x, y ∈
∏
n<ω λn and all n < ω.

The above lemma allows us to provide short proofs of two theorems presented
in Section 1.1.

Proof of Theorem 1.1. Let κ be an uncountable regular cardinal with µω ≥ κ for
some µ < κ and let T be a κ-Kurepa subtree of <κκ with |[T ]| > κ<κ. Assume,
towards a contradiction, that the set [T ] is a continuous image of κκ. Since we
have κ<κ < |[T ]|, we can apply Theorem 2.1 to find a strictly increasing sequence
〈λn | n < ω〉 of ordinals in the interval (µ, κ) with least upper bound λ and an
injection i :

∏
n<ω λn −→ T (λ). Moreover, since λn > µ holds for all n < ω, we

can conclude that

|T (λ)| ≥ |
∏
n<ω

λn| ≥ µω ≥ κ,

contradicting the fact that T is a κ-Kurepa subtree of <κκ. �

Proof of Theorem 1.5. Let κ be an inaccessible cardinal and let T be a slim κ-
Kurepa subtree of <κκ. Assume, towards a contradiction, that the set [T ] is a
continuous image of κκ. Pick α < κ with the property that |T (β)| = |β| holds
for all α ≤ β < κ. Using Theorem 2.1, we find a strictly increasing sequence
〈λn | n < ω〉 of cardinals in the interval (α, κ) with least upper bound λ and an
injection i :

∏
n<ω λn −→ T (λ). Then König’s Theorem allows us to conclude that

|T (λ)| ≥ |
∏
n<ω

λn| > |
∑
n<ω

λn| = λ,

a contradiction. �

In the remainder of this section, we prove Theorem 1.6. Our arguments will be
based on the concept introduced in the next definition.

Definition 2.2. ([12, Section 1]) A tree T has a Cantor subtree if there is a strictly
increasing sequence 〈λn | n < ω〉 with λ = supn<ω λn < ht(T ) and an uncountable
subset B of T (λ) with the property that the set {s ∈ T (λn) | ∃t ∈ B s <T t} is
countable for every n < ω.

The next statement is a direct consequence of Theorem 2.1.

Corollary 2.3. Let κ be an uncountable regular cardinal and and let T be a subtree
of <κκ with |[T ]| > κ<κ. If [T ] is a continuous image of κκ, then T contains a
Cantor subtree. �

Proof of Theorem 1.6. Let κ be an uncountable regular cardinal with κ = κ<κ and
the property that neither κ nor κ+ are inaccessible in L.

Claim. There is a simplified (κ, 1)-morass with linear limits (see [14, Section 2]).
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Proof of the Claim. As discussed at the end of [11], our assumption allows us to
find A ⊆ κ such that κ+ = (κ+)L[A], Donder’s construction of a simplified (κ, 1)-
morass with linear limits in [3] can be carried out in L[A] and the resulting morass
is also a simplified (κ, 1)-morass with linear limits in V. �

By the above claim, we can apply [14, Theorem 4.3] to find a κ-Kurepa subtree
T of <κκ without Cantor subtrees. By Corollary 2.3, we know that the closed set
[T ] is not a continuous image of κκ. �

3. Trees induced by inner models

This section is devoted to the proof of Theorem 1.4. Our arguments are a
variation of the proof of [10, Theorem 1.5]. In addition, we will show that the
statement of Corollary 2.3 can, in general, not be reversed.

Proof of Theorem 1.4. In the following, we let ≺·, ·� : Ord×Ord −→ Ord denote
the Gödel pairing function. Given an ordinal γ closed under ≺·, ·� and x ∈ γ2, we
define <x to be the unique binary relation on γ with

α <x β ⇐⇒ x(≺α, β�) = 1

for all α, β < γ.
Let κ be a cardinal satisfying κ = κ<κ and let M be an inner model with the

property that κ is inaccessible in M and (κ+)M = κ+ holds. Work in M and set

W = {x ∈ κ2 | (κ,<x) is a well-order}.
Then it is easy to see that the fact that κ is uncountable and regular implies that W
is a closed subset of κκ and hence there is a subtree T of <κ2 with W = [T ]. Since
|W | = 2κ, T ⊆ <κ2 and κ is inaccessible, we can conclude that T is a κ-Kurepa
subtree of <κκ.

Now, work in V. Then our assumptions on M imply that T is still a κ-Kurepa
subtree of <κκ. Moreover, if x ∈ [T ], then the regularity of κ implies that (κ,<x)
is a well-order. Given x ∈ [T ] and α < κ, we let rnkx(α) denote the rank of α
in the well-order (κ,<x). Assume, towards a contradiction, that the set [T ] is a
continuous image of κκ. Then a combination of [10, Lemma 2.2] with [10, Lemma
2.3] yields a <κ-closed subtree U of <κκ× <κκ without end nodes3 such that

[T ] = p[U ] = {x ∈ κκ | ∃y 〈x, y〉 ∈ [U ]}.
Note that these properties of U imply that for every 〈t, u〉 ∈ U , there exists a pair
〈x, y〉 ∈ [U ] with t ⊆ x and u ⊆ y. Given 〈t, u〉 ∈ U and α < κ, we define

r(t, u, α) = sup{rnkx(α) | 〈x, y〉 ∈ [U ], t ⊆ x, u ⊆ y} ≤ κ+.

