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Structure of the thesis
This thesis consists of the following five articles

@ The stochastic wave equation in high dimensions: Malliavin
differentiability and absolute continuity, [Electronic Journal of
Probability]

@ Absolute continuity for SPDEs with an irregular fundamental solution,
[Preprint]

© Logarithmic asymptotics of the densities of SPDEs driven by spatially
correlated noise, [Stochastic Analysis and Applications 2014, Springer|

@ Random-field solutions to linear hyperbolic stochastic partial
differential equations with variable coefficients, [Submitted)]

@ Integration Theory for infinite dimensional volatility modulated Volterra
processes, [Bernoulli]

The first four belong to the field of SPDEs and the last one to the area of
stochastic integration theory. In the first three articles, we investigate
the probability law of solutions to SPDEs, and in the forth article, we
have a result on existence and uniqueness of solution.
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Part |: SPDEs - Study of the Probability Law

© The stochastic wave equation in high dimensions: Malliavin
differentiability and absolute continuity

@ Absolute continuity for SPDEs with an irregular fundamental solution

© Logarithmic asymptotics of the densities of SPDEs driven by spatially
correlated noise
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SPDEs - Formal definition
The central objects are SPDEs, given by

Lu(t,x) = b(u(t,x)) + o(u(t, x))F(t, x).

In this formal equation
o L is a PDO with constant coefficients, in particular the wave operator

82
=57
@ b, o are real Lipschitz-continuous functions, and

@ F is a random Gaussian noise given by the isonormal Wiener process
on the Hilbert space H1 = L2([0, T]; H), where

L Ay,

with

(6 = [ FHOFHE) = [ (0BG ()
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SPDEs - Rigorous formulation

We mostly follow the random-field approach (Walsh,Dalang,...) of
SPDEs. The mild formulation of SPDEs is given by

u(t,x) = lo(t,x) + /Ot /Rd At —s,x — y)o(u(s,y))M(ds, dy)
* /0 /Rd A(t —s,x — y)b(u(s, y))dyds.

Here

@ Iy is a term accounting for the initial conditions,

@ M is the martingale measure derived from the random noise term,
Mt(A) = F(]-[O,t]]-A)- and

o Ais the fundamental solution to the associated PDE, LA = 4 .

For the wave equation, the form of the fundamental solution changes with
the spatial dimension, but for all dimensions we have

FA(E)(E) = TMEED.
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SPDEs - Stochastic integral

The stochastic integral in the SPDE is defined as L2(Q)-limit of the
regularizations A,(t — s,x — y)Z(s,y) and

([ e
- /0 /R FEA(E = 5)(€) P (de)ds

< [ E[2(02) sup [ 1PN = s)(€ ) p(de)es

neR
The curse of dimensionality (for the wave equation)

d = 1,2: fundamental solution is a function, no Fourier transform necessary,
p-moments, nonstationary equations, easier expression

d = 3: fundamental solution is a nonnegative distribution, p-moments,
nonstationary equations, easier expression

d > 4. fundamental solution is a distribution, only second moment
and stationary equations, therefore Iy = 0

v

André Suess (Universitat de Barcelona) Contributions to Sl and SPDE Barcelona, 05 September 2014 6 /32




SPDEs - Pathwise integral

Similarly, the pathwise integral in the SPDE is defined as the L2(2)-limit of
the regularizations A,(t — s,x — y)Z(s, y) w.r.t. the following norm

[(/ /Rd (t—s,x - )Z(s,y)dyds>2]
N /0 /R [FA(t = 5)(n)Pv (dn)ds

t
g/ E[Z(s,0)?] sup |FA(t — s)(n)[*ds.
0 ner
Standing hypotheses

stochastic integral: / sup / |FA(s)(€ +n)Pu(d€)ds < oo,
0 neRd

t
pathwise integral: / sup | FA(s)(n)|?ds < oo,
0 neRrd

and some (technical) regularity conditions

y
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The SWE in high dimensions | - Main theorem

First objective: show the Malliavin differentiability of the solution to an
SPDE with A a general distribution.

