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Determinantal point process

Definition
A determinantal point process A is a random point process such
that the joint intensities have the form:

ρn(x1, . . . , xn) = det(K (xi , xj)i ,j≤n).

Recall that the joint intensities ρk satisfy:

E
∑

x1,...,xk∈A
f (x1, . . . , xk) =

∫
f (xi , . . . , xk)ρk(xi , . . . , xk)

for any f symmetric bounded and of compact support.
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Determinantal process: the origin

They were systematically studied at the end of 70’s by Macchi
because they are a good model for fermions:

In quantum mechanics the position of a particle is represented by a
wave function ψ such that

∫
|ψ|2 = 1. If we have n independent

particles, the global system is defined by a global wave functionn
Ψ(x1, . . . , xn). If we want to model fermions by Pauli exclusion
principle the composite wave function must be antysimetric in the
different variables. This suggests

Ψ = c det(ψi (xj))

Then
|Ψ|2 = c2

N det(K (xi , xj))

where K (x , y) =
∑
ψi (x)ψi (y)
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General facts

If the point process has n points almost surely then the kernel K
defines an integral operator: the orthogonal projection onto a
subspace of L2 of dimension n.

In general

Theorem (Macchi, Soshnikov)

An hermitic kernel K (x , y) corresponds to a determinantal point
process if and only if the integral operator T : L2 → L2 has all
eigenvalues λ ∈ [0, 1].

Moreover:

Theorem (Shirai, Takahashi)

In a determinantal process, the number of points that fall in a
compact set D has the same distribution as a sum of independent
Bernoulli(λDi )) random variables where λDi are the eigenvalues of
the operator T restricted to D.
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Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious
examples of determinantal point processes:

I Some physical models of fermions. (Macchi, Soshnikov)

I The eigenvalues of random matrices: The GUE ensemble, the
CUE ensemble, the Ginibre ensemble (Wigner, Weyl and
Dyson, Ginibre)

I Zeros of random polynomials of type
∑

anzn where an are
i.i.d. random variables with distribution NC(0, 1). (Peres and
Virag)

I Non-intersecting random walks (Karlin and Mc Gregor)

I Uniform spanning trees (Burton and Pemantle) and
(Benjamini, Lyons, Peres and Schramm)
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Random matrices, the Ginibre ensemble

The Ginibre ensemble is the spectrum of an n × n random matrix
with i.i.d entries with NC(0, 1) entries. The joint distribution of the
eigenvalues is given by the law:

N∏
k=1

1

k!

N∏
i=1

e−|zi |
2
∏
j<k

|zj − zk |2dm(z)

This is determinantal if we observe

N∏
i=1

e−|zi |
2

i !

∏
j<k

|zj − zk |2 = |det(z j
i

e−|zi |
2/2

√
i !

)|2 = det(K (zi , zj))

where K (z ,w) =
∑

k
(zw)k

k! e−|z|
2/2e−|w |

2/2.
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Ginibre ensemble
A typical instance is:

Thus, typically the eigenvalues lie in a disk of radious
√

n. If one
rescales

√
n Ginibre proved that almost surely:

1

n

∑
i

δ(λi/
√
n)
∗
⇀

1

π
χD(0,1)



Spherical ensembles

Krishnapur considered the following point process: Let A,B be n
by n random matrices with i.i.d. Gaussian entries. Then he proved
that the generalized eigenvalues associated to the pair (A,B), i.e.
the eigenvalues of A−1B have joint probability density (wrt
Lebesgue measure):

Cn

n∏
k=1

1

(1 + |zk |2)n+1

∏
i<j

|zi − zj |2.

If we consider the stereographic projection to the sphere S2, then
the joint density (with respect to the product area measure in the
sphere) is

Kn

∏
i<j

‖Pi − Pj‖2R3 .
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The space of functions

Let Pn be the space functions defined as

q(z) =
p(z)

(1 + |z |2)(n−1)/2
,

where p is a polynomial of degree less than n. Clearly Pn ⊂ L2(µ),
where dµ(z) = 1/(1 + |z |2)2. It is a reproducing kernel Hilbert
space. Its reproducing kernel is

Kn(z ,w) =
(1 + zw̄)n−1

(1 + |z |2)(n−1)/2(1 + |w |2)(n−1)/2

.



A determinantal form

We have that the matrix q1(z1) ··· qn(z1)

...
. . .

...
q1(zn) ··· qn(zn)

( q1(z1) ··· q1(zn)

...
. . .

...
qn(z1) ··· qn(zn)

)
=

(
Kn(z1,z1) ··· Kn(z1,zn)

...
. . .

...
Kn(zn,z1) ··· Kn(zn,zn)

)

Thus ∣∣∣∣∣∣∣
Kn(z1, z1) · · · Kn(z1, zn)

...
...

Kn(zn, z1) · · · Kn(zn, zn)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
q1(z1) · · · q1(zn)

...
...

qn(z1) · · · qn(zn)

∣∣∣∣∣∣∣
2

Therefore the spherical ensemble generates a determinantal point
process.
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Weak convergence of empirical measure

Given a realization z1, . . . , zn of the random point process we
denote by µn = 1

n

∑
i δzi to the empirical measure. We take a

sequence µn, n = 1, 2, . . . of independent point process of the
spherical ensemble. The normalized measure on the sphere is
denoted by µ.

Theorem
With probability one µn

∗
⇀ µ. More precisely the

Kantorovich-Wasserstein distance KW1(µn, µ) . log n√
n

with

probability one.
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The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the KW1 distance
between two probability measures µ and ν supported in K as

KW1(µ, ν) = inf
ρ

∫∫
K×K

d(x , y)dρ(x , y),

where ρ is an admissible probability measure, i.e. the marginals of
ρ are µ and ν respectively.