Then r(∅, ∅, α) = κ+ holds for all α < κ, because the assumptions (κ+)M = κ+

implies that for every γ < κ+, there exists x ∈ [T ]M ⊆ [T ] = p[U ] with rnkx(α) ≥ γ
and hence there exists y ∈ κκ such that the pair 〈x, y〉 witnesses that r(∅, ∅, α) ≥ γ.

Claim. If γ < κ+, (t, u) ∈ U and α < κ with r(t, u, α) = κ+, then there is
(v, w) ∈ U and α < β < dom(v) such that t ( v, u ( w, dom(v) is closed under
≺·, ·�, β <v α and r(v, w, β) ≥ γ.

3A subtree S of (<κκ)n is <κ-closed if for every λ < κ and every C-increasing sequence

〈〈sξ0, . . . , s
ξ
n−1〉 | ξ < λ〉 in S, the tuple 〈

⋃
ξ<λ s

ξ
0, . . . ,

⋃
ξ<λ s

ξ
n−1〉 is also an element of S. We call

an element of such a tree S an end node if it is C-maximal in S.
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Proof of the Claim. By our assumptions, we can find 〈x, y〉 ∈ U with t ⊆ x, u ⊆ y
and rnkx(α) ≥ γ + κ. Then there is α < β < κ with β <x α and rnkx(β) ≥ γ.
Pick ξ > β + dom(t) closed under ≺·, ·�. Then t ⊆ x � ξ, u ( y � ξ, β <x�ξ α and
r(x � ξ, y � ξ, β) ≥ γ. �

Claim. If 〈t, u〉 ∈ U and α < κ with r(t, u, α) = κ+, then there exists (v, w) ∈ U
and α < β < dom(v) such that t ( v, u ( w, dom(v) is closed under ≺·, ·�, β <v α
and r(v, w, β) = κ+.

Proof of the Claim. For each γ < κ+, let 〈vγ , wγ〉 ∈ U and α < βγ < dom(vγ) be
the objects given by the above claim. Since κ = κ<κ holds, we can find 〈v, w〉 ∈ U ,
β < κ and X ⊆ κ+ with |X| = κ+ such that vγ = v, wγ = w and βγ = β for all
γ ∈ X. But this implies that r(v, w, β) = κ+. �

Using the last claim, we now construct sequences 〈〈tn, un〉 ∈ U | n < ω〉 and
〈αn < κ | n < ω〉 such that dom(tn+1) is closed under ≺·, ·�, tn ( tn+1, un ( un+1,
αn < αn+1 < dom(tn+1) and αn+1 <tn+1

αn for all n < ω. Set t =
⋃
n<ω tn and

u =
⋃
n<ω un. Then the properties of U imply that 〈t, u〉 ∈ U and there exists

x ∈ [T ] with t ⊆ x. But then (κ,<x) is a well-order with αn+1 <x αn for all n < ω,
a contradiction. �

As promised above, we end this section by showing that, for certain Kurepa
trees, the converse of the statement of Corollary 2.3 does not hold true.

Corollary 3.1. Let µ be an uncountable regular cardinal, let θ > κ be inaccessible
cardinals above µ, let G be Col(κ,<θ)-generic over V and let H be Col(µ,<κ)-
generic over V[G]. Then the following statements hold in V[G,H]:

(i) There is a κ-Kurepa subtree T of <κκ with the property that the set [T ] is
not a continuous image of κκ.

(ii) Every κ-Kurepa tree contains a Cantor subtree.

Proof. First, since (κ+)V[G,H] = θ = (κ+)V[G] and κ is inaccessible in V[G], we can
apply Theorem 1.4 to conclude that, in V[G,H], there is a κ-Kurepa subtree T of
<κκ such that the set [T ] is not a continuous image of κκ. Next, fix a Col(µ,<κ)-

nice name Ṫ ∈ V[G] for a κ-Kurepa tree with underlying set κ. Since Col(µ,<κ)
satisfies the κ-chain condition in V[G] and Col(κ,<θ) satisfies the θ-chain condition

in V, we can find κ < ϑ < θ with the property that Ṫ ∈ V[Gϑ], where Gϑ =

G ∩ Col(κ,<ϑ). Then ṪH ∈ V[Gϑ, H], θ is inaccessible in V[Gϑ, H] and hence

forcing with Col(κ, [ϑ, θ))V over V[Gϑ, H] adds a new cofinal branch to ṪH . Since
the partial order Col(κ, [ϑ, θ))V is <µ-closed in V[Gϑ, H] and µ is an uncountable

cardinal in V[Gϑ, H], standard arguments show that ṪH contains a Cantor subtree
in V[Gϑ, H] and this subtree is still a subtree in V[G,H]. �

4. Superthin Kurepa trees

The concepts introduced in the next definition will play a central role in our
proofs of Theorems 1.7, 1.9 and 1.10.