Theorem (Sanz-Solé & S. (2013))

Fix (t,x) € [0, T] x RY. Under the standing hypotheses, o, b € Ct(R) and
lo(t,x) = 0, we have u(t,x) € D*? and

Du(t, x) =N\(t — -, x — *)o(u(-, *))

+ /Of /Rd A(t — s,x — y)o'(u(s, y))Du(s, y)M(ds, dy)

+ /Ot /Rd A(t — s,x — y)b'(u(s, y))Du(s, y)dyds.

Note that this is an SPDE in the Hilbert space H 1. We need similar
conditions on the integrands, i.e. Do(u), as for the real-valued case to
well-define both integrals. These can be shown from the respective
properties of u.
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The SWE in high dimensions Il - Idea of the proof

Main problem: we cannot use the classic way to show the pointwise
convergence of the Malliavin derivatives Du, of some approximation u,
Solution: show first that u € D12

Lemma

Let (Fn)nen € DY2 such that lim, .o F, = F in L?(Q) and
SUP e IE[||DFn||§_lT] < 0o. Then F € DY2 and DF, — DF in L2(; HT).

and then use commutation formulas

o( [ [ A= s otuts )M )

=Mt —-x=)o(u( )+ [ [ A== ) (us. ) Duls. y)M(ds. dy).

D</o/ A= s —y>b<u(s,y))dyds)
- / [ M= 5. x = )b s, ))Duts ) e
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The SWE in high dimensions Il - Absolute continuity
Second objective: show the absolute continuity of Py ., for all

(t,x) € (0, T] x RY, i.e. Putx) = prxAL.

Idea: using the Bouleau-Hirsch criterion and showing that the first term in
the SPDE dominates the others

Du(t,x) =\(t — -, x — *)o(u(-, %))
+ /0 /Rd A(t — s,x — y)o'(u(s,y))Du(s, y)M(ds, dy)

t
+ / / A(t — s, x — y)b'(u(s,y))Du(s, y)dyds.
0 JRrY
Problem: This does not work because A may be negative!

Theorem (Sanz-Solé & S. (2013))

Under the standing hypotheses on A, o = ¢ # 0, b € C(R) and for all
t >0, we have [|A||3, = [y IIA(s, *)[|3,ds > 0. Then, for all
(t,x) € (0, T] x RY, the law of u(t, x) is absolutely continuous.
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Absolute continuity for SPDEs | - Main idea

Solution for multiplicative noise: use a different, very recent approach.

Lemma (Debussche & Romito (2013))

Let k be a finite nonnegative measure. Assume that there exist
0<a<a<l neNandC, >0 such that for all $ € Cg, h € [-1,1],

[ Apotnn(a)
Then k = pAl, and p € B] (R).

< Gol|@lleglhl?.

Here Bf . (R), with s € (0,1) is the Besov space with norm

1fllss ) = [IFll2(m) + S (AN ARl L ry-

We have used difference operators (A}f)(x) = f(x + h) — f(x), and

n

(B2)(x) = (AL(AT 1) (x) = 3 (~1)" (J) Fx + Jh).

j=0
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Absolute continuity for SPDEs Il - Assumptions and result

Now we assume the standing hypotheses and
o there exists C,6 > 0 such that E[(u(t,0) — u(s,0))?] < C|t — s|°,
@ infyer |o(x)| =00 >0,
e for some C,v,71,72 > 0 and ty € (0, T]

/ / | FA(s)(&)Pu(d€)ds > Ct7, for all t € [0, to],

/t sup | |FA(s)(& +n)Pp(dE)ds < Ct™,
0

’V]GRd Rd

t
/ sup | FA(s)(n)2ds < .
0

neRrd
Theorem (Sanz-Solé & S. (2014))

Under these assumptions and 7 := w > 1. Then, for all
(t,x) € (0, T] x R, the probability law of u(t,x) is absolutely continuous,
Puy(tx) = PexAl, and pex € B (R) with0 <s<1-— 1.
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Absolute continuity for SPDEs Il - Idea of the proof
Approximation of u(t, x): for e > 0 (here: b =0)

