Determinantal point process: the spherical ensemble

Joaquim Ortega-Cerdà

Barcelona, March 42015

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)_{i, j \leq n}\right) .
$$

Determinantal point process

Definition

A determinantal point process A is a random point process such that the joint intensities have the form:

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)_{i, j \leq n}\right) .
$$

Recall that the joint intensities ρ_{k} satisfy:

$$
\mathbb{E} \sum_{x_{1}, \ldots, x_{k} \in A} f\left(x_{1}, \ldots, x_{k}\right)=\int f\left(x_{i}, \ldots, x_{k}\right) \rho_{k}\left(x_{i}, \ldots, x_{k}\right)
$$

for any f symmetric bounded and of compact support.

Determinantal process: the origin

They were systematically studied at the end of 70's by Macchi because they are a good model for fermions:

Determinantal process: the origin

They were systematically studied at the end of 70's by Macchi because they are a good model for fermions:
In quantum mechanics the position of a particle is represented by a wave function ψ such that $\int|\psi|^{2}=1$. If we have n independent particles, the global system is defined by a global wave functionn $\Psi\left(x_{1}, \ldots, x_{n}\right)$.

Determinantal process: the origin

They were systematically studied at the end of 70's by Macchi because they are a good model for fermions:
In quantum mechanics the position of a particle is represented by a wave function ψ such that $\int|\psi|^{2}=1$. If we have n independent particles, the global system is defined by a global wave functionn $\Psi\left(x_{1}, \ldots, x_{n}\right)$. If we want to model fermions by Pauli exclusion principle the composite wave function must be antysimetric in the different variables. This suggests

$$
\Psi=c \operatorname{det}\left(\psi_{i}\left(x_{j}\right)\right)
$$

Then

$$
|\Psi|^{2}=c_{N}^{2} \operatorname{det}\left(K\left(x_{i}, x_{j}\right)\right)
$$

where $K(x, y)=\sum \psi_{i}(x) \bar{\psi}_{i}(y)$

General facts

If the point process has n points almost surely then the kernel K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.

General facts

If the point process has n points almost surely then the kernel K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.
In general
Theorem (Macchi, Soshnikov)
An hermitic kernel $K(x, y)$ corresponds to a determinantal point process if and only if the integral operator $T: L^{2} \rightarrow L^{2}$ has all eigenvalues $\lambda \in[0,1]$.

General facts

If the point process has n points almost surely then the kernel K defines an integral operator: the orthogonal projection onto a subspace of L^{2} of dimension n.
In general
Theorem (Macchi, Soshnikov)
An hermitic kernel $K(x, y)$ corresponds to a determinantal point process if and only if the integral operator $T: L^{2} \rightarrow L^{2}$ has all eigenvalues $\lambda \in[0,1]$.
Moreover:

Theorem (Shirai, Takahashi)

In a determinantal process, the number of points that fall in a compact set D has the same distribution as a sum of independent Bernoulli $\left(\lambda_{i}^{D}\right)$) random variables where λ_{i}^{D} are the eigenvalues of the operator T restricted to D.

Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious examples of determinantal point processes:

- Some physical models of fermions. (Macchi, Soshnikov)

Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious examples of determinantal point processes:

- Some physical models of fermions. (Macchi, Soshnikov)
- The eigenvalues of random matrices: The GUE ensemble, the CUE ensemble, the Ginibre ensemble (Wigner, Weyl and Dyson, Ginibre)

Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious examples of determinantal point processes:

- Some physical models of fermions. (Macchi, Soshnikov)
- The eigenvalues of random matrices: The GUE ensemble, the CUE ensemble, the Ginibre ensemble (Wigner, Weyl and Dyson, Ginibre)
- Zeros of random polynomials of type $\sum a_{n} z^{n}$ where a_{n} are i.i.d. random variables with distribution $N_{\mathbb{C}}(0,1)$. (Peres and Virag)

Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious examples of determinantal point processes:

- Some physical models of fermions. (Macchi, Soshnikov)
- The eigenvalues of random matrices: The GUE ensemble, the CUE ensemble, the Ginibre ensemble (Wigner, Weyl and Dyson, Ginibre)
- Zeros of random polynomials of type $\sum a_{n} z^{n}$ where a_{n} are i.i.d. random variables with distribution $N_{\mathbb{C}}(0,1)$. (Peres and Virag)
- Non-intersecting random walks (Karlin and Mc Gregor)

Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious examples of determinantal point processes:

- Some physical models of fermions. (Macchi, Soshnikov)
- The eigenvalues of random matrices: The GUE ensemble, the CUE ensemble, the Ginibre ensemble (Wigner, Weyl and Dyson, Ginibre)
- Zeros of random polynomials of type $\sum a_{n} z^{n}$ where a_{n} are i.i.d. random variables with distribution $N_{\mathbb{C}}(0,1)$. (Peres and Virag)
- Non-intersecting random walks (Karlin and Mc Gregor)
- Uniform spanning trees (Burton and Pemantle) and (Benjamini, Lyons, Peres and Schramm)

Random matrices, the Ginibre ensemble

The Ginibre ensemble is the spectrum of an $n \times n$ random matrix with i.i.d entries with $N_{\mathbb{C}}(0,1)$ entries. The joint distribution of the eigenvalues is given by the law:

$$
\prod_{k=1}^{N} \frac{1}{k!} \prod_{i=1}^{N} e^{-\left|z_{i}\right|^{2}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} d m(z)
$$

Random matrices, the Ginibre ensemble

The Ginibre ensemble is the spectrum of an $n \times n$ random matrix with i.i.d entries with $N_{\mathbb{C}}(0,1)$ entries. The joint distribution of the eigenvalues is given by the law:

$$
\prod_{k=1}^{N} \frac{1}{k!} \prod_{i=1}^{N} e^{-\left|z_{i}\right|^{2}} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2} d m(z)
$$

This is determinantal if we observe

$$
\prod_{i=1}^{N} \frac{e^{-\left|z_{i}\right|^{2}}}{i!} \prod_{j<k}\left|z_{j}-z_{k}\right|^{2}=\left|\operatorname{det}\left(z_{i}^{j} \frac{e^{-\left|z_{i}\right|^{2} / 2}}{\sqrt{i!}}\right)\right|^{2}=\operatorname{det}\left(K\left(z_{i}, z_{j}\right)\right)
$$

where $K(z, w)=\sum_{k} \frac{(z \bar{w})^{k}}{k!} e^{-|z|^{2} / 2} e^{-|w|^{2} / 2}$.

Ginibre ensemble

A typical instance is:

Ginibre Ensemble 100 points

Ginibre Ensemble Ginibre 200 points

Ginibre Ensemble 500 points

Thus, typically the eigenvalues lie in a disk of radious \sqrt{n}. If one rescales \sqrt{n} Ginibre proved that almost surely:

$$
\frac{1}{n} \sum_{i} \delta_{\left(\lambda_{i} / \sqrt{n}\right)} \stackrel{*}{\rightharpoonup} \frac{1}{\pi} \chi_{D(0,1)}
$$

Spherical ensembles

Krishnapur considered the following point process: Let A, B be n by n random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1} B$ have joint probability density (wrt Lebesgue measure):

$$
C_{n} \prod_{k=1}^{n} \frac{1}{\left(1+\left|z_{k}\right|^{2}\right)^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2}
$$

Spherical ensembles

Krishnapur considered the following point process: Let A, B be n by n random matrices with i.i.d. Gaussian entries. Then he proved that the generalized eigenvalues associated to the pair (A, B), i.e. the eigenvalues of $A^{-1} B$ have joint probability density (wrt Lebesgue measure):

$$
C_{n} \prod_{k=1}^{n} \frac{1}{\left(1+\left|z_{k}\right|^{2}\right)^{n+1}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2}
$$

If we consider the stereographic projection to the sphere \mathbb{S}^{2}, then the joint density (with respect to the product area measure in the sphere) is

$$
K_{n} \prod_{i<j}\left\|P_{i}-P_{j}\right\|_{\mathbb{R}^{3}}^{2}
$$

Spherical ensemble dimension: 3200

Spherical ensemble 25281 points

The space of functions

Let P_{n} be the space functions defined as

$$
q(z)=\frac{p(z)}{\left(1+|z|^{2}\right)^{(n-1) / 2}},
$$

where p is a polynomial of degree less than n. Clearly $P_{n} \subset L^{2}(\mu)$, where $d \mu(z)=1 /\left(1+|z|^{2}\right)^{2}$. It is a reproducing kernel Hilbert space. Its reproducing kernel is

$$
K_{n}(z, w)=\frac{(1+z \bar{w})^{n-1}}{\left(1+|z|^{2}\right)^{(n-1) / 2}\left(1+|w|^{2}\right)^{(n-1) / 2}}
$$

