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Stochastic heat and wave equations
We consider the stochastic wave equation:

%(ﬁ x) = Au(t, x) + o(u(t, x))X(t,x), te][0,T], x € R

(SWE)
uOX) = to(x),  9(0,%) = w(x),

and the stochastic heat equation:

{ %(h X) = 1EAU(t, x) +o(u(t, x))X(t,x), te[0,T], xe RY
U(O,X) = UO(X)
(SHE)

A denotes the Laplacian operator on R¢.

e o :R — Ris a Lipschitz function,

U, Vo : R — R are bounded and Hélder continuous,

X(t, x) is a spatially homogeneous Gaussian noise.



Spatially homogeneous Gaussian noise

On some probability space (2, 7, P), let X = {X(¢), ¢ € D(R; x Rd)} be a
zero-mean Gaussian process with

EX(0)X(1)] = / TRl ) ()

e D(0): functions in C*°(O) with compact support.

e [ is a non-negative-definite tempered distribution on R,

o (t,x) =y(t,—x), (t,x) € Ry x R,

e The Lebesgue integral in t means that the process is white in time.

e There exists a tempered measure p on RY such that Fu = T in the
space S’(R?) of tempered distributions on R?.

BXXWI = [ [ Felt ) O FHEIE n(c)et



The spectral measure p satisfies

d 1 1
/Rd</.111+5,?>“(d§)<°° {@/Rdwu(dg)<oo

In order to solve SPDEs, one aims to construct stochastic integrals with
respect to X.

Remark: the process X = {X(¢), ¢ € D(R; x R?)} defines a stationary
random distribution (It6 1954, Yaglom 1957). That is,

D(Ry x RY) 3 ¢ — X(p) € L*(Q)
is linear and continuous, and the covariance is invariant under translations:

E[X(mmp)X(m))] = E[X(p)X($))] forany he R, xR°.



Mild solutions

Fix T > 0. A random field {u(t, x), (t,x) € [0, T] x R?} is a solution of (SWE)
(resp. (SHE)), if it is predictable and, for any (t, x) € [0, T] x RY,

t
u(t, x) = w(t, x) +/ /d Gi—s(x — y)o(u(s,y)) X(ds,dy) a.s.
0 JR
where G:(x) denotes the corresponding fundamental solution: e.g., for d = 1

we have

1 1 x|?
Gi(x) = 51{\x\<t} (wave), Gi(x) = @rt)1/2 exp <—%> (heat)

and w(t, x) is the contribution of the initial data:
1 X+t 1
w(t, x) = §/ vo(y)dy + > (uo(x +£) + to(x — t)) (wave),
x—t

w(t, x) = / Gi(x — y)uo(y)dy (heat)



Motivation and objective

Recall: for any ¢,y € D(R; x RY),

EIX(0)X(4)] = /0 TRt (. ) dt = / / Fo(t, ) FOE @) p(de)at

Most results in the literature assume the following:

(A) T is a non-negative-definite tempered measure (or in particular, I is a
non-negative locally integrable function f).

In this case,
E[X ()X (¢ /Ooo /Rd (e(t, ))(x) T (dx)dt

/000 /Rd /Rd%D (£, X)f(x — y)(t, y) dydxat.



Under assumptions (A) and

/Rddwﬂ(df)<oov (1)

Dalang 1999 (also Dalang and Q-S 2011) proved existence of a unique
solution to a general class of SPDEs in RY including:

(i) (SWE)withd € {1,2,3},

(i) (SHE) forany d > 1.
On the other hand, Peszat and Zabczyk 2007 obtained existence and

uniqueness of a function-space valued solution to (i) and (ii) under condition
(1) and

(B) There exists a constant C > 0 such that I' + C\4 is a non-negative
measure, where \q is the Lebesgue measure on RY.



As far as (SWE) in any d > 3 is concerned:
e Peszat 2002 (function-space valued solution): assumption (B) and

sup (d€) < oo. (2

1
T _ oM
neER JRA 1+ —77‘2

He proved that, under (B), (2) is equivalent to (1).

e Dalang and Mueller 2003 (hybrid approach): assumption (A) and
condition (1).

e Conus and Dalang 2008 (random field solution): assumption (A) and
condition (2).

In all these results, the involved stochastic integral can be interpreted as a
stochastic integral with respect to a martingale measure (or cylindrical
Wiener process): e.g. Walsh 1986, Da Prato and Zabczyk 1992, Dalang
1999, Dalang and Q-S 2011.