U (£, %) —/OH /R A(t — 5, — y)o(u(s, y))M(ds, dy)
+o(u(t —¢,x)) /t /Rd A(t —s,x — y)M(ds, dy)

Conditioned on .%;_., u°(t,x) has a Gaussian distribution with variance
dominated by C|h|e~7. The L?(Q)-difference E[(u(t,0) — v°(t,0))?] is
bounded by Ce’(e + £72). So

a(v1+96) a(vp+9)
[ 8300 Puten(@)] < Crlleg (s 45 23
< Collgleg {7712

A clever choice for ¢ is: e = t|h|?/7 with p € (0,2).
Optimizing over a, p: best order of Sobolev space is (almost) 1 — 571,
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Absolute continuity for SPDEs IV - An example

Example: Stochastic Wave Equation

Consider the SWE in any spatial dimension with Iy = 0 and Gaussian noises
with Riesz kernel covariance u(d¢) = |¢|~9T8dE.
Then

vy=3-p8, m1=3—-08, 72=3 and 6=2-7.

So ¥ =(5-28)/(3— ) > 1. Therefore u(t, x) is absolutely continuous
with density in Bf (R) for all 0 <s < (2 —3)/(5 — 28).
For finite measures p all this holds with 5 = 0.

Other situations where this approach might work:

@ Stochastic heat equation. The existence and smoothness of a density
are done by Marquez-Mellouk-Sarra. But slightly weaker conditions on
o and b with this approach.

@ Stochastic wave equation with o(u) = u. This is current work with
D. Conus, first very preliminary results are available.
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Logarithmic asymptotics of densities | - Setting
Now we consider a family of SPDEs indexed by ¢ € (0, 1]

Lut(t,x) = b(u*(t, x)) + eo(u(t, x))F(t, x).

This translates to the mild formulation
t
(e = (e )+ [ [ A= sx = y)ale(s.))M(ds. )
0 Jrd
t
+/ / A(t = s,x — y)b(u*(s, y))dyds.
0o JRrd

As e | 0, uf converges uniformly in L2(2) to the solution of the PDE
Lu® = b(u). For several examples of SPDEs a large deviations principle
holds, which quanitifes the speed of this convergence. So Pue(sx) = 0,0(¢.x)-

Question

Assume that Pe(; ) = ps AL, then formally ps  (y) — duo(ex)(y). But at
what speed?
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Logarithmic asymptotics of densities |l - Assumptions
We consider

ut(t,x) = lo(t,x) + 5/0 /Rd Nt —s,x — y)o(u®(s,y))M(ds, dy)

" /Ot /Rd Nt = s,x = y)b(u™(s, y))dyds,

and assume
@ A is a nonnegative distribution and the integrability conditions hold,

SUP(¢,x)c[0, T]x ke | To(t; X)| < o0,
@ there exist C,~, to > 0 such that for all t € [0, tp]

co < [ [ IFN) e,

b,o € CF(R),

infcra |o(x)| > 09 > 0,

for all (t,x) € (0, T] x RY, (u(t,x)).¢(0,1] satisfies a LDP in R with
rate function J.
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Logarithmic asymptotics of densities |l - Main theorem
Theorem (Sanz-Solé & S. (2014))
Fix (t,x) € (0, T] x R€.

@ Assume all of the above. Then for any y € R,

lim 2 log p; . (y) < —J(¥)-
el0 ’

@ Assume all but the last assumption from above. Fix y € R in the
interior of the topological support Py(t x). Then

lim £ log p; . (y) > —1(¥),
el0
with I(y) := inf{%||h||$_h; he HT,CD{Z’X =y}, and
Of = lo(t,x) + (A(t — -, x — ) (), hyp,
t
+/ / Nt —s,x — y)b(®! ,)dyds.
0 JRd ’
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Logarithmic asymptotics of densities IV - Comments
The lower bound is only meaningful if /(y) < co. For this we show:

Theorem (Sanz-Solé & S. (2014))
Under slightly stronger assumptions on the growth of the ||A||3,-norm, the
topological support of Py .y is the closure of the set {oh i heHT)

t,x1

With this, we can show.
Proposition (Sanz-Solé & S. (2014))

Under these assumptions and o, b € C:(R), for all y in the interior of the
topological support of Pye (¢, 1(y) < oo.