A determinantal form

We have that the matrix

$$
\left(\begin{array}{ccc}
\overline{q_{1}\left(z_{1}\right)} & \cdots & \overline{q_{n}\left(z_{1}\right)} \\
\vdots & \ddots & \vdots \\
\overline{q_{1}\left(z_{n}\right)} & \cdots & \overline{q_{n}\left(z_{n}\right)}
\end{array}\right)\left(\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & \ddots & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & \ddots & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right)
$$

A determinantal form

We have that the matrix

$$
\left(\begin{array}{ccc}
\overline{q_{1}\left(z_{1}\right)} & \cdots & \overline{q_{n}\left(z_{1}\right)} \\
\vdots & \ddots & \vdots \\
\frac{q_{1}\left(z_{n}\right)}{} & \cdots & \overline{q_{n}\left(z_{n}\right)}
\end{array}\right)\left(\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & \ddots & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right)=\left(\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & \ddots & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right)
$$

Thus

$$
\left|\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right|=\left|\begin{array}{ccc}
q_{1}\left(z_{1}\right) & \cdots & q_{1}\left(z_{n}\right) \\
\vdots & & \vdots \\
q_{n}\left(z_{1}\right) & \cdots & q_{n}\left(z_{n}\right)
\end{array}\right|^{2}
$$

Therefore the spherical ensemble generates a determinantal point process.

Weak convergence of empirical measure

Given a realization z_{1}, \ldots, z_{n} of the random point process we denote by $\mu_{n}=\frac{1}{n} \sum_{i} \delta_{z_{i}}$ to the empirical measure. We take a sequence $\mu_{n}, n=1,2, \ldots$ of independent point process of the spherical ensemble. The normalized measure on the sphere is denoted by μ.

Weak convergence of empirical measure

Given a realization z_{1}, \ldots, z_{n} of the random point process we denote by $\mu_{n}=\frac{1}{n} \sum_{i} \delta_{z_{i}}$ to the empirical measure. We take a sequence $\mu_{n}, n=1,2, \ldots$ of independent point process of the spherical ensemble. The normalized measure on the sphere is denoted by μ.
Theorem
With probability one $\mu_{n} \xrightarrow{*} \mu$. More precisely the Kantorovich-Wasserstein distance $K W_{1}\left(\mu_{n}, \mu\right) \lesssim \frac{\log n}{\sqrt{n}}$ with probability one.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the $K W_{1}$ distance between two probability measures μ and ν supported in K as

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y)
$$

where ρ is an admissible probability measure, i.e. the marginals of ρ are μ and ν respectively.

The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the $K W_{1}$ distance between two probability measures μ and ν supported in K as

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d \rho(x, y)
$$

where ρ is an admissible probability measure, i.e. the marginals of ρ are μ and ν respectively. Alternatively:

$$
K W_{1}(\mu, \nu)=\inf _{\rho} \iint_{K \times K} d(x, y) d|\rho|(x, y)
$$

where ρ is an admissible complex measure, i.e. the marginals of ρ are μ and ν respectively

The Lagrange functions

Given any sequence of points $\left(z_{1}, \ldots, z_{n}\right)$ we define the Lagrange functions:

Clearly $\ell_{j} \in P_{n}$ and $\ell_{j}\left(z_{i}\right)=0$ if $i \neq j$ and $\ell_{j}\left(z_{j}\right)=1$.

