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Stochastic heat and wave equations

We consider the stochastic wave equation:
∂2u
∂t2 (t , x) = ∆u(t , x) + σ(u(t , x))Ẋ (t , x), t ∈ [0,T ], x ∈ Rd

u(0, x) = u0(x),
∂u
∂t

(0, x) = v0(x),
(SWE)

and the stochastic heat equation:{
∂u
∂t

(t , x) =
1
2

∆u(t , x) + σ(u(t , x))Ẋ (t , x), t ∈ [0,T ], x ∈ Rd

u(0, x) = u0(x)
(SHE)

• ∆ denotes the Laplacian operator on Rd .

• σ : R→ R is a Lipschitz function,

• u0, v0 : R→ R are bounded and Hölder continuous,

• Ẋ (t , x) is a spatially homogeneous Gaussian noise.



Spatially homogeneous Gaussian noise

On some probability space (Ω,F ,P), let X = {X (ϕ), ϕ ∈ D
(
R+ × Rd)} be a

zero-mean Gaussian process with

E[X (ϕ)X (ψ)] =

∫ ∞
0

Γ
(
ϕ(t , ·) ∗ ψ̃(t , ·)

)
dt

• D(O): functions in C∞(O) with compact support.

• Γ is a non-negative-definite tempered distribution on Rd .

• ψ̃(t , x) = ψ(t ,−x), (t , x) ∈ R+ × Rd .

• The Lebesgue integral in t means that the process is white in time.

• There exists a tempered measure µ on Rd such that Fµ = Γ in the
space S ′(Rd ) of tempered distributions on Rd .

E[X (ϕ)X (ψ)] =

∫ ∞
0

∫
Rd
Fϕ(t , ·)(ξ)Fψ(t , ·)(ξ)µ(dξ)dt



The spectral measure µ satisfies∫
Rd

(
d∏

j=1

1
1 + ξ2

j

)
µ(dξ) <∞

[
⇐=

∫
Rd

1
1 + |ξ|2 µ(dξ) <∞

]

In order to solve SPDEs, one aims to construct stochastic integrals with
respect to X .

Remark: the process X = {X (ϕ), ϕ ∈ D
(
R+ × Rd)} defines a stationary

random distribution (Itô 1954, Yaglom 1957). That is,

D
(
R+ × Rd) 3 ϕ 7−→ X (ϕ) ∈ L2(Ω)

is linear and continuous, and the covariance is invariant under translations:

E[X (τhϕ)X (τhψ)] = E[X (ϕ)X (ψ)] for any h ∈ R+ × Rd .



Mild solutions

Fix T > 0. A random field {u(t , x), (t , x) ∈ [0,T ]×Rd} is a solution of (SWE)
(resp. (SHE)), if it is predictable and, for any (t , x) ∈ [0,T ]× Rd ,

u(t , x) = w(t , x) +

∫ t

0

∫
Rd

Gt−s(x − y)σ(u(s, y)) X (ds, dy) a.s.

where Gt (x) denotes the corresponding fundamental solution: e.g., for d = 1
we have

Gt (x) =
1
2

1{|x|<t} (wave), Gt (x) =
1

(2πt)1/2 exp
(
−|x |

2

2t

)
(heat)

and w(t , x) is the contribution of the initial data:

w(t , x) =
1
2

∫ x+t

x−t
v0(y)dy +

1
2

(
u0(x + t) + u0(x − t)

)
(wave),

w(t , x) =

∫
R

Gt (x − y)u0(y)dy (heat)



Motivation and objective

Recall: for any ϕ,ψ ∈ D
(
R+ × Rd),

E[X (ϕ)X (ψ)] =

∫ ∞
0

Γ
(
ϕ(t , ·)∗ψ̃(t , ·)

)
dt =

∫ ∞
0

∫
Rd
Fϕ(t , ·)(ξ)Fψ(t , ·)(ξ)µ(dξ)dt

Most results in the literature assume the following:

(A) Γ is a non-negative-definite tempered measure (or in particular, Γ is a
non-negative locally integrable function f ).

In this case,

E[X (ϕ)X (ψ)] =

∫ ∞
0

∫
Rd

(
ϕ(t , ·) ∗ ψ̃(t , ·)

)
(x) Γ(dx)dt

=

∫ ∞
0

∫
Rd

∫
Rd
ϕ(t , x)f (x − y)ψ(t , y) dydxdt .



