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Definition
A determinantal point process A is a random point process such
that the joint intensities have the form:

pn(le . 7Xn) = det(K(Xia Xj)i,jﬁn)'
Recall that the joint intensities py satisfy:

E Z f(Xl,...,Xk):/f(X,‘,...,Xk)pk(X,',...,Xk)

X1y, Xk EA

for any f symmetric bounded and of compact support.
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Determinantal process: the origin

They were systematically studied at the end of 70's by Macchi
because they are a good model for fermions:

In quantum mechanics the position of a particle is represented by a
wave function 1 such that [ |1)|?> = 1. If we have n independent
particles, the global system is defined by a global wave functionn
V(x1,...,Xn). If we want to model fermions by Pauli exclusion
principle the composite wave function must be antysimetric in the
different variables. This suggests

U = cdet(vi(x;))

Then
W[? = cfy det(K(x;, x;))

where K(x,y) = > ¢i(x)¢;(y)
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General facts

If the point process has n points almost surely then the kernel K
defines an integral operator: the orthogonal projection onto a
subspace of L2 of dimension n.

In general

Theorem (Macchi, Soshnikov)

An hermitic kernel K(x,y) corresponds to a determinantal point
process if and only if the integral operator T : L2 — L2 has all
eigenvalues \ € [0, 1].

Moreover:

Theorem (Shirai, Takahashi)

In a determinantal process, the number of points that fall in a
compact set D has the same distribution as a sum of independent
Bernoulli(A\P)) random variables where AP are the eigenvalues of
the operator T restricted to D.
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Determinantal processes everywhere

This algebraic structure is very prevalent. Some notorious
examples of determinantal point processes:

>

>

Some physical models of fermions. (Macchi, Soshnikov)

The eigenvalues of random matrices: The GUE ensemble, the
CUE ensemble, the Ginibre ensemble (Wigner, Weyl and
Dyson, Ginibre)

Zeros of random polynomials of type ) a,z"” where a, are
i.i.d. random variables with distribution Ng¢(0,1). (Peres and
Virag)

Non-intersecting random walks (Karlin and Mc Gregor)

Uniform spanning trees (Burton and Pemantle) and
(Benjamini, Lyons, Peres and Schramm)



Random matrices, the Ginibre ensemble

The Ginibre ensemble is the spectrum of an n x n random matrix
with i.i.d entries with N(0, 1) entries. The joint distribution of the
eigenvalues is given by the law:

N 1 N
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Random matrices, the Ginibre ensemble

The Ginibre ensemble is the spectrum of an n x n random matrix
with i.i.d entries with Ng(0, 1) entries. The joint distribution of the
eigenvalues is given by the law:

N 1 N
I 1L [T1z — z*dm(2)
k=1 i=1

j<k
This is determinantal if we observe

e\z > et N2 ek
_ t — t i\ Zj
H L1z — ad? = Idet(z] = =) = det(K (2. )

Jj<k

where K(z,w) =), @eﬂZP/Zef\leﬂ_



Ginibre ensemble

A typical instance is:
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Thus, typically the eigenvalues lie in a disk of radious y/n. If one
rescales /n Ginibre proved that almost surely:

1 Z(g =1
n & (\i/vm) = XD(01)



Spherical ensembles

Krishnapur considered the following point process: Let A, B be n
by n random matrices with i.i.d. Gaussian entries. Then he proved
that the generalized eigenvalues associated to the pair (A, B), i.e.
the eigenvalues of A~1B have joint probability density (wrt

Lebesgue measure):

n

1 2
Gl (11 |z2) 11z -2
i<j

k=1



Spherical ensembles

Krishnapur considered the following point process: Let A, B be n
by n random matrices with i.i.d. Gaussian entries. Then he proved
that the generalized eigenvalues associated to the pair (A, B), i.e.
the eigenvalues of A~1B have joint probability density (wrt
Lebesgue measure):

Ch H 1+|z (1+ [zt H’Z' -

If we consider the stereographic projection to the sphere S?, then
the joint density (with respect to the product area measure in the
sphere) is

K ][ 1IP; = Pillz.

i<j



Spherical ensemble dimension: 3200




Spherical ensemble 25281 points




The space of functions

Let P, be the space functions defined as

P(2)
(1 +[z[2)(=1)/27

q(z) =

where p is a polynomial of degree less than n. Clearly P, C L?(u),
where du(z) = 1/(1+ |z[?)2. It is a reproducing kernel Hilbert
space. lIts reproducing kernel is

(14 zw)"1
(L 2P0 D72(1 1 w72

Kn(z,w) =



A determinantal form

We have that the matrix

q1(z1) - qn(z1) (q1(21) Q1(Zn)> <Kn(21721) Kn(Z1,zn)>
atr ) Nator i) \ ko -



A determinantal form
We have that the matrix
qi(z1) - aqn(z1) (q1(21) th(Zn)) <Kn(21721) Kn(Z1,Zn)>
az) -~ an(z)) Nan@) - an(zn) KnZnz1) = Ka(zn.20)
Thus

K(zi,21) - Ki(zz)|  |a(z) - aulza)|?

Ko(zoz1) - Ka(zooza)|  |an(z1) - Golzn)

Therefore the spherical ensemble generates a determinantal point
process.