Definition 4.1. Let κ be an infinite regular cardinal and let T be a subtree of
<κκ.

(i) The tree T is pruned if for every s ∈ T , there is t ∈ T with s ( t.
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(ii) The boundary ∂T of T is defined as the set of minimal elements of <κκ\T ,
i.e.

∂T = {t ∈ <κκ \ T | ∀α ∈ dom(t) t � α ∈ T}.
(iii) The tree T is superthin if |(T ∪ ∂T ) ∩ ακ| < κ holds for all α ∈ Lim ∩ κ.

Note that a subtree T of <κκ of height κ is <κ-closed if and only if ∂T ∩ ακ = ∅
holds for all α ∈ Lim ∩ κ. The following observation shows that the fact that all
non-empty closed subsets of ωω are retracts of ωω can be generalized to a certain
class of closed subsets of higher Baire spaces.

Proposition 4.2. If κ is an infinite regular cardinal and T is a <κ-closed pruned
subtree of <κκ, then Nt ∩ [T ] 6= ∅ for every t ∈ T and the closed set [T ] is a retract
of κκ.

Proof. Given t ∈ T , our assumptions on T allow us to do an easy inductive con-
struction that produces a sequence 〈tα | α < κ〉 of elements of T such that t0 = t,
dom(tα) = dom(t) + α and tα ⊆ tβ for all α ≤ β < κ. In this situation, we have
xt =

⋃
{tα | α < κ} ∈ Nt ∩ [T ].

Now, fix y ∈ κκ. Then there is a unique β < κ with y � β ∈ ∂T and, since T is
<κ-closed, we know that β is not a limit ordinal. Hence there is a unique αy < κ
with y � αy ∈ T and y � (αy + 1) /∈ T .

Let r : κκ −→ [T ] denote the unique function with r � [T ] = id[T ] and r(y) =
xy�αy for all y ∈ κκ \ [T ].

Claim. The function r is continuous.

Proof of the Claim. First, fix x ∈ [T ], α < κ and y ∈ Nx�α. If y ∈ [T ], then we
have r(y) = y ∈ Nx�α = Nr(x)�α. In the other case, if y /∈ [T ], then x � α ∈ T
implies that αy ≥ α and hence r(y) = xy�αy ∈ Nx�α = Nr(x)�α.

Now, fix x ∈ κκ \ [T ] and α < κ. Pick α ≤ β < κ with x � β /∈ T and y ∈ Nx�β .
Then we have y /∈ [T ], αx = αy ≤ β, x � αx = y � αy and r(y) = xy�αy = xx�αx =
r(x) ∈ Nr(x)�α. �

Since r � [T ] = id[T ], the above claim completes the proof of the proposition. �

Lemma 4.3. Let κ be an uncountable regular cardinal. If there is a superthin
κ-Kurepa subtree S of <κκ, then there is a κ-Kurepa subtree T of <κκ with the
property that [T ] is a retract of κκ. Moreover, if S is pruned, then T can be taken
to contain S as a subtree.

Proof. Let S0 be a superthin κ-Kurepa subtree of <κκ. If S0 is pruned, then we
set S1 = S0. Otherwise, we define

S1 = {t ∈ S0 | ∃x ∈ [T ] t ⊆ x}.

Then it is easy to see that S1 is a pruned superthin κ-Kurepa subtree of <κκ.
Finally, define T to consist of all elements of S1 together with all elements t of <κκ
with the property that there exist s ∈ ∂S1 such that s ⊆ t, dom(s) ∈ Lim and
t(α) = 0 for all α ∈ dom(t) \ dom(s).

Claim. T is a <κ-closed pruned κ-Kurepa subtree of <κκ.

Proof of the Claim. Note that for every t ∈ T \ S1, there is a unique limit or-
dinal α ≤ dom(t) with t � α ∈ ∂S1. Since S1 is superthin, this shows that
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|(T \ S1) ∩ ακ| < κ holds for all α < κ. Moreover, since S1 is a κ-Kurepa sub-
tree of <κκ, this directly implies that T is also a κ-Kurepa subtree of <κκ. Next,
note that for every t ∈ T \ S1, we have t ( t ∪ {〈dom(t), 0〉} ∈ T . Since S1 is
pruned, this shows that T is also pruned. Finally, assume that there is t ∈ ∂T with
dom(t) ∈ Lim. Then t /∈ S1 and, by the definition of T , we have t � α ∈ S1 for all
α < dom(t). But then t ∈ ∂S1 ⊆ T , a contradiction. �

By the above claim, Proposition 4.2 directly shows that [T ] is a retract of κκ. �

The properties of tree introduced in the next definition are studied in depth by
Bernhard König in [8].