From now on, assume d = 1, and consider the following important example:

e Assume that the space correlation behaves like a fractional Brownian
motion with H € (0, 1).
e This corresponds to take a spectral measure p of the form

I'(2H + 1) sin(nH)
2w

w(d€) = cule)'#de,  with oy =

e The measure p satisfies (1) for all H € (0,1).
e But condition (2) does not hold for H < 1/2.

e Infact, if H > 1/2, T = Fp is the locally integrable function
f(x) = H(2H — 1)|x|?"~2, which satisfies (A).

e Butif H<1/2,T = Fuis a genuine distribution (Jolis 2010):

(o) = H2H = 1) [ (o) = (@)x™2a, € D(R)



Objective: consider the stochastic wave and heat equations

2
8t2 Ut ) = g TU 4 x)+ o(u(t, )X x), te[0,T] xeR W)
00X = t6(x),  2(0,%) = w(x),

and

2 .
Wit = 3 2 9(tx) +olu(t X)X(tx), tel0,T] x ek
u(0, x) = up(x)
(SHE)
where we assume that

® o(z) = az + bis an affine function,

e X(t,x) is a spatially homogeneous Gaussian noise with spectral
measure p(d¢) = cul¢|' "2 d¢ with H € (5. 1).

® U, Vo : R — R are bounded and H-Hdlder continuous,



Under the above hypotheses, we aim to prove the following. Assume that
He (3, 3)-

Theorem
Equation (SWE) (respectively (SHE)) has a unique solution u = {u(t, x),
(t,x) € [0, T] x R}, which is L*(Q)-continuous and satisfies, for any p > 2,

sup  E[lu(t, x)P] < oo
(t,x)€[0, T] xR

and

2/p
& (Eflu(s.y) - u(s. 2] dydzd
(txe[OUXR/ /Rz ts yazas < oo.

y = 2P

The latter condition appears in a natural way, as we apply techniques from
the theory of fractional Sobolev spaces.



Strategy

In order to attain our objective, we have developed the following steps:

1. Properly interpret the stochastic integral with respect to our spatially
homogeneous noise:

t
//S(s,y)X(ds,dy) (Basse-O’Connor et al. 2012)
0 JR

2. Obtain a new criterion for integrability, based on tools from the theory of
fractional Sobolev spaces (Di Nezza et al. 2012).

3. Set a Picard iteration scheme, show that it is well-defined and
converges, in a convenient topology, to a process which solves our
SPDEs.



Related results

Our main result covers the cases

tz(tx) 82(z‘x)—s—u(t x) X(t,x), xeR
(0, X) =¢ (0 ) 0,
and ,
ou 10U :
at(t X) = 3 axz(t,x)+u(t,x)X(t,x), xeR
u(0,x)=c
e These are the Hyperbolic Anderson Model and Parabolic Anderson
Model, resp.

e Study of the series of multiple stochastic integrals with respect to X.
e This method has been applied in

- Heat equations: Hu 2001, Hu and Nualart 2009, Balan and Tudor
2010, Hu et al. 2011.

- Wave equations: Dalang et al. 2008, Dalang and Mueller 2009,
Balan 2012.



Stochastic integral

Wiener integral: Let 7 be the completion of D(R+ x R) with respect to
o = BXXO] = 0w [ [ Folt ) OFHEN@ el et
Then, ¢ — X(¢) € L2(Q) is an isometry which can be extended to #:

:/Ooo/Rh(t,x)X(dt,dx), he.

For t > 0 any interval (x, y] C R, one proves that 1 1« (x,,; € H, S0 we can
define the random variable

Xi((x, ¥]) == X (10,0x(x01)

Problem: we cannot define X:(A) for all A € B,(R), since in general the
function 1o qx4 may not be in % (H < 1/2).



But recall that our noise X = {X(¢), ¥ € D(R+ x R)} can be viewed as a
stationary random distribution (1t6 1954, Yaglom 1957).

Hence, X admits a suitable spectral representation which can be applied to
show that

Xi((.¥1) = X (Towiny) = / Flep (€)M (),

where {M;(A), Fi, t > 0, A € Bp(R)} is a (complex valued) martingale
measure with zero mean and covariation

(M(A), M(B)): = t (AN B) = tcH/ €'2de, A Be Bo(R).