Under assumptions (A) and∫
Rd

1
1 + |ξ|2 µ(dξ) <∞, (1)

Dalang 1999 (also Dalang and Q-S 2011) proved existence of a unique
solution to a general class of SPDEs in Rd including:

(i) (SWE) with d ∈ {1, 2, 3},
(ii) (SHE) for any d ≥ 1.

On the other hand, Peszat and Zabczyk 2007 obtained existence and
uniqueness of a function-space valued solution to (i) and (ii) under condition
(1) and

(B) There exists a constant C > 0 such that Γ + Cλd is a non-negative
measure, where λd is the Lebesgue measure on Rd .



As far as (SWE) in any d ≥ 3 is concerned:

• Peszat 2002 (function-space valued solution): assumption (B) and

sup
η∈R

∫
Rd

1
1 + |ξ − η|2 µ(dξ) <∞. (2)

He proved that, under (B), (2) is equivalent to (1).

• Dalang and Mueller 2003 (hybrid approach): assumption (A) and
condition (1).

• Conus and Dalang 2008 (random field solution): assumption (A) and
condition (2).

In all these results, the involved stochastic integral can be interpreted as a
stochastic integral with respect to a martingale measure (or cylindrical
Wiener process): e.g. Walsh 1986, Da Prato and Zabczyk 1992, Dalang
1999, Dalang and Q-S 2011.



From now on, assume d = 1, and consider the following important example:

• Assume that the space correlation behaves like a fractional Brownian
motion with H ∈ (0, 1).

• This corresponds to take a spectral measure µ of the form

µ(dξ) = cH |ξ|1−2Hdξ, with cH =
Γ(2H + 1) sin(πH)

2π

• The measure µ satisfies (1) for all H ∈ (0, 1).

• But condition (2) does not hold for H < 1/2.

• In fact, if H > 1/2, Γ = Fµ is the locally integrable function
f (x) = H(2H − 1)|x |2H−2, which satisfies (A).

• But if H < 1/2, Γ = Fµ is a genuine distribution (Jolis 2010):

Γ(ϕ) = H(2H − 1)

∫
R

(
ϕ(x)− ϕ(0)

)
|x |2H−2dx , ϕ ∈ D(R)



Objective: consider the stochastic wave and heat equations


∂2u
∂t2 (t , x) =

∂2u
∂x2 (t , x) + σ(u(t , x))Ẋ (t , x), t ∈ [0,T ], x ∈ R

u(0, x) = u0(x),
∂u
∂t

(0, x) = v0(x),
(SWE)

and ∂u
∂t

(t , x) =
1
2
∂2u
∂x2 (t , x) + σ(u(t , x))Ẋ (t , x), t ∈ [0,T ], x ∈ R

u(0, x) = u0(x)

(SHE)

where we assume that

• σ(z) = az + b is an affine function,

• Ẋ (t , x) is a spatially homogeneous Gaussian noise with spectral
measure µ(dξ) = cH |ξ|1−2Hdξ with H ∈ ( 1

4 ,
1
2 ).

• u0, v0 : R→ R are bounded and H-Hölder continuous,



Under the above hypotheses, we aim to prove the following. Assume that
H ∈ ( 1

4 ,
1
2 ).

Theorem
Equation (SWE) (respectively (SHE)) has a unique solution u = {u(t , x),
(t , x) ∈ [0,T ]× R}, which is L2(Ω)-continuous and satisfies, for any p ≥ 2,

sup
(t,x)∈[0,T ]×R

E
[
|u(t , x)|p

]
<∞

and

sup
(t,x)∈[0,T ]×R

∫ t

0

∫
R2

G2
t−s(x − y)

(
E
[
|u(s, y)− u(s, z)|p

])2/p

|y − z|2−2H dydzds <∞.

The latter condition appears in a natural way, as we apply techniques from
the theory of fractional Sobolev spaces.



Strategy

In order to attain our objective, we have developed the following steps:

1. Properly interpret the stochastic integral with respect to our spatially
homogeneous noise:∫ t

0

∫
R

S(s, y)X (ds, dy) (Basse-O’Connor et al. 2012)

2. Obtain a new criterion for integrability, based on tools from the theory of
fractional Sobolev spaces (Di Nezza et al. 2012).

3. Set a Picard iteration scheme, show that it is well-defined and
converges, in a convenient topology, to a process which solves our
SPDEs.



Related results
Our main result covers the cases

∂2u
∂t2 (t , x) =

∂2u
∂x2 (t , x) + u(t , x) Ẋ (t , x), x ∈ R

u(0, x) = c,
∂u
∂t

(0, x) = 0,

and  ∂u
∂t

(t , x) =
1
2
∂2u
∂x2 (t , x) + u(t , x) Ẋ (t , x), x ∈ R

u(0, x) = c

• These are the Hyperbolic Anderson Model and Parabolic Anderson
Model, resp.