Definition 4.4. (i) A tree of height λ is trivially coherent if it isomorphic to
a subtree of <λ2 consisting of sequences t with the property that t−1{0}
is a finite set.

(ii) A tree T is locally coherent if T<α is trivially coherent for every α < ht(T ).

Proposition 4.5. Let κ be a regular cardinal with λω < κ for all λ < κ. Then
every locally coherent κ-Kurepa subtree of <κκ is superthin.

Proof. Let T be a locally coherent κ-Kurepa subtree of <κκ and let α ∈ Lim ∩ κ.
First, assume that cof(α) = ω. Pick a cofinal sequence 〈αn | n < ω〉 in α.

Given n < ω, the fact that T is a κ-Kurepa tree implies that λn = |T ∩ αnκ| < κ.
Moreover, since κ is regular, we know that λ = supn<ω λn < κ. But then the
set [T ∩ ακ] has cardinality at most λω < κ and hence we can conclude that
|(T ∪ ∂T ) ∩ ακ| < κ.

Next, assume that cof(α) > ω. Fix a tree monomorphism π : T ∩ <ακ −→ <α2
with the property that π(t)−1{0} is finite for every t ∈ T ∩ <ακ. Given u ∈
[T ∩ ακ], we can now find minimal αu < α and Nu < ω with the property that
|π(u � ᾱ)−1{0}| = Nu holds for all αu ≤ ᾱ < α. In this situation, two elements
u0 and u1 of [T ∩ ακ] are identical if and only if u0 � αu0

= u1 � αu1
holds. In

particular, we also have |(T ∪ ∂T ) ∩ ακ| ≤ |[T ∩ ακ]| < κ in this case. �

The following unpublished result of Donder shows that, in the constructible uni-
verse, locally coherent Kurepa trees exist at all successor cardinals. This result
is proven by showing that the initial segments of the canonical Kurepa trees con-
structed from the canonical morasses at successor cardinals in L (see [2, Chapter
VIII, Section 2] and [13, Section 2]) satisfy the criterion for trivial coherency given
by [8, Lemma 2.17].

Theorem 4.6 (Donder). Assume that V = L holds. If κ is the successor of an
infinite cardinal, then there is a locally coherent κ-Kurepa tree.

Proof of Theorem 1.7. Assume that V = L and let κ be an uncountable regular
cardinal. If there is a cardinal µ with κ = µ+ and cof(µ) = ω, then Theorem
1.1 directly implies that there is no κ-Kurepa subtree T of <κκ with the property
that [T ] is a continuous image of κκ. Moreover, if κ is inaccessible, then <κ2 is
a κ-Kurepa subtree of <κκ and the set [<κ2] = κ2 is a retract of κ. Finally, if κ
is the successor of a cardinal of uncountable cofinality, then λω < κ holds for all
λ < κ and hence a combination of Lemma 4.3, Proposition 4.5 and Theorem 4.6
shows that there is a κ-Kurepa subtree T of <κκ with the property that [T ] is a
retract of κκ. Since the GCH holds in L, the above observations provide the desired
characterization. �
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Our proofs of Theorem 1.9 and Theorem 1.10 will heavily rely on the following
properties of inner models that were isolated by Hamkins in [4].

Definition 4.7. Let µ be an infinite cardinal and let M be an inner model.

(i) The pair (M,V) has the µ-cover property if for every set x with x ⊆ M
and |x| < µ, there is c ∈M with x ⊆ c and |c|M < µ.

(ii) The pair (M,V) has the µ-approximation property if x ∈M holds for every
set x with x ⊆M and a ∩ x ∈M whenever a ∈M with |a|M < µ.

Lemma 4.8. Let M be an inner model such that the following statements hold for
infinite regular cardinals µ < κ with λ<µ < κ for all λ < κ:

(i) The pair (M,V) satisfies the µ-approximation property.
(ii) κ is inaccessible in M .
(iii) (2κ)M ≥ κ+.

Then T = (<κ2)M is a pruned superthin κ-Kurepa subtree of <κκ.