Weak convergence of empirical measure

Given a realization z,. .., z, of the random point process we
denote by pu, = %Ziéz,- to the empirical measure. We take a
sequence u,, n=1,2,... of independent point process of the
spherical ensemble. The normalized measure on the sphere is

denoted by p.



Weak convergence of empirical measure

Given a realization z,. .., z, of the random point process we
denote by pu, = %Ziéz,- to the empirical measure. We take a
sequence u,, n=1,2,... of independent point process of the

spherical ensemble. The normalized measure on the sphere is
denoted by p.

Theorem
With probability one pu, — p. More precisely the
Kantorovich-Wasserstein distance KW (fn, 1) < 'f%’ with

~

probability one.



The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the KW, distance
between two probability measures p and v supported in K as
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where p is an admissible probability measure, i.e. the marginals of
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The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the KW, distance
between two probability measures p and v supported in K as

KWy (i, v) mf// d(x,y)dp(x,y),

where p is an admissible probability measure, i.e. the marginals of
p are p and v respectively. Alternatively:

KW (1, v mf// d(x,y)dlpl (x. ).

where p is an admissible complex measure, i.e. the marginals of p
are p and v respectively



The Lagrange functions

Given any sequence of points (zi, ..., z,) we define the Lagrange

functions:
CI1(21) CI1(Z) q1(z,,)

an(21) =+ an(2) - an(zn)
qi(z1) - qi(z) - qi(zn)

li(z) =

an(z1) - qn(z) - an(zn)
Clearly ¢; € P, and £j(z;) =0if i #j and {;(z)) = 1.




Lagrange functions and the density function

We have that the joint distribution of (z1, ..., z,) is given by the
density (with respect to the spherical measure dyu(z;) - - - du(z,)):
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Lagrange functions and the density function

We have that the joint distribution of (z1, ..., z,) is given by the
density (with respect to the spherical measure dyu(z;) - - - du(z,)):

Kn(zlazl) T Kn(zlazn)
,On(Zl,---,Zn): )
Kn(znvzl) s Kn(znyzn)

and

10(2)2 = p,,(zl,...,z,...,z,,).
! pn(zla---vzjw"vzn)



The transport plan

Consider the transport plan
254 Kn(z, 2)){j(2) dpu(2)-

It has the right marginals % 2.0z and p respectively and thus

KWiiunop) < [ [ lz-widlol < Z/ (2. )62 [Ka(z. 5)Id2).



Estimating the K-W distance

<
/Cn % z": (/C d(27Zj)!fj(Z)HKn(z,zj)\du(z)>2 p(Zl,,|Z) <
(

' Z,Z i\z z,2j M
[ oeaP it )| [ 1 Klez)) Lo



Off diagonal decay of the reproducing kernel

It is easy to see that
sup/ |z — wl?|Kp(z,w)|du(z) < C/n,
weCJC

and

sup/ |Kn(z, w)|du(z) < C.
weCJC



Off diagonal decay of the reproducing kernel

It is easy to see that

sup [ 2= wllKo(z w)ldu(z) < C/n.
weC JC

and

sup/ |Kn(z, w)|du(z) < C.
weCJC

because
2 n—1
K z,W2:n2<1— |z = w] > <
[Kolz, ) AP+ wp)) =

2
< K2 _ |z — wl _
<K exp ( T 1B 1 W)




The final estimate

nl

C 1o on(z1,...,2,..., 2 C
I S A e
(Cnnj:1 C n: n

C 1< on(z1, .02,y 2n)
(EKW)? < © / Iy / 10(2)P Knl2, 2)] J -
n Cn nj:1 C




A concentration of measure

We want to study now the empirical measure. For determinantal
process we have:

Theorem (Pemantle-Peres)

Let Z be a determinantal point process of n points. Let f be a
Lipschitz-1 functional on finite counting measures (with respect to
the total variation distance). Then

2
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2

The functional f(o) = nkKW (Lo, 1) is Lipshchitz-1.



Almost sure convergence

To finish take a = 10/nlog(n), then

11 \I;g(n)) <

1 | 1
3exp (_ 00nlog(n) ) < =

16(104/nlog(n) + 2n)

P(KWA(jins 1) >




Almost sure convergence

To finish take a = 10/nlog(n), then

P(le(un,u) > HI\/C%g(")) <
Jexo | — 100nlog(n) <1
P 16(10+/nlog(n) +2n) ) ~ n*

Now a standard application of the Borel-Cantelli lemma shows that
with probability one

10+/log n
KWi (i, p) < ——F=—.



Application

There is an open question by Smale: Can one find

X = (x1,...,xn) C S? such that £(X) — my < clogN, c a
universal constant?

Here £(X) = —>_,.; log|lxi — x;|| and my = minxg2 E(X).



Application

There is an open question by Smale: Can one find

X = (x1,...,xn) C S? such that £(X) — my < clogN, c a
universal constant?

Here £(X) = —>_,.; log|lxi — x;|| and my = minxg2 E(X).
The best known estimates of my are

1
my = (5 - log 2)N? —

where —0.22553754 < liminf Cy < limsup Cy < —0.0469945.
The spherical ensemble provides a good candidate as they can be
constructed with N3 operations.



Theorem (Alishahi and Zamani)

EE(Py,...,Py) =

1 1 ~ 1 1
— (2 _log2) N2 = ZNlog N <| 2——>N—— o=
(2 og) 3 og NV + [ log > 4—|— (N)

Here, ~y is the Euler constant.

This is close to the best known estimates.