• Study of the series of multiple stochastic integrals with respect to X .

• This method has been applied in

- Heat equations: Hu 2001, Hu and Nualart 2009, Balan and Tudor
2010, Hu et al. 2011.

- Wave equations: Dalang et al. 2008, Dalang and Mueller 2009,
Balan 2012.



Stochastic integral

Wiener integral: Let H be the completion of D(R+ × R) with respect to

〈·, ·〉H := E[X (ϕ)X (ψ)] = cH

∫ ∞
0

∫
R
Fϕ(t , ·)(ξ)Fψ(t , ·)(ξ) |ξ|1−2Hdξdt

Then, ϕ 7→ X (ϕ) ∈ L2(Ω) is an isometry which can be extended to H:

X (h) =

∫ ∞
0

∫
R

h(t , x)X (dt , dx), h ∈ H.

For t ≥ 0 any interval (x , y ] ⊂ R, one proves that 1(0,t]×(x,y ] ∈ H, so we can
define the random variable

Xt
(
(x , y ]

)
:= X

(
1(0,t]×(x,y ]

)
Problem: we cannot define Xt (A) for all A ∈ Bb(R), since in general the
function 1(0,t]×A may not be in H (H < 1/2).



But recall that our noise X = {X (ϕ), ϕ ∈ D(R+ × R)} can be viewed as a
stationary random distribution (Itô 1954, Yaglom 1957).

Hence, X admits a suitable spectral representation which can be applied to
show that

Xt
(
(x , y ]

)
:= X

(
1(0,t]×(x,y ]

)
=

∫
R
F1(x,y ](ξ)Mt (dξ),

where {Mt (A),Ft , t ≥ 0, A ∈ Bb(R)} is a (complex valued) martingale
measure with zero mean and covariation

〈M(A),M(B)〉t = t µ(A ∩ B) = t cH

∫
A∩B
|ξ|1−2Hdξ, A,B ∈ Bb(R).

(Ft )t≥0 denotes the filtration generated by X :

Ft = σ
{

X
(
1[0,s]φ

)
, s ∈ [0, t ], φ ∈ D(R)

}



Sketch of the construction of the stochastic integral:

1. E : linear combinations of processes of the form g(ω, t , x) =
Y (ω)1(a,b](t)1(c,d ](x). Define∫ t

0

∫
R

g(s, y)X (ds, dy) := Y (Xt∧b((u, v ])− Xt∧a((u, v ]))

and extend to E by linearity.

2. For any g ∈ E , it holds∫ t

0

∫
R

g(s, y)X (ds, dy) =

∫ t

0

∫
R
Fg(s, ·)(ξ)M(ds, dξ)

3. Let P0 be the completion of E with respect to

‖g‖2
0 = E

∫ T

0

∫
R
|Fg(t , ·)(ξ)|2 cH |ξ|1−2Hdξdt .

4. By the isometry property of Walsh’s stochastic integral, the map
E 3 g 7→ {

∫ t
0

∫
R g(s, y)X (ds, dy)}t∈[0,T ] ∈M is an isometry, whereM

is a subspace of the space of continuous square-integrable martingales
with ‖N‖ = {E(N2

T )}1/2. This map can be extended to P0.



Identification of integrands:

Theorem (Basse-O’Connor et al. 2012)
The elements of P0 are predictable functions of the form

S : Ω× [0,T ]→ S ′(R)

such that FS(ω, t , ·) is a locally integrable function for any (ω, t) and

E
∫ T

0

∫
R
|FS(t , ·)(ξ)|2 cH |ξ|1−2Hdξdt <∞.

In particular, we have the isometry

E
∣∣∣∣∫ t

0

∫
R

S(s, x)X (ds, dx)

∣∣∣∣2 = E
∫ t

0

∫
R
|FS(s, ·)(ξ)|2 cH |ξ|1−2Hdξds,

Remark: all that we have done is valid for any H ∈ (0, 1).



Criterion for integrability:

A measurable function g : R→ R is tempered if there exists a tempered
distribution Tg ∈ S ′(R) such that Tgϕ =

∫
R g(x)ϕ(x)dx , for all ϕ ∈ S(R).

Theorem
Let S : Ω× [0,T ]× R→ R be a predictable function, such that

(a) for almost all (ω, t) ∈ Ω× [0,T ], S(ω, t , ·) is a tempered function,

(b) the Fourier transform FS(ω, t , ·) in S ′(R) is a locally integrable function.