Problem: we cannot verify this for the SHE!
Proposition (Sanz-Solé & S. (2014))

Assume the initial assumptions and that b is bounded. Then
{y eR;I(y) < ©} =R.

Result by E. Nualart: same holds with o, instead of b, bounded.
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Part |l: SPDEs - Existence and Uniqueness of
Solution

@ Random-field solutions to linear hyperbolic stochastic partial
differential equations with variable coefficients
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Hyperbolic SPDEs | - Definition

In this part we consider linear hyperbolic SPDEs

L(t, x, 0, Vi)u(t, x) = y(t,x) + o(t,x)F(t, x),
where
o 7,0 : R 5 R are in L([0, T]; L°(R?)), with spatial Fourier
transforms in L2([0, T]; L}(R))
@ F is the same Gaussian noise with spatial correlation as above,
o L =L(t,x,0: Vy) is a hyperbolic PDO with variable coefficients.
We use again the mild formulation and define the solution to that SPDE as

u(t,x) = lp(t, x) + /Ot/Rd A(t,s,x,y)o(s,y)M(ds, dy)

t
+// A(t, s, x,y)(s,y)dyds.
0 JRd

Here
@ Iy is a term accounting for the initial conditions, pointwise finite
@ A is the fundamental solution to the associated PDE Lu = ~.
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Hyperbolic SPDEs Il - Problems and central ideas

Main problem: what is a suitable concept for the fundamental solution?
In the case of constant coefficients: solution (via Fourier transform) of

Lu= 5070.

This is no longer possible, instead, we use microlocal analysis. This is a
truly hyperbolic theory, for parabolic SPDEs with variable coefficients, use
heat kernel estimates.

We will compute families of Fourier integral operators, whose Schwartz
kernels will be the replacement for the fundamental solution. For 2nd order
hyperbolic PDEs we would have for instance

u(t) = To(t)uO + Tl(t)ul + /Ot Tz(t, s)y(s)ds.

Another problem: We cannot tell whether these Schwartz kernels will be

functions, distributions, nonnegative etc.

Consequence: we can only treat linear hyperbolic SPDEs!

Consequence: need to give meaning to the stochastic and pathwise integral!
B e e O e O L B arcelona, 05 September 2014 21 /32



Hyperbolic SPDEs Il - Definition of the integrals

The integrability conditions we have seen earlier are replaced by
Standing hypotheses

For (t,s,x) € AT x R, A(t,s,x) is a function with values in S’(R?), such

that & — FA(t, s, x)(§) is a function, (t,s, x,&) — FA(t,s,x)(&) is
measurable, and

/OT sup /Rd |FA(t, s, x)(€ + n)Pp(d€) (/Rd |]:0'(5)(77)|dn)2ds < oo,
.

neR

/0 sup |FA(t, s, x)(n)]* </Rd va(S)(n)ldn)zds < oo,

neR

and some (technical) regularity conditions.

Theorem (Ascanelli & S. (2014))

Under the standing hypotheses, the stochastic and pathwise integrals are
well-defined as L?(S2)-limits of stochastic and pathwise integrals of
approximating step processes.

v
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Hyperbolic SPDEs IV - Strictly hyperbolic SPDEs
Consider SPDEs with PDOs of the form

d d
L=07 = ) aju(t,x)00x — Y _ bi(t, x)dy — c(t,x),
jk=1 j=1

with a; x € C([0, T]; C°(RY)) and bj, c € C([0, T]; C°(RY)). Assume that
d

aj k(t, x)&ék > ClEP,

jik=1

for some C > 0. Assume for the initial conditions that ug € H"(R?) and
up € H™1(RY), where 2r > d. Suppose that