Lagrange functions and the density function

We have that the joint distribution of $\left(z_{1}, \ldots, z_{n}\right)$ is given by the density (with respect to the spherical measure $d \mu\left(z_{1}\right) \cdots d \mu\left(z_{n}\right)$):

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\left|\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right|
$$

Lagrange functions and the density function

We have that the joint distribution of $\left(z_{1}, \ldots, z_{n}\right)$ is given by the density (with respect to the spherical measure $d \mu\left(z_{1}\right) \cdots d \mu\left(z_{n}\right)$):

$$
\rho_{n}\left(z_{1}, \ldots, z_{n}\right)=\left|\begin{array}{ccc}
K_{n}\left(z_{1}, z_{1}\right) & \cdots & K_{n}\left(z_{1}, z_{n}\right) \\
\vdots & & \vdots \\
K_{n}\left(z_{n}, z_{1}\right) & \cdots & K_{n}\left(z_{n}, z_{n}\right)
\end{array}\right|
$$

and

$$
\left|\ell_{j}(z)\right|^{2}=\frac{\rho_{n}\left(z_{1}, \ldots, z, \ldots, z_{n}\right)}{\rho_{n}\left(z_{1}, \ldots, z_{j}, \ldots, z_{n}\right)}
$$

The transport plan

Consider the transport plan

$$
p(z, w)=\frac{1}{n} \sum_{j=1}^{n} \delta_{z_{j}}(w) K_{n}\left(z, z_{j}\right) \ell_{j}(z) d \mu(z)
$$

It has the right marginals $\frac{1}{n} \sum \delta_{z_{j}}$ and μ respectively and thus

$$
K W_{1}\left(\mu_{n}, \mu\right) \leq \iint|z-w| d|p| \leq \frac{1}{n} \sum_{j=1}^{n} \int d\left(z, z_{j}\right)\left|\ell_{j}(z)\right|\left|K_{n}\left(z, z_{j}\right)\right| d \mu(z)
$$

Estimating the K-W distance

$$
\begin{aligned}
& \left(\mathbb{E} K W_{1}\right)^{2} \leq \\
& \int_{\mathbb{C}^{n}} \frac{1}{n} \sum_{j=1}^{n}\left(\int_{\mathbb{C}} d\left(z, z_{j}\right)\left|\ell_{j}(z)\right|\left|K_{n}\left(z, z_{j}\right)\right| d \mu(z)\right)^{2} \frac{\rho_{n}\left(z_{1}, \ldots, z_{n}\right)}{n!} \leq \\
& \int_{\mathbb{C}^{n}} \frac{1}{n} \sum_{j=1}^{n}\left(\int_{\mathbb{C}} d\left(z, z_{j}\right)^{2}\left|K_{n}\left(z, z_{j}\right)\right| \int_{\mathbb{C}}\left|\ell_{j}(z)\right|^{2}\left|K_{n}\left(z, z_{j}\right)\right|\right) \frac{\rho_{n}\left(z_{1}, \ldots, z_{n}\right)}{n!} .
\end{aligned}
$$

Off diagonal decay of the reproducing kernel

It is easy to see that

$$
\sup _{w \in \mathbb{C}} \int_{\mathbb{C}}|z-w|^{2}\left|K_{n}(z, w)\right| d \mu(z) \leq C / n
$$

and

$$
\sup _{w \in \mathbb{C}} \int_{\mathbb{C}}\left|K_{n}(z, w)\right| d \mu(z) \leq C
$$

Off diagonal decay of the reproducing kernel

It is easy to see that

$$
\sup _{w \in \mathbb{C}} \int_{\mathbb{C}}|z-w|^{2}\left|K_{n}(z, w)\right| d \mu(z) \leq C / n
$$

and

$$
\sup _{w \in \mathbb{C}} \int_{\mathbb{C}}\left|K_{n}(z, w)\right| d \mu(z) \leq C .
$$

because

$$
\begin{aligned}
\left|K_{n}(z, w)\right|^{2} & =n^{2}\left(1-\frac{|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\right)^{n-1} \leq \\
& \leq K n^{2} \exp \left(-C n \frac{|z-w|^{2}}{\left(1+|z|^{2}\right)\left(1+|w|^{2}\right)}\right)
\end{aligned}
$$

The final estimate

$$
\begin{array}{r}
\left(\mathbb{E} K W_{1}\right)^{2} \leq \frac{C}{n} \int_{\mathbb{C}^{n}} \frac{1}{n} \sum_{j=1}^{n} \int_{\mathbb{C}}\left|\ell_{j}(z)\right|^{2}\left|K_{n}\left(z, z_{j}\right)\right| \frac{\rho_{n}\left(z_{1}, \ldots, z_{j}, \ldots, z_{n}\right)}{n!}= \\
\frac{C}{n} \int_{\mathbb{C}^{n}} \frac{1}{n} \sum_{j=1}^{n} \int_{\mathbb{C}}\left|K_{n}\left(z, z_{j}\right)\right| \frac{\rho_{n}\left(z_{1}, \ldots, z, \ldots, z_{n}\right)}{n!} \leq \frac{C}{n} .
\end{array}
$$