ANB

(Ft)t=0 denotes the filtration generated by X:
Fe=0{X(1p,g¢), s€[0,1], » € D(R)}



Sketch of the construction of the stochastic integral:

1. &: linear combinations of processes of the form g(w, t, x) =
Y(w)‘](a’b](t)‘l(c,d](X). Define

t
/0 / 9(5, )X (05, dy) == Y (Xins((, V) — Xena((u, V1))

and extend to £ by linearity.
2. Forany g € &, it holds

/ / 9(s, y)X(ds, dy) = / / Fa(s, ) (E)M(ds, de)

3. Let P, be the completion of £ with respect to

lgl3 =E / / Fo(t, ) enle] 2 deat.

4. By the |sometry property of Walsh’s stochastic integral, the map
E>9+ {fo Jz 9(s,¥)X(ds, dy)}icpo,r € M is an isometry, where M
is a subspace of the space of continuous square-integrable martingales
with ||N|| = {E(N2)}'/2. This map can be extended to Po.



Identification of integrands:

Theorem (Basse-O’'Connor et al. 2012)
The elements of Py are predictable functions of the form

S:Qx[0,T] = S'(R)

such that FS(w, t, -) is a locally integrable function for any (w, t) and
T
]E/ / IFS(t, () cule]' 2" dedt < oo.
0 R
In particular, we have the isometry

E /OI/RS(S,X)X(ds, dx)

2 t
=E FS(s, )6 1-2H geal
/0 / IFS(s.)(6)? eulé]'*deas,

Remark: all that we have done is valid for any H € (0, 1).



Criterion for integrability:

A measurable function g : R — R is tempered if there exists a tempered
distribution Ty € S'(R) such that Ty = [, 9(x)e(x)dx, for all ¢ € S(R).

Theorem
LetS:Q x [0, T] x R — R be a predictable function, such that

(a) foralmostall (w,t) € Q x [0, T], S(w, t,-) is a tempered function,
(b) the Fourier transform FS(w, t,-) in S'(R) is a locally integrable function.

If
T _ 2
I(T) = CHIE/ //‘S(t’x) SN gyt < oo,
o JrRJR Ix =yl

then S € Py and

2

E = I(T).

/O ' /R S(s, x)X(ds, dx)




The proof of the above criterion is based on the following result, related to the
theory of fractional Sobolev spaces (Di Nezza et al. 2012):

Proposition

Let g : R — R be a tempered function whose Fourier transform in S'(R) is a
locally integrable function. Forany 0 < H < 1/2,

2
e / Fa()2le]"2Hde = Cu / 190) =9I oy,

‘X ylZH 2

when either one of the two integrals above is finite.



Picard iteration scheme

For any (t, x) € [0, T] x R, set u°(t, x) = w(t, x) and, for n > 0,

) =t + | [ [ Grestx =)ot (5. 9 X(5, )

Theorem
Letp > 2 and o be Lipschitz. Then, u"(t, x) is well-defined and

sup  E[|u"(t,x)|P] < oo,

(t,x)€[0, T] xR y
2/p
(E[lu"(s,y) - u'(s,2)"])
Sup / / G (x—y) — dydzds < oo
(t,x)€[0, T|xR ly — 2|

and, for any h € R with |h| < 1,

sup  E[Ju"(t,x + h) — u"(t,x)[*] < Calh*"
(t,x)€[0, T xR
sup E[|u"(t + h,x) — u"(t,x)|?] < Calh|”,
(t,x)€[0, TA(T—h)] xR

where 8 = 2H for the wave equation, and 3 = H for the heat equation.



Remarks on the proof

We start with n = 0. Recall that, for the wave equation,

witx) = [ Gl Yy + 5 ( [ eix- Y)UO(J’)O'}/>

1

=5 [ dy+ g (olx+ 0+ tax — 1),

x—t

Gi(x) = *1{\x|<r}

and, for the heat equation,

wit, x) = / Gi(x — y)uo(y)dy

1 2
)= e (ar )



Using the explicit expression of G;(x) and that ug, v are bounded and
H-Holder continuous, one proves

sup (it x+h) = wit,x)f* < Clhf™
sup  |w(t,x)| < oo (tX)E0, TIXR

(t,X)€[0, TIXR sup \w(t + h,x) — w(t,x)]> < C|h|’
(t.X)€[0, TA(T—h)] x&

It remains to study the expression

/t/2 @75(X _ y) ‘W(S’ y) - W(37 Z)‘2 dydzds

y -2

S,y +2z)—w(s,y)]
= [ et ([ MR ) s

Decomposing the domain of the dz integral, the latter term is bounded by

t
| [ etax=) ( [ jzeaz | |z|2“dz> dyds,
0 R |z| <1 |z|>1

which is uniformly bounded thanks to condition H € (3, 1).