If

I(T ) := CHE
∫ T

0

∫
R

∫
R

|S(t , x)− S(t , y)|2

|x − y |2−2H dxdydt <∞,

then S ∈ P0 and

E
∣∣∣∣∫ T

0

∫
R

S(s, x)X (ds, dx)

∣∣∣∣2 = I(T ).



The proof of the above criterion is based on the following result, related to the
theory of fractional Sobolev spaces (Di Nezza et al. 2012):

Proposition
Let g : R→ R be a tempered function whose Fourier transform in S ′(R) is a
locally integrable function. For any 0 < H < 1/2,

cH

∫
R
|Fg(ξ)|2|ξ|1−2Hdξ = CH

∫
R2

|g(x)− g(y)|2

|x − y |2H−2 dxdy ,

when either one of the two integrals above is finite.



Picard iteration scheme
For any (t , x) ∈ [0,T ]× R, set u0(t , x) = w(t , x) and, for n ≥ 0,

un+1(t , x) = w(t , x) +

∫ t

0

∫
R

Gt−s(x − y)σ(un(s, y))X (ds, dy)

Theorem
Let p ≥ 2 and σ be Lipschitz. Then, un(t , x) is well-defined and

sup
(t,x)∈[0,T ]×R

E
[
|un(t , x)|p

]
<∞,

sup
(t,x)∈[0,T ]×R

∫ t

0

∫
R2

G2
t−s(x − y)

(
E
[
|un(s, y)− un(s, z)|p

])2/p

|y − z|2−2H dydzds <∞

and, for any h ∈ R with |h| < 1,

sup
(t,x)∈[0,T ]×R

E
[
|un(t , x + h)− un(t , x)|2

]
≤ Cn|h|2H

sup
(t,x)∈[0,T∧(T−h)]×R

E
[
|un(t + h, x)− un(t , x)|2

]
≤ Cn|h|β ,

where β = 2H for the wave equation, and β = H for the heat equation.



Remarks on the proof

We start with n = 0. Recall that, for the wave equation,

w(t , x) =

∫
R

Gt (x − y)v0(y)dy +
∂

∂t

(∫
R

Gt (x − y)u0(y)dy
)

=
1
2

∫ x+t

x−t
v0(y)dy +

1
2
(
u0(x + t) + u0(x − t)

)
,

Gt (x) =
1
2

1{|x|<t}

and, for the heat equation,

w(t , x) =

∫
R

Gt (x − y)u0(y)dy

Gt (x) =
1

(2πt)1/2 exp
(
−|x |

2

2t

)



Using the explicit expression of Gt (x) and that u0, v0 are bounded and
H-Hölder continuous, one proves

sup
(t,x)∈[0,T ]×R

|w(t , x)| <∞
sup

(t,x)∈[0,T ]×R
|w(t , x + h)− w(t , x)|2 ≤ C|h|2H

sup
(t,x)∈[0,T∧(T−h)]×R

|w(t + h, x)− w(t , x)|2 ≤ C|h|β

It remains to study the expression∫ t

0

∫
R2

G2
t−s(x − y)

|w(s, y)− w(s, z)|2

|y − z|2−2H dydzds

=

∫ t

0

∫
R

G2
t−s(x − y)

(∫
R

|w(s, y + z)− w(s, y)|2

|z|2−2H dz
)

dyds

Decomposing the domain of the dz integral, the latter term is bounded by∫ t

0

∫
R

G2
t−s(x − y)

(∫
|z|≤1

|z|4H−2dz +

∫
|z|>1

|z|2H−2dz

)
dyds,

which is uniformly bounded thanks to condition H ∈ ( 1
4 ,

1
2 ).



In order to show that un+1(t , x) is well-defined, one needs to prove that the
following stochastic integral is well-defined:∫ t

0

∫
R

Gt−s(x − y)σ(un(s, y))X (ds, dy)

Hence, setting

Sn(s, y) := Gt−s(x − y)σ(un(s, y))1[0,t](s),

one proves

(i) un has a predictable modification,

(ii) Sn(ω, s, ·) ∈ L1(R) for almost all (ω, s) ∈ Ω× [0,T ],

(iii) Sn satisfies

sup
(t,x)∈[0,T ]×R

E
∫ t

0

∫
R

∫
R

|Sn(s, y)− Sn(s, z)|2

|y − z|2H−2 dydzds <∞.