A concentration of measure

We want to study now the empirical measure. For determinantal process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a Lipschitz-1 functional on finite counting measures (with respect to the total variation distance). Then

$$
\mathbb{P}(f-\mathbb{E} f \geq a) \leq 3 \exp \left(-\frac{a^{2}}{16(a+2 n)}\right)
$$

A concentration of measure

We want to study now the empirical measure. For determinantal process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a Lipschitz-1 functional on finite counting measures (with respect to the total variation distance). Then

$$
\mathbb{P}(f-\mathbb{E} f \geq a) \leq 3 \exp \left(-\frac{a^{2}}{16(a+2 n)}\right)
$$

The functional $f(\sigma)=n K W_{1}\left(\frac{1}{n} \sigma, \mu\right)$ is Lipshchitz-1.

Almost sure convergence

To finish take $a=10 \sqrt{n \log (n)}$, then

$$
\begin{aligned}
\mathbb{P}\left(K W_{1}\left(\mu_{n}, \mu\right)\right. & \left.>\frac{11 \sqrt{\log (n)}}{\sqrt{n}}\right) \leq \\
& 3 \exp \left(-\frac{100 n \log (n)}{16(10 \sqrt{n \log (n)}+2 n)}\right) \lesssim \frac{1}{n^{2}} .
\end{aligned}
$$

Almost sure convergence

To finish take $a=10 \sqrt{n \log (n)}$, then

$$
\begin{aligned}
\mathbb{P}\left(K W_{1}\left(\mu_{n}, \mu\right)\right. & \left.>\frac{11 \sqrt{\log (n)}}{\sqrt{n}}\right) \leq \\
& 3 \exp \left(-\frac{100 n \log (n)}{16(10 \sqrt{n \log (n)}+2 n)}\right) \lesssim \frac{1}{n^{2}}
\end{aligned}
$$

Now a standard application of the Borel-Cantelli lemma shows that with probability one

$$
K W_{1}\left(\mu_{n}, \mu\right) \leq \frac{10 \sqrt{\log n}}{\sqrt{n}}
$$

Application

There is an open question by Smale: Can one find $X=\left(x_{1}, \ldots, x_{N}\right) \subset \mathbb{S}^{2}$ such that $\mathcal{E}(X)-m_{N} \leq c \log N, c$ a universal constant?
Here $\mathcal{E}(X)=-\sum_{i \neq j} \log \left\|x_{i}-x_{j}\right\|$ and $m_{N}=\min _{X \subset \mathbb{S}^{2}} \mathcal{E}(X)$.

Application

There is an open question by Smale: Can one find $X=\left(x_{1}, \ldots, x_{N}\right) \subset \mathbb{S}^{2}$ such that $\mathcal{E}(X)-m_{N} \leq c \log N, c$ a universal constant?
Here $\mathcal{E}(X)=-\sum_{i \neq j} \log \left\|x_{i}-x_{j}\right\|$ and $m_{N}=\min _{X \subset \mathbb{S}^{2}} \mathcal{E}(X)$.
The best known estimates of m_{N} are

$$
m_{N}=\left(\frac{1}{2}-\log 2\right) N^{2}-\frac{N \log N}{2}+C_{N} N
$$

where $-0.22553754 \leq \lim \inf C_{N} \leq \lim \sup C_{N} \leq-0.0469945$.
The spherical ensemble provides a good candidate as they can be constructed with N^{3} operations.

Theorem (Alishahi and Zamani)

$$
\mathbb{E} \mathcal{E}\left(P_{1}, \ldots, P_{N}\right)=
$$

$$
=\left(\frac{1}{2}-\log 2\right) N^{2}-\frac{1}{2} N \log N+\left(\log 2-\frac{\gamma}{2}\right) N-\frac{1}{4}+O\left(\frac{1}{N}\right)
$$

Here, γ is the Euler constant.
This is close to the best known estimates.