Proof. First, note that our second and third assumption directly imply that T is
a pruned κ-Kurepa subtree of <κκ. Fix α ∈ Lim ∩ κ. If cof(α) < µ, then our
assumptions directly imply that |∂T ∩ ακ| ≤ |[T ∩ <ακ]| < κ. In the other case, if
cof(α) ≥ µ and x ∈ [T ∩ <ακ], then a ∩ x ∈ M holds for all a ∈ M with |a|M < µ
and hence the µ-approximation property implies that x is an element of M . This
argument shows that [T ∩ <ακ] ⊆ T holds for all α ∈ Lim ∩ κ with cof(α) ≥ µ. In
particular, this shows that ∂T ∩ ακ = ∅ holds for all such ordinals α. Since T is a
κ-Kurepa subtree of <κκ, these computations show that T is superthin. �

The proof of [10, Theorem 7.2] directly yields the following result needed for the
proof of Theorem 1.9.

Theorem 4.9. Let M be an inner model such that R * M and the pair (M,V)
has the ℵ1-cover property. If κ is an uncountable regular cardinal with |(2κ)M | > κ
and T = (<κ2)M , then the set [T ] is not a continuous image of κκ.

Proof of Theorem 1.9. Let κ be an inaccessible cardinal, let µ < κ be an uncount-
able regular cardinal, let x be Add(ω, 1)-generic over V and let G be Col(µ,<κ)-
generic over V[x]. Then all cofinalities less than or equal to µ and greater than
or equal to κ are preserved in V[x,G] and κ = (µ+)V[x,G]. Moreover, [4, Lemma
13] shows that the pair (V,V[x,G]) has the ℵ1-approximation and ℵ1-cover prop-
erty. Set T1 = (<κ2)V. Since κ is inaccessible in V, (2κ)V = (2κ)V[x,G] and
(λω)V[x,G] = (λω)V < κ holds for all λ < κ, Lemma 4.8 shows that T1 is a pruned
superthin κ-Kurepa subtree of <κκ. In addition, since RV[x,G] * V, we can apply
Theorem 4.9 to conclude that the set [T1] is not a continuous image of κκ in V[x,G].
Finally, an application of Lemma 4.3 yields a κ-Kurepa subtree T0 of <κκ in V[x,G]
such that T1 ⊆ T0 and the set [T0] is a retract of κκ in V[x,G]. �

Proof of Theorem 1.10. Let κ be a 2-Mahlo cardinal, let E denote the set of Mahlo
cardinals smaller than κ and let x be Add(ω, 1)-generic over V. Work in V[x] and

let 〈〈~P<α | α ≤ κ〉, 〈Ṗα | α < κ〉〉 be a forcing iteration with Easton support such

that the following statements hold whenever H is ~P<α-generic over V[x] for some
α < κ:

• If α ∈ E, then ṖHα = Col(α, 2α)V[x,H].

• If α /∈ E, then ṖHα is the trivial partial order.
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Claim. Forcing with ~P<κ over V[x] preserves the inaccessibility of κ, the station-
arity of E in κ and the regularity of all elements of E and of all regular cardinals
greater than or equal to κ.

Proof of the Claim. Let α ≤ κ be a Mahlo cardinal, let G be ~P<κ-generic over V[x]

and let H denote the filter on ~P<α induced by G. Then [1, Proposition 7.13] shows

that ~P<α satisfies the α-chain condition in V[x] and [1, Proposition 7.12] implies

that the induced tail forcing ṖH[α,κ) is <α-closed in V[x,H]. In particular, α is

regular in V[x,G], stationary subsets of α in V are stationary in V[x,G] and, if
α < κ, then (2<α)V[x,G] = α. �

Let G be ~P<κ-generic over V[x]. Since [1, Proposition 7.12] implies that ~P<κ is
σ-closed in V[x], we can apply [4, Lemma 13] to conclude that the pair (V,V[x,G])
has the ℵ1-approximation property. Set T0 = (<κ2)V and work in V[x,G]. Then
Lemma 4.8 implies that T0 is a superthin κ-Kurepa subtree of <κκ. Let T be the
tree constructed from T0 as in the proof of Lemma 4.3.

Claim. If α ∈ E, then |T ∩ ακ| = α.

Proof of the Claim. First, note that, if we repeat the construction from the proof
of Lemma 4.3, then S0 = S1. Fix α ∈ E. Then our forcing construction ensures
that |T0 ∩ ακ| ≤ |(2α)V| = α holds. Next, notice that, if ᾱ ∈ Lim ∩ α, then
∂T ∩ ᾱκ ⊆ ᾱ2 and hence the proof of the previous claim allows us to conclude that
|∂T0 ∩ ᾱκ| ≤ 2<α = α. Finally, since the pair (V,V[x,G]) has the ℵ1-approximation
property and α is regular in V[x,G], we also know that ∂T0 ∩ ακ = ∅. By the
definition of T , these observations imply the statement of the claim. �

Since the proof of Lemma 4.3 shows that T is a κ-Kurepa subtree of <κκ and
the set [T ] is a retract of κκ, the above claim shows that the tree possesses all of
the desired properties. �

5. Isolated points

The following simple observation will be central for our investigation of retrac-
tions of generalized Baire space onto the sets of cofinal branches of Kurepa trees.

