Recovering sparse high dimensional data:

how to do it in the cheapest possible way?
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Let g € Rd, where d is meant to be large (100, 1000, 106, etc.)

Our problem: We want to acquire xg with the smallest possible
number of linear measurements.



Mathematically speaking

- One considers zg € R? (unknown)

- One makes m linear measurements of zqg: (a1, xq),. .., (am, o).
ai

That is, one observes Axg € R™, where A = : c Rmxd,
am

Notations that will be used throughout the talk:

- d is the ambient dimension

- m is the number of measurements

- A e Rm™Xd is the measurement matrix




Problem: ‘I give you A and Azxzg. Are you able to recover zg?".

If m < d, we are dealing with an undetermined system, so there
IS NOo hope to provide a positive answer.



Extra assumption: zg is s-sparse, that is, at most s of its entries
are nonzero.
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Questions:
- is such an assumption realistic in practice? (which practice?)

- what is the gain of doing such an assumption?



Example 1: pictures taken with smartphones

- Assume xzg encodes a picture of size n x m, e.g. n = 3456,
m = 4608 = d~ 1,6 x 10’

- Each entry of xg has a value between
0 (black) and 15 (white), depending
on the luminosity at the corresponding
pixel

- g itself is not sparse. But Z; € R¢
defined as Zg(k) = zg(k) —xg(k—1) (2 <
k < d) is. And if you know Zzg, you
Know xg.




Example 2: group testing.

- Consider a population of d persons (d large), of which a small
proportion (representing, say, s << d persons) is sick.

- Suppose one can determine whether a given person is sick or
healthy by means of a blood test. Taking blood is easy, but
testing it is costly (in time or in money).



- We want to find all the sick persons.

- The first (bad!) idea is to test each person individually. It
would lead to d blood tests to only find s sick persons.

- There is in fact a much better strategy to apply!



- Mathematically speaking, we can model the situation by means
of an (unknown) string zg € {0,1}%¢ with at most s ones in it.

- We are allowed to test any subset S C [d] of the indices. The
answer to the test tells whether z¢(z) =0 for all i € S or not.

- Subdividing into two groups of ‘same’ cardinality at each step,
we can find all the ones in about |slog, d| steps.




Example 4: Seismology

Example 5: High-resolution radar

ny IN ADC our]|
Example 6: Analog-to-digital converters C




Extra assumption: zg is s-sparse, that is, at most s of its entries
are nonzero.
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Questions:
- is such an assumption realistic in practice? YES

- what is the gain of doing such an assumption?



What is the gain of assuming sparsity?

In the two papers

- E. Candés, J. Romberg, and T. Tao. "“Robust Uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information.” IEEE Trans. Information Theory, 2006

- D. Donoho. “Compressed sensing.” IEEE Trans. Information
Theory, 2006

a new method was released, allowing one to significantly reduce
the number of measurements that are actually needed to re-
cover a sparse signal., and giving raise to a entirely new fields of
research, the ‘Compressed sensing' .



- One considers xg € R4 (unknown) and one assumes it is s-sparse

- One makes m linear measurements of xg. That is, one observes
ai
Axg € R™, where A = : c Rmxd,

am,

- Can we ‘reconstruct’ xg from Axg? If yes:
* what is the minimal value required for m?

* how to choose the matrix A7



Proposition. Assume that m > 2s and that any 2s raws of A
are linearly independent (such a matrix is easy to build). Then,
any s-sparse vector zg € R? can be uniquely recovered from the
knowledge of A and of Axg € R™.

Proof. If zp and z are both s-sparse, then their difference zg—x}
is 2s-sparse. If, furthermore, they satisfy A:z;6 = Axq, then 336 = xp
necessarily. y

If the conditions of the proposition are satisfied, to recover x
from A and Axzg we are thus left to solve a minimization problem:

(Po) : min |z|lg subject to Ax = Axg,

where ||z||g is the cardinality of the support of .



Is the problem (already) over?

- In order to solve (FPj), we have to consider all the possible
supports for g and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have

to solve (1(1)80> > 1020 linear systems of size 10 x 10. Each such

system can be solved in 10710 seconds. Then, the time required
to solve (P,) is around 1019 seconds, i.e., more than... 300 years!