These conditions, together with all remaining estimates for un+1 in the
induction hypothesis, can be proved using the following type of techniques:

• σ Lipschitz, Burkholder-Davis-Gundy inequality, Jensen inequality,
Minkowski inequality (integrals), Fubini theorem, Plancherel theorem,
and many changes of variables.

• For all α ∈ (−1, 1),∫ T

0

∫
R
|FGt (ξ)|2 |ξ|α dξdt =

{
C1 T 2−α wave
C2 T (1−α)/2 heat

• For any α ∈ (−1, 1) and h ∈ R,∫ T

0

∫
R
|FGt+h(y)−FGt (y)|2 |ξ|α dξdt ≤

{
CT |h|1−α wave
C|h|(1−α)/2 heat

• For any α ∈ (−1, 1) and h ∈ R,∫ T

0

∫
R

(1− cos(ξh)) |FGt (ξ)|2 |ξ|α dξdt ≤
{

CT |h|1−α wave
C|h|1−α heat,



In fact, in order to show that

sup
(t,x)∈[0,T ]×R

∫ t

0

∫
R2

G2
t−s(x−y)

(
E
[
|un+1(s, y)− un+1(s, z)|p

])2/p

|y − z|2−2H dydzds <∞,

we are forced to estimate the term

∫ t

0

∫
R

∫
R

G2
t−s(x − y)

|z|2−2H

(∫ s

0

∫
R
|1− e−iξz |2 |FGs−r (ξ)|2 |ξ|1−2Hdξdr

)
dzdyds

≤
(∫ t

0

∫
R

G2
t−s(x − y)dyds

)(∫ T

0

∫
R
|FGs−r (ξ)|2 |ξ|2(1−2H)dξdr

)
.

The latter integral is finite if and only if

−1 < 2(1− 2H) < 1 ⇐⇒ 1
4
< H <

3
4



Convergence of Picard iterations
Now we aim to prove that the sequence {un(t , x), n ≥ 0} converges in Lp(Ω).

Here we assume that

|σ(x)− σ(y)− σ(u) + σ(v)| ≤ C|x − y − u + v | ⇐⇒ σ affine

In fact, we prove convergence in the Banach space (X , ‖ · ‖X ): space of
L2(Ω)-continuous and adapted processes Y = {Y (t , x), (t , x) ∈ [0,T ]× R}
such that ‖Y‖X1 <∞ and ‖Y‖X2 <∞, where

‖Y‖X1 = sup
(t,x)∈[0,T ]×R

(
E
[
|Y (t , x)|p

])1/p

and

‖Y‖X2 = sup
(t,x)∈[0,T ]×R

∫ t

0

∫
R2

G2
t−s(x − y)

(
E
[
|Y (s, y)− Y (s, z)|p

])2/p

|y − z|2−2H dydzds


1/2

For any Y ∈ X , we define ‖Y‖X := ‖Y‖X1 + ‖Y‖X2 .



Theorem
The sequence (un)n≥0 converges in X to a process u, which is
L2(Ω)-continuous, and is the unique solution to equation (SWE) (or (SHE)).

Proof: We have

Mn+1(t) ≤
∫ t

0

(
Mn(s) + Mn−1(s)

)
J(t − s)ds

where, setting mn := un − un−1,

Mn(t) = sup
x∈R

(
E
[
|mn(t , x)|p

])2/p

+ sup
x∈R

∫ t

0

∫
R2

G2
t−s(x − y)

(
E
[
|mn(s, y)−mn(s, z)|p

])2/p

|y − z|2−2H dydzds,

J(t−s) =

∫
R
|FGt−s(ξ)|2 |ξ|1−2H dξ+

∫ t

s

∫
R

G2
t−r (z)

∫
R
|FGr−s(ξ)|2|ξ|2(1−2H) dξdzdr



In fact, we have showed that∫ t

s

∫
R

G2
t−r (z)

∫
R
|FGr−s(ξ)|2|ξ|2(1−2H) dξdzdr =

{
C1 (t − s)4H−1 wave
C2 (t − s)2H−1 heat

We have proved a version of Dalang’s Gronwall lemma in order to treat
situations of the form

fn(t) ≤
∫ t

0

(
fn−1(s) + fn−2(s)

)
g(t − s) ds

Once we know that there exists u = limn un in X , we take limits in

un+1(t , x) = w(t , x) +

∫ t

0

∫
R

Gt−s(x − y)σ(un(s, y))X (ds, dy)

to deduce that u = {u(t , x), (t , x) ∈ [0,T ]× R} solves (SWE) (resp. (SHE)).

Uniqueness has been proved using similar arguments.
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