Proposition 5.1. Let κ be an uncountable regular cardinal and let r be a retraction
from κκ to a subset X of κκ. If α < κ and A ∈ [X]<κ, then there is α < β < κ
such that the following statements hold:

(i) x � β 6= y � β for all x, y ∈ A with x 6= y.
(ii) r[Nx�β ] ⊆ Nx�β for all x, y ∈ A.

Proof. We inductively construct a strictly increasing sequence 〈βn | n < ω〉 of
ordinals in the interval (α, κ). Since |A| < κ, we can find α < β0 < κ with
x � β0 6= y � β0 for all x, y ∈ A with x 6= y. Next, assume that βn is already defined
for some n < ω. Given x ∈ A, we can then find βxn ∈ (βn, κ) with r[Nx�βxn ] ⊆ Nx�βn .
Set βn+1 = supx∈A β

x
n < κ. Finally, define β = supn<ω βn < κ. Given x ∈ A, this

construction ensures that r[Nx�βn+1
] ⊆ Nx�βn holds for all n < ω and this allows

us to conclude that r[Nx�β ] ⊆ Nx�β holds. �

Using the above proposition, we now show that Kurepa trees that are retracts
contain isolated cofinal branches.
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Proof of Theorem 1.11. Let κ be an uncountable regular cardinal and let T be a
κ-Kurepa subtree of <κκ such that there is a continuous function r : κκ −→ [T ]
with r � [T ] = id[T ] and [T ] does not have isolated points. Let µ ≤ κ be the least
cardinal with 2µ ≥ κ.

In the following, we inductively construct a strictly increasing continuous se-
quence 〈α(ξ) < κ | ξ ≤ µ〉 of ordinals and a sequence 〈ts ∈ T ∩ α(ξ)κ) | ξ ≤ µ, s ∈ ξ2〉
such that the following statements hold for all ξ ≤ µ and s0, s1 ∈ ξ2:

(i) If ζ < ξ, then ts0�ζ = ts0 � α(ζ).
(ii) For all ζ ≤ ξ, we have ts0 � α(ζ) = ts1 � α(ζ) if and only if s0 � ζ = s1 � ζ.
(iii) If ξ ∈ Lim, then ts0 =

⋃
ζ<ξ ts0�ζ .

(iv) r[Nts0 ] ⊆ [T ] ∩Nts0 .

Set α(0) = 0 and t∅ = ∅. Next, assume that ξ < µ and the sequences 〈α(ζ) | ζ ≤ ξ〉
and 〈ts | ζ ≤ ξ, s ∈ ζ2〉 are already constructed. Fix a sequence s in ξ2. Since
we have r[Nts ] ⊆ [T ] ∩ Nts 6= ∅ and [T ] contains no isolated points, there are
xs0, x

s
1 ∈ Nts ∩ [T ] with xs0 6= xs1. Set Aξ = {xsi | s ∈ ξ2, i < 2}. Then the minimal-

ity of µ implies that |Aξ| < κ and hence we can apply Proposition 5.1 to α(ξ) and
Aξ to find α(ξ) < α(ξ + 1) < κ with the listed properties. Given s ∈ ξ2 and i < 2,
we can then define ts_〈i〉 = xsi � α(ξ + 1). Finally, let ξ ≤ µ be a limit ordinal. Set

α(ξ) = supζ<ξ α(ζ) and define ts =
⋃
ζ<ξ ts�ζ for all s ∈ ξ2. Given s ∈ ξ2, we then

have

r[Nts ] ⊆
⋂
ζ<ξ

r[Nts�ζ ] ⊆
⋂
ζ<ξ

([T ] ∩Nts�ζ ) = [T ] ∩Nts

and, since ∅ 6= r[Nts ] ⊆ [T ] ∩Nts , this shows that ts ∈ T .
Now, assume that κ is not inaccessible. Then µ < κ and the above construction

shows that

κ ≤ 2µ = |{ts | s ∈ µ2}| ≤ |T ∩ α(µ)κ|,
a contradiction.

This shows that κ is inaccessible and κ = µ. Then the set

C = {ξ < κ | α(ξ) = ξ is a cardinal}

is closed and unbounded in κ. Given ξ ∈ C, the above construction ensures that
the set T ∩ ξκ has cardinality 2ξ > ξ. In particular, the tree T is not stationary
slim. �

Our next goal is to show that every Kurepa tree can be thinned out to obtain
a Kurepa tree without isolated branches. The proof of the next lemma is a direct
adaptation of a classical argument to higher cardinals.

Lemma 5.2. Let κ be an uncountable regular cardinal and let T be a subtree of <κκ
with |[T ]| > κ<κ. Then there is a subtree S of <κκ such that S ⊆ T , |[T ]| = |[S]|
and [S] contains no isolated points.