- What is easy and quick, contrary to (Fp), is to solve

(P) : min |z|[> subject to Az = Axy.

- Indeed (least square method): one can check that the solution
of (P,) is explicitely given by x =tA(A*A)~1Axy.




Unfortunately, especially in high dimension, the solution = of (P5)
is likely to be very far away from the expected solution zg.

So, despite being easy to implement, this approach is of no help
to solve our problem.




We have to find another ideal

BO&®++

0<p<l =

" Use the /1 norm, that is, consider

(P1) : min |z||1 subject to Ax = Axy.

In practice, one can solve (P;) by using the simplex algorithm,
which is quick and efficient!



Why does it work?

N



A famous and representative result in the theory of compressed
sensing is the following theorem (or “how to solve a deterministic
problem by introducing randomness")

Theorem (a la Candés, Romberg and Tao). Consider an in-
teger m > 2@slogd + s where 8 > 1 is fixed. Assume that
A e M,,«4(R) is Gaussian, more precisely that its entries are
independent N(0,1/m) random variables. Finally, let g be an
s-sparse vector of RY, Then, with probability at least

2
df(B,s)’
one has that xg is the unique minimizer to the program

1

(P1) : min |z||1 subject to Ax = Axy.

2
The fonction f is given by f(3,s) = [\/2’% + B — \/zzé] . Itisincreasing

in s (for fixed B8) and in B (for fixed s).



A classical experiment (following Donoho and Tanner)
- Fix a large d, say d = 100.

- Consider a pair (s,m) € {1,...,d}* (the values for s and m will
then vary).

- Pick a s-sparse vector zg € R? at random.

- Compute Azxg with A € M,, 4(R) a random Gaussian matrix.
Apply the simplex algorithm. If you (don't) get zg, then consider
it is a success (failure).

- For each possible value of s and m, repeat this experiment 10
times, and color the point of coordinates (s, m) with the rule:

10 successes — ... bsuccesses — e ... NO sSUCCeSS — o



number of Gaussian measurements

m=
8

s = number of nonzeros in X

One observes a strong phase transition. The equation for the
boundary is very close to m = 2slog(d/s)+2s and, as such, agrees
with Candes, Romberg and Tao’'s result.



An observation (Gaussian vs Cauchy measurements)

number of Gaussian measurements
number of Cauchy measurements

nr
=
m

30 40 50 &0 40 50 &0

s = number of nonzeros in x s = number of nonzeros in x




In order to understand the previous threshold phenomenon (in
the Gaussian case only), we will analyze it in a more general
framework.

It will require different mathematical tools, mainly coming from
three distinct areas:

* Gaussian analysis
* geometry of convex cones

* concentration of measure

- D. Amelunxen, M. Lotz, M.B. McCoy, and J.A. Tropp. "Living on the
eddge: phase transitions in convex programs with random data.” Inform.
Inference, to appear.

- M.B. McCoy and J.A. Tropp. “From Steiner formulas for cones to
concentration of intrinsic volumes’’. Discrete Comput. Geom., 2014.



Let f:RY — RU{+oco} be a convex function and let us consider
the minimization problem:

(P) : min f(x) subject to Ax = Axy.

Definition. The descent cone of f at zg is D(f,zg) = {y € R% :
I > 0 s.t. f(zo+ 7y) < f(zo)}-

X0

{x: f(x) = f(x0)}

x0+@(fyx0)



Fact 1. One has that zqg is the unique solution to (P) if and
only if D(f,xzg) Nnull(A) ={0}. (nullA = kerA)

xo +null(A) Xxo +null(A)

{x: f(x) = f(x)}

xo+2(f,x0) X0+ 2(f,x0)

Fact 2. Since A is Gaussian, its law is invariant by any orthogo-
nal transformation. As a result, null(A) is distributed as QL4_,,,,
where Q is chosen at random in O(d) and L,_,, C R stands for
any (fixed) subspace of dimension d — m.



After translation by —xg, our problem can be interpreted as a
question coming from stochastic geometry.

Problem: A closed convex cone C and a subspace L, ,, C R¢
of dimension d — m being given, compute the probability that

CNQLg_yp # {0}7
where @Q is chosen at random in O(d).