Alternatively:

KW1(µ, ν) = inf
ρ

∫∫
K×K

d(x , y)d |ρ|(x , y),

where ρ is an admissible complex measure, i.e. the marginals of ρ
are µ and ν respectively
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The Lagrange functions

Given any sequence of points (z1, . . . , zn) we define the Lagrange
functions:

`j(z) =

∣∣∣∣∣
q1(z1) ··· q1(z) ··· q1(zn)

...
...

...
qn(z1) ··· qn(z) ··· qn(zn)

∣∣∣∣∣∣∣∣∣∣
q1(z1) ··· q1(zj ) ··· q1(zn)

...
...

...
qn(z1) ··· qn(zj ) ··· qn(zn)

∣∣∣∣∣
Clearly `j ∈ Pn and `j(zi ) = 0 if i 6= j and `j(zj) = 1.



Lagrange functions and the density function

We have that the joint distribution of (z1, . . . , zn) is given by the
density (with respect to the spherical measure dµ(z1) · · · dµ(zn)):

ρn(z1, . . . , zn) =

∣∣∣∣∣∣∣
Kn(z1, z1) · · · Kn(z1, zn)

...
...

Kn(zn, z1) · · · Kn(zn, zn)

∣∣∣∣∣∣∣ ,

and

|`j(z)|2 =
ρn(z1, . . . , z , . . . , zn)

ρn(z1, . . . , zj , . . . , zn)
.
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The transport plan

Consider the transport plan

p(z ,w) =
1

n

n∑
j=1

δzj (w)Kn(z , zj)`j(z) dµ(z).

It has the right marginals 1
n

∑
δzj and µ respectively and thus

KW1(µn, µ) ≤
∫∫
|z−w |d |p| ≤ 1

n

n∑
j=1

∫
d(z , zj)|`j(z)||Kn(z , zj)|dµ(z).



Estimating the K-W distance

(EKW1)2 ≤∫
Cn

1

n

n∑
j=1

(∫
C

d(z , zj)|`j(z)||Kn(z , zj)|dµ(z)

)2 ρn(z1, . . . , zn)

n!
≤

∫
Cn

1

n

n∑
j=1

(∫
C

d(z , zj)
2|Kn(z , zj)|

∫
C
|`j(z)|2|Kn(z , zj)|

)
ρn(z1, . . . , zn)

n!
.



Off diagonal decay of the reproducing kernel

It is easy to see that

sup
w∈C

∫
C
|z − w |2|Kn(z ,w)|dµ(z) ≤ C/n,

and

sup
w∈C

∫
C
|Kn(z ,w)|dµ(z) ≤ C .

because

|Kn(z ,w)|2 =n2

(
1− |z − w |2

(1 + |z |2)(1 + |w |2)

)n−1
≤

≤Kn2 exp

(
−Cn

|z − w |2

(1 + |z |2)(1 + |w |2)

)
.



Off diagonal decay of the reproducing kernel

It is easy to see that

sup
w∈C

∫
C
|z − w |2|Kn(z ,w)|dµ(z) ≤ C/n,

and

sup
w∈C

∫
C
|Kn(z ,w)|dµ(z) ≤ C .

because

|Kn(z ,w)|2 =n2

(
1− |z − w |2

(1 + |z |2)(1 + |w |2)

)n−1
≤

≤Kn2 exp

(
−Cn

|z − w |2

(1 + |z |2)(1 + |w |2)

)
.



The final estimate

(EKW1)2 ≤ C

n

∫
Cn

1

n

n∑
j=1

∫
C
|`j(z)|2|Kn(z , zj)|

ρn(z1, . . . , zj , . . . , zn)

n!
=

C

n

∫
Cn

1

n

n∑
j=1

∫
C
|Kn(z , zj)|

ρn(z1, . . . , z , . . . , zn)

n!
≤ C

n
.



A concentration of measure

We want to study now the empirical measure. For determinantal
process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a
Lipschitz-1 functional on finite counting measures (with respect to
the total variation distance). Then

P(f − Ef ≥ a) ≤ 3 exp

(
− a2

16(a + 2n)

)

The functional f (σ) = nKW1( 1nσ, µ) is Lipshchitz-1.
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Almost sure convergence

To finish take a = 10
√

n log(n), then

P
(

KW1(µn, µ) >
11
√

log(n)√
n

)
≤

3 exp

(
− 100n log(n)

16(10
√

n log(n) + 2n)

)
.

1

n2
.

Now a standard application of the Borel-Cantelli lemma shows that
with probability one

KW1(µn, µ) ≤ 10
√

log n√
n

.
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Application

There is an open question by Smale: Can one find
X = (x1, . . . , xN) ⊂ S2 such that E(X )−mN ≤ c log N, c a
universal constant?
Here E(X ) = −

∑
i 6=j log ‖xi − xj‖ and mN = minX⊂S2 E(X ).

The best known estimates of mN are

mN = (
1

2
− log 2)N2 − N log N

2
+ CNN,

where −0.22553754 ≤ lim inf CN ≤ lim sup CN ≤ −0.0469945.
The spherical ensemble provides a good candidate as they can be
constructed with N3 operations.
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Theorem (Alishahi and Zamani)

EE(P1, . . . ,PN) =

=

(
1

2
− log 2

)
N2 − 1

2
N log N +

(
log 2− γ

2

)
N − 1

4
+ O

(
1

N

)
Here, γ is the Euler constant.

This is close to the best known estimates.