Proof. Set θ = κ<κ and let 〈Cγ | γ ≤ θ+〉 denote the unique sequence of closed
subsets of κκ such that C0 = [T ] and the following statements hold for all γ ≤ θ+:

(i) If γ < θ+ and Iγ is the set of isolated points of Cγ , then Cγ+1 = Cγ \ Iγ .
(ii) If γ is a limit ordinal, then Cγ =

⋂
β<γ Cβ .

Assume, towards a contradiction, that Cγ 6= Cθ+ for every γ < θ+. Then Iγ 6= ∅
for every γ < θ+. Given γ < θ+ and x ∈ Iγ , let αxγ denote the least α < κ with
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Cγ ∩Nx�α = {x}. Next, define Kγ = {x � αxγ ∈ <κκ | x ∈ Iγ} 6= ∅. Then we have

Kγ ∩Kγ̄ = ∅ for all γ̄ < γ < θ+ = (κ<κ)+, a contradiction.
The above computations show that there is a γ < θ+ with Cγ = Cθ+ and this

shows that the closed set Cγ has no isolated points. Let S denote the canonical
subtree of <κκ with [S] = Cγ . Then S ⊆ T and

|[S]| = |[T ] \
⋃
β<γ

Iβ | = |[T ]|,

because for every β < θ+, the fact that Iβ consists of the isolated points of Cβ ,
allows us to conclude that |Iβ | ≤ κ<κ < |[T ]|. �

Using the above lemma, we are now able to prove the remaining results from
Section 1.3.

Proof of Theorem 1.12. Let κ be an uncountable regular cardinal with κ<κ = κ
and assume there exists a κ-Kurepa tree. If κ is inaccessible, then Theorem 1.4
shows that there is a κ-Kurepa subtree T of <κκ with the property that the set [T ]
is not a retract of κκ. In the other case, if κ is not inaccessible, then our assumption
allows us to use Lemma 5.2 to find a κ-Kurepa subtree T of <κκ with the property
that the set [T ] has no isolated points and Theorem 1.11 then shows that the set
[T ] is not a retract of κκ. Finally, if there exists a stationary slim κ-Kurepa subtree
T of <κκ and S is the subtree of T produced by an application of Lemma 5.2, then
S is also stationary slim, the set [S] has no isolated points and hence Theorem 1.11
shows that the set [S] is not a retract of κκ. �

Proof of Theorem 1.13. Let κ be an uncountable regular cardinal, let S be a κ-
Kurepa subtree of <κκ and let c : κκ −→ [S] be a continuous surjection. We let
I denote the set of isolated points of [S] and we fix an injection ι : I −→ S with
Nι(z) ∩ [S] = {z} for all z ∈ I. Define T to be the union of S and the set

{t ∈ <κκ | ∃z ∈ I [ι(z) ⊆ t ∧ |{α ∈ dom(t) \ dom(ι(z)) | t(α) 6= z(α)}| < ω]}.
Then T is a subtree of <κκ with |T ∩ ακ| ≤ |S ∩ ακ| + |α| + ω < κ for all α < κ.
Moreover, it is easy to see that

[T ] = [S] ∪ {y ∈ κκ | ∃z ∈ I [ι(z) ⊆ y ∧ |{α < κ | y(α) 6= z(α)}| < ω]}.
This shows that T is a κ-Kurepa subtree of <κκ with the property that the set
[T ] does not contain isolated points and, if S is stationary slim, then T is also
stationary slim.

For each z ∈ I, the set Nι(z)∩[T ] has cardinality κ and we can fix an enumeration
〈yz(α) | α < κ〉 of this set. Moreover, we pick an injection ρ : I −→ <κκ with the
property that c[Nρ(z)] ⊆ Nι(z) holds for all z ∈ I. Then c[Nρ(z)] = {z} holds for all
z ∈ I. Set O =

⋃
{Nρ(z) | z ∈ I} and let d : κκ −→ [T ] denote the unique function

with d � (κκ \ O) = c � (κκ \ O) and d(x) = yc(x)(x(dom(ρ(c(x))))) for all x ∈ O.
Then d is a surjection.

Claim. The map d is continuous.