Towards the Crofton formula (polyhedral case)

% - %7 ’Ul(C) — %7 ’UQ(C) — %

Let I : RY — C be the projection onto the polyhedral cone C.
Define the intrinsic volumes {vy(C)}g—o... 4 Of C as

vi.(C') = P{lMc(g) belongs to k-dimensional face of C},

where g denotes a standard Gaussian vector of R¢.



One has

P(blue conen Q(red line) # {0}) =2 ar;lg%lle

= 2uv(C)



Crofton’s formula. Provided C is not a subspace, one has
d

PCAQLim#{0}) = 2 Y u(C)
jr1 Even

= 2un41(C) + 2vp43(C) + - . ..



Intrinsic volumes of a closed convex cone are positive and sum
to 1. One can therefore consider a random variable V. defined
as

P(Vo=k)=v,(C), k=0,1,...,d.

And by playing a little bit with the Crofton’'s formula and the
definition of V7, one obtains the ‘interlacing property’:

P(Voe <m—1) < P(CNQLg_p, = {0}) < P(Vo < m).

Thus: | P(xg is the unique solution of (P)) =~ P(Vo < m)|




We are now left to study P(Vo <m). To do so, we shall rely on
a last and final ingredient, the Master Steiner Formula of McCoy
and Tropp (2013).

This formula is particularly useful in our context, as it provides
a clear bridge between the abstract random variable V- and the
concrete random variable ||[l~(g)||%, where M is the projection
onto the cone C and g ~ N(0, ;).

It is our gateway towards classical results of concentration of
measure (Talagrand, Ledoux, ...). By pushing this idea fur-
ther, one can mathematically prove the phase transition (see
Amelunxen et al. and McCoy and Tropp).

In this talk and from now on, we won't interested in bounds but,
instead, in exact asymptotic for P(Vo <m) (— CLT)



Master Steiner Formula (McCoy, Tropp) Let Mg : R — C be
the projection onto the closed convex cone C. Let g~ N(0,1,).
Let ¢ : Ry — R4 be a measurable function. One has

d
Ele(INc(@)19)] = Y Ele(Xp)]P(Ve = k),
k=0

where X, is distributed according to the X2 law with k degrees
of freedom.

|
Otherwise stated, |||Na(g)]]? (1aw) Z 77@ where n1,m2,...~ N(0,1)

are independent and also independent from V.

Corollary/Definition: Statistical dimension §- of a closed con-
vex cone C is defined as E[|Na(g)||°] = E[Vc].



Another corollary of the Master Steiner Formula is that

E[enVC] — E[efﬂﬂc(g)ﬂz], with & = %(1 _ 6—277),

An interesting consequence is the following. If C; is a sequence
of closed convex cone of R? such that E(Ve,) = é¢, — oo and
liminfVar(Ve,)/dc, > 0 as d — oo, then

INc,(8)I1% = dc,
\/Var(||”cd(g)||2)

Ve, — dc,
\/Var(VCd)

> N(0,1) iff — N(0,1).



Theorem (Goldstein, Nourdin, Peccati). Let zy € RY, let f :
R? — RU {40} be a convex function and let C = {y € R?: 37 >
0 such that f(zg+ 7y) < f(xg)} be the descent cone of f at xy.

Consider the minimization problem

(P) : min f(x) subject to Ax = Axg,
where A € M,,,4(R) is Gaussian (all its entries are independent

N(0,1) random variables) and where

m = 8¢ + ty/Var(Vg)), t € R]|

Suppose that E(Vgo) = ¢ — oo and that liminf Var(V)/dc > 0 as

d — oo.

Then, as d — oo,

P(xq is the unique solution of (P)) =

1 t
V2T /—ooe Vlog oc

2 1
~Z2du + O(———).




Reading the phase transition.

For instance, selecting m > do + 1.6\/Var(VC), one has

P(xq is the unique solution of (P)) > 0.95.

In contrast, for m < oo — 1.6\/Var(VC),

P(xq is the unique solution of (P)) < 0.05

It follows that the phase transition happens on an interval of
length 3.2\/Var(VC).

(Remark: A crude bound is Var(Vy) < 26¢.)