1
S —  u(df) < c0.
Ry e ICORES

Then, for some time horizon 0 < T < T, there exists a unique solution to
the SPDE with PDO L. Similarly for higher-order SPDEs.
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Hyperbolic SPDEs V - Weakly hyperbolic SPDEs
Consider the SPDE

(02 — th02 + cthray) u(t, x) = F(t, x),
u(0,x) =0, 9:u(0,x) =0,

for some constant ¢ > 0, k €N, k> 2 and p = 271 — k=1 Here the
phenomenon of loss of derivatives in Sobolev spaces occurs! This means
that

E(t,s): H — H™°,

where E is the fundamental solution operator. This translates into stricter
conditions on the covariance measures, and their spectral measures (, i.e.

1
d&) < oo.
nse”ni)d /Rd (I+[E+ n|2)175/l( £) < o0

Problem: the § > 0 increases with c!
Conclusion: Nonexistence of solution for quite simple equations!

André Suess (Universitat de Barcelona) Contributions to Sl and SPDE Barcelona, 05 September 2014 24 /32



Part Ill: Stochastic Integration

@ Integration Theory for infinite dimensional volatility modulated Volterra
processes
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Stochastic Integration | - Definitions
Let in the following

MﬂjAAww®w®,

where

@ B is a cylindrical Wiener process on H1,

@ o is an L(H1,Hz)-valued process, not necessarily adapted, and

@ g is a deterministic function such that g(t,s) € L(H2, Haz).
Particular examples for this type of processes are

@ Gaussian processes in Hilbert spaces,

@ Ambit processes,

@ Mild solutions to SDE and SPDE

xw=Angwmmw@.
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Stochastic Integration Il - Formal definition
Set
KoV)(t5) = Ye(t.s) + [ (V(0) - ¥()a(dus)

Motivated by a computation for differentiable integrands Y, we set:

Definition
Fix t € [0, T]. We say that a stochastic process (Y(s))sc[o,s belongs to the
domain of the stochastic integral with respect to X if

Q (Y(u) = Y(5))ug(s,y is integrable w.r.t. g(du, s) almost surely,

Q K (Y)(t,-)o(-)1j0,4(-) € Dom(d) for all t € [0, T], and

Q Cg(Y)(t,s) is Malliavin differentiable for all s € [0, t] and the

Hilbert-valued stochastic process s — try Ds(Kg(Y)(t,s))o(s) is
Bochner integrable on [0, t] almost surely.

We write Y € ZX(0, t) and set

t

/ Y(s)dX(s):/ ICg(Y)(t,s)a(s)5B(s)+trH/ Ds(Kg(Y)(t,5))o(s)ds.
0 0 0

v
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Stochastic Integration Il - Calculus rules

Basic rules: Without much effort, one can show familiar calculus rules for

this stochastic integral, such as linearity, local operator, compatibility
with projections, and

t+ n—1
/0 szl(tj,tjﬂ](s)dX(s) ZZ (tir1) — X(t7))-
Jj=0

Connection to semimartingale integral: In some cases, one can also show an
equality with the classic semimartingale integral.
SDEs driven by X: Consider the SDE driven by X with additive noise

dY(t) = —AY(t)dt + FdX(t).

One can compute its solution to be equal to

t
Y(t) = / e (E=AFAX (s),
0

if we assume that u — e~ (“"9AF is g(du, s)-integrable.
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Stochastic Integration IV - 1t6 formula

Theorem (Benth & S. (2014))

Let F : Hy — Hs3 be twice Fréchet differentiable. Furthermore assume that
g satisfies the semimartingale condition. Assume that Y and o are twice
Malliavin differentiable, Y (s)g(s, s)o(s) € L*P(H,Ha) for some p > 4 and

| 6 5 s o (0)3(w) + tr (DY (5D 5)o()
+try /05 Du(Y(s))g—i(s, u)o(u)du € LY4(Ha).
Then F'(Z)Y € I%(0,t) for all t € [0, T] and