Proof of the Claim. Fix x ∈ κκ and β < κ.
First, assume that x ∈ O. Then d[Nx�(dom(ρ(c(x)))+1)] = {d(x)} ⊆ Nd(x)�β .
Next, assume that x /∈ O and c(x) ∈ I. Since c(x) is isolated in T and x /∈ O,

there is α < κ with Nx�α ∩Nρ(c(x)) = ∅ and c[Nx�α] = {c(x)}. Then Nx�α ∩O = ∅
and we can conclude that d[Nx�α] = c[Nx�α] = {c(x)} ⊆ Nd(x)�β .
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Finally, assume that x /∈ O and c(x) /∈ I. Then there is α < κ with c[Nx�α] ⊆
Nc(x)�β . Fix u ∈ Nx�α∩O. Then c(u) ∈ Nι(c(u))∩Nc(x)�β 6= ∅ and this implies that
the sequences ι(c(u)) and c(x) � β are comparable. But then c(x) � β ( ι(c(u)),
because ι(c(u)) ⊆ c(x) � β would imply that c(x) ∈ Nc(x)�β∩[T ] ⊆ Nι(ρ(c(u)))∩[T ] =
{c(u)} ⊆ I. This shows that d(u) = yc(u)(u(dom(ρ(c(u))))) ∈ Nι(c(u)) ⊆ Nc(x)�β .
Since c(x) = d(x), these computations show that d[Nx�α] ⊆ Nd(x)�β holds. �

Finally, assume that the set [T ] is a retract of κκ. Then Theorem 1.11 shows
that κ is inaccessible and S is not stationary slim. Define

U = {u ∈ <κ2 | (∃α ∈ dom(u) u(α) = 1) −→ u(0) = 1}.
Then U is a κ-Kurepa subtree of <κκ, the set [U ] is a retract of κκ and the unique
element x of κκ with x(0) = 0 is an isolated point of [U ]. Let W be the κ-Kurepa
subtree of <κκ obtained from U through the above construction. Then there is
0 < β0 < κ such that the set [W] is equal to

{x ∈ κ2 | x(0) = 1} ∪ {x ∈ κκ | ∀α < β0 x(α) = 0 ∧ |{α < κ | x(α) 6= 0}| < ω}.
Assume, towards a contradiction, that r : κκ −→ [W ] is a map witnessing that
[W ] is a retract of κκ. We now inductively construct a sequence 〈xn | n < ω〉 of
elements of [W ] and a strictly increasing sequence 〈βn | n < ω〉 of ordinals below
κ such that xn(βn) 6= 0 and xn � βn+1 = xn+1 � βn+1 for all n < ω. Let x0

be an arbitrary element of [W ] with x0(0) = 0 and x(β0) 6= 0. If xn and βn
are already constructed, then we can apply Proposition 5.1 to find βn+1 ∈ (βn, κ)
with r[Nxn�βn+1

] ⊆ Nxn�βn+1
and we pick xn+1 ∈ [W ] with xn � βn+1 ⊆ xn+1

and xn+1(βn+1) 6= 0. Pick x ∈ κκ with xn � βn+1 ⊆ x for all n < ω. Then
xn � βn+1 ⊆ r(x) for all n < ω and hence r(x)(βn) = xn(βn) 6= 0 holds for all
n < ω. Since r(x)(α) = 0 holds for all α < β0, this shows that r(x) /∈ [W ], a
contradiction. �

6. Open questions

We end this paper with a compilation of questions left open by the above results.
First, note that Theorem 1.1 shows that by forcing with Add(ω, ω2) over L, we
produce a model of set theory in which there exist ℵ2-Kurepa trees and for every
such tree T , the set [T ] is not a continuous image of ω2ω2. In addition, Theorems
1.6 and 1.7 show that, in L, there exist ℵ2-Kurepa trees T0 and T1 such that the
set [T0] is a continuous image of ω2ω2 and the set [T1] is not a continuous image of
ω2ω2. Therefore, there is only one constellation whose consistency is not settled by
our results:

Question 6.1. Is it consistent with the axioms of ZFC that there are ℵ2-Kurepa
trees and for every such tree T , the set [T ] is a continuous image of ω2ω2?

Next, note that the only way to apply the above results to obtain models of
ZFC that contain ℵ2-Kurepa trees and have the property that no such tree is a
continuous image of ω2ω2 is to consider models in which CH fails. Thus, it is
natural to ask the following question:

Question 6.2. Does CH together with the existence of an ℵ2-Kurepa tree imply
that there exists an ℵ2-Kurepa subtree T of <ω2ω2 with the property that the set [T ]
is:

(i) a continuous image of ω2ω2?
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(ii) a retract of ω2ω2?

Finally, the Kurepa trees constructed in the proofs of the results presented in
Section 1.2 all arise from modifications of canonical Kurepa trees whose existence
is ensured by the assumptions of these results. Therefore, it is also interesting to
study the descriptive properties of these canonical Kurepa trees themselves.

Question 6.3. Let κ denote an uncountable regular cardinal with the property that
µω < κ holds for all µ < κ.

(i) If T is the canonical κ-Kurepa subtree of <κκ constructed from a ♦+
κ -

sequence (see [9, Chapter II, Section 7]), is the set [T ] a continuous image
of κκ?

(ii) If T is the canonical κ-Kurepa subtree of <κκ constructed from a (κ, 1)-
morass (see [13, Section 1.2]) or a simplified morass (see [14]), is the set
[T ] a continuous image of κκ?
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