In order to show that u™" (¢, x) is well-defined, one needs to prove that the
following stochastic integral is well-defined:

t
| [ Gstx = ot (s.y)xes. o)
0 JR
Hence, setting
Sn(s,y) = Gi—s(x — y)o(u"(s, ¥)1j0.4(S),

one proves

(i) u" has a predictable modification,

(i) Sp(w,s,-) € L'(R) for almost all (w, s) € Q x [0, T],

(iii) Sy satisfies

t _ 2
sup ]E/ // [Sn($, ) = Su(s, 2)| dydzds < co.
0 RJR

(t,x)€[0, T|xR ly — z|?H=2




These conditions, together with all remaining estimates for ™" in the
induction hypothesis, can be proved using the following type of techniques:

e ¢ Lipschitz, Burkholder-Davis-Gundy inequality, Jensen inequality,
Minkowski inequality (integrals), Fubini theorem, Plancherel theorem,
and many changes of variables.

e Foralla e (—1,1),
Ci T  wave
[ [re@riaaca={ &7 e

e Foranya e (—1,1)and heR,

T CTIh|'"™>  wave
2 @
| [17Gunn - Feanpier acar < { SR e

e Foranya e (—1,1)and he R,

T o CT|h|'—*
[ [ - costeny iR g agar < { ST P



In fact, in order to show that
2/

r (Bllu™(s.y) - u"(s,2)P))
sup / Gi_s(x—y) . dydzds < oo,
o Jr2 ly — 2|

(t,x)€[0, TI xR

we are forced to estimate the term

‘ G2—S(X7.y) s _itz2 P 1—2H
/o /R/Rt|z|27_2*' (/0 /]R|1 —e PG ] d&dr) dzdyds
t T
_ 2| ,12(1—2H)
< (/0 /RG?,S(X }/)d}/ds) (/0 /R|.7:Gs_,(§)| €] dfdr).

The latter integral is finite if and only if

-1<2(1-2H) < 1 =



Convergence of Picard iterations

Now we aim to prove that the sequence {u"(t, x), n > 0} converges in LP().

Here we assume that

lo(x) —o(y) —o(u)+o(V)| < Clx—y—u+v| < o affine

In fact, we prove convergence in the Banach space (X, || - || x): space of
L?(Q)-continuous and adapted processes Y = {Y(t, x), (t,x) € [0, T] x R}
such that || Y]|x, < oo and ||Y|lx, < oo, Where

1/p
1Yl = sup  (E[Y(£,X)])
(t,x)€[0, T xR
and
2/p /2
(E[Y(s.y) - Y(s,2)])

y—zF dydzds

t
IYlwm= sup / G2 .(x—y)
0 JR2

(t,x)€[0, TI xR

Forany Y € X, we define ||Y||x := ||Y|lx, + || Y] .-



Theorem
The sequence (u")n>0 converges in X to a process u, which is
L2(Q)-continuous, and is the unique solution to equation (SWE) (or (SHE)).

Proof: We have

Mo (t) < /Ot (Ma(S) + Ma_1(5))J(t — 5)ds

where, setting m, := u" — u™ ",

o = 30 (Elime 1)

(Ellm(s.y) - ma(s. 2P7])

T dydzds,

t
+ sup / Grs(x—y)
0 R2

XER

t
J(t-s) = / FGeo(©) |62 det / / G2, (2) / |FGr_s(6)[21E[20 2 digdizalr



In fact, we have showed that

. - Ci (t — g)*H1
/S/RG?,,(Z)/R\fGrfs(§)|2\§|2(1 2H) dgdzdr:{ C;gt_zng—1 \r’]v:;/f

We have proved a version of Dalang’s Gronwall lemma in order to treat
situations of the form

(1) < /Ot (foo1(S) + fo2(5)) gt — 5) ds

Once we know that there exists u = lim, u” in X, we take limits in
t
Ut x) = Wt x) + / / Gr_s(x — y)o(U"(s, y))X(ds, dy)
0 JR
to deduce that u = {u(t, x), (¢, x) € [0, T] x R} solves (SWE) (resp. (SHE)).

Uniqueness has been proved using similar arguments.
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