F(z)=FO)+ [ FI(2(5)) Y (5)dX(s)

- %try /0 CF(Z) (Y (5)g(s, $)(5)) (Y (5)g(s, $)o(s)) ds.

v
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Stochastic Integration V - Random-field integral

An alternative is to consider

t
X(t,x) = / / g(t. 5. y)o(s, y)M(Ss, dy),
0 R4
where

@ g is a deterministic function,
@ o is a a random field,

@ M is a worthy martingale measure, white in time, with covariation
measure [ .
We define the kernel

Ke(h)(t,s,y) = /Rd h(s,z)g(t,s; dz7y)—|—/ /Rd (h(u,z)—h(s, z))g(du,s; dz, y)
and set for Y € ZX([0, t] x R9)

/ t | yeyxisa - [ t [ Ka0 )51, M(5s. )
/ /Rd /Rd sy—2Ke(Y)(t,s,y)o(s,y)dyl (dz)ds
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Stochastic Integration VI - Connection of the integrals
Definition
Assume for all (s,y) € [0, T] x RY that the function (t, x) — g(t,s,x,y) has
bounded variation on [u, v] x R? for all 0 < s < u < v < t. Assume
© VY is integrable w.r.t. g(t,s;dz,y) a.s. and (t,s, y)-a.e.,
Q (Y(u,2) = Y(s,2))uc(s,gxre is g(du, s; dz, y)-integrable a.s. and (s, y)-a.e.,
Q (s,y) = Kg(Y)(t,s,y)a(s,y)1[0,4(s) is integrable w.r.t. M,

Q K (Y)(t,s,y) is Malliavin differentiable w.r.t. Ds ,_, and

(5.¥,2) = Dsy—-(Ke(Y)(t,5,y))0(s,y) is Aljo, 7] @ Alge ® l-integrable on
[0,t] x RY x RY as.

Proposition (Benth & S. (2014))
Let Y € TX([0, t] x RY). Then Y € Z%X([0, t]) with H1 = H, H3 = R and

/0 t /R Y(s.y)X(ds. dy) = /O " Y(s)ax(s).

André Suess (Universitat de Barcelona) Contributions to S| and SPDE Barcelona, 05 September 2014

v

31 /32



Thank you very much!

And thanks to (non-exhaustive list):

E. Alos, A. Ascanelli, R. Balan, V. Bally, F. Benth, J.-M. Bismut, R. Carmona,
M. Cicognani, D. Conus, R. C. Dalang, A. Debussche, L. Decreusefond,

F. Delgado, P. Dupuis, F. Flandoli, N. Fournier, L. Hormander, Y. Hu, K. It5,
M. Jolis, D. Khoshnevisan, A. Kohatsu-Higa, H. Kumano-Go, R. Léandre,
P.-L. Lions, P. Malliavin, D. Marquéz, M. Métivier, A. Millet, C. Mueller,

J. van Neerven, D. Nualart, E. Nualart, B. @ksendal, V. Ortiz, E. Pardoux,

L. Paveglio, S. Peszat, G. Da Prato, J. Printems, LI. Quer, M. Rockner,
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The standing (technical) hypotheses

o Let ¢ denote a nonnegative function in C3°(R?), with support included
in the unit ball of RY, satlsfylng fRd x)dx = 1. For all such ¢ and all

0<a<b<T,wehave f ) % ¢)(x)ds € S(RY), and

b
[, [ 1006) = )1asae < o
RY Ja

e t — FA(t) satisfies the first integrability condition, and

)
im / sup / sup | FA(F)(E+1) — FA(S)(E+n)2(de) ds = 0.
0 R

h{0 neRrd d s<r<s+h

e t — FNA(t) satisfies the second integrability condition, and

-
Iim/ sup  sup | FA(r)(n) — FA(s)(n)|?ds = 0.
hl0 0 nE]Rd s<r<s+h
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