
Recovering sparse highdimensional data:

how to do it in the cheapest possible way?

Ivan Nourdin (Université du Luxembourg)



Let x0 ∈ Rd, where d is meant to be large (100, 1000, 106, etc.)

Our problem: We want to acquire x0 with the smallest possible
number of linear measurements.



Mathematically speaking

- One considers x0 ∈ Rd (unknown)

- One makes m linear measurements of x0: 〈a1, x0〉, . . . , 〈am, x0〉.

That is, one observes Ax0 ∈ Rm, where A =

 a1
...
am

 ∈ Rm×d.

Notations that will be used throughout the talk:

- d is the ambient dimension

- m is the number of measurements

- A ∈ Rm×d is the measurement matrix



Problem: “I give you A and Ax0. Are you able to recover x0?”.

If m < d, we are dealing with an undetermined system, so there
is no hope to provide a positive answer.



Extra assumption: x0 is s-sparse, that is, at most s of its entries
are nonzero.

Questions:

- is such an assumption realistic in practice? (which practice?)

- what is the gain of doing such an assumption?



Example 1: pictures taken with smartphones

- Assume x0 encodes a picture of size n × m, e.g. n = 3456,
m = 4608 ⇒ d ' 1, 6× 107

- Each entry of x0 has a value between
0 (black) and 15 (white), depending
on the luminosity at the corresponding
pixel

- x0 itself is not sparse. But x̃0 ∈ Rd

defined as x̃0(k) = x0(k)−x0(k−1) (2 ≤
k ≤ d) is. And if you know x̃0, you
know x0.



Example 2: group testing.

- Consider a population of d persons (d large), of which a small
proportion (representing, say, s << d persons) is sick.

- Suppose one can determine whether a given person is sick or
healthy by means of a blood test. Taking blood is easy, but
testing it is costly (in time or in money).



- We want to find all the sick persons.

- The first (bad!) idea is to test each person individually. It
would lead to d blood tests to only find s sick persons.

- There is in fact a much better strategy to apply!



- Mathematically speaking, we can model the situation by means
of an (unknown) string x0 ∈ {0, 1}d with at most s ones in it.

- We are allowed to test any subset S ⊂ [d] of the indices. The
answer to the test tells whether x0(i) = 0 for all i ∈ S or not.

- Subdividing into two groups of ‘same’ cardinality at each step,
we can find all the ones in about s log2 d steps.



Example 3: Medical Resonance Imagery

Example 4: Seismology

Example 5: High-resolution radar

Example 6: Analog-to-digital converters
.......
....
..



Extra assumption: x0 is s-sparse, that is, at most s of its entries
are nonzero.

Questions:

- is such an assumption realistic in practice? YES

- what is the gain of doing such an assumption?



What is the gain of assuming sparsity?

In the two papers

- E. Candès, J. Romberg, and T. Tao. “Robust Uncertainty
principles: Exact signal reconstruction from highly incomplete
frequency information.” IEEE Trans. Information Theory, 2006

- D. Donoho. “Compressed sensing.” IEEE Trans. Information
Theory, 2006

a new method was released, allowing one to significantly reduce
the number of measurements that are actually needed to re-
cover a sparse signal., and giving raise to a entirely new fields of
research, the ‘Compressed sensing’ .



- One considers x0 ∈ Rd (unknown) and one assumes it is s-sparse

- One makes m linear measurements of x0.That is, one observes

Ax0 ∈ Rm, where A =

 a1
...
am

 ∈ Rm×d.

- Can we ‘reconstruct’ x0 from Ax0? If yes:

* what is the minimal value required for m?

* how to choose the matrix A?



Proposition. Assume that m ≥ 2s and that any 2s raws of A
are linearly independent (such a matrix is easy to build). Then,
any s-sparse vector x0 ∈ Rd can be uniquely recovered from the
knowledge of A and of Ax0 ∈ Rm.

Proof. If x0 and x′0 are both s-sparse, then their difference x0−x′0
is 2s-sparse. If, furthermore, they satisfy Ax′0 = Ax0, then x′0 = x0

necessarily.

If the conditions of the proposition are satisfied, to recover x0

from A and Ax0 we are thus left to solve a minimization problem:

(P0) : min
x
‖x‖0 subject to Ax = Ax0,

where ‖x‖0 is the cardinality of the support of x.



Is the problem (already) over?

- In order to solve (P0), we have to consider all the possible
supports for x0 and then to solve the corresponding systems.

- For instance, suppose that d = 1000 and s = 10. We have
to solve

(
1000

10

)
≥ 1020 linear systems of size 10 × 10. Each such

system can be solved in 10−10 seconds. Then, the time required
to solve (P0) is around 1010 seconds, i.e., more than... 300 years!



- What is easy and quick, contrary to (P0), is to solve

(P2) : min
x
‖x‖2 subject to Ax = Ax0.

- Indeed (least square method): one can check that the solution
of (P2) is explicitely given by x = tA(AtA)−1Ax0.



Unfortunately, especially in high dimension, the solution x of (P2)
is likely to be very far away from the expected solution x0.

So, despite being easy to implement, this approach is of no help
to solve our problem.



We have to find another idea!

Use the `1 norm, that is, consider

(P1) : min
x
‖x‖1 subject to Ax = Ax0.

In practice, one can solve (P1) by using the simplex algorithm,
which is quick and efficient!



Why does it work?



A famous and representative result in the theory of compressed
sensing is the following theorem (or “how to solve a deterministic
problem by introducing randomness”)

Theorem (à la Candès, Romberg and Tao). Consider an in-
teger m ≥ 2βs log d + s where β > 1 is fixed. Assume that
A ∈ Mm×d(R) is Gaussian, more precisely that its entries are
independent N(0, 1/m) random variables. Finally, let x0 be an
s-sparse vector of Rd. Then, with probability at least

1−
2

df(β,s)
,

one has that x0 is the unique minimizer to the program

(P1) : min
x
‖x‖1 subject to Ax = Ax0.

The fonction f is given by f(β, s) =
[√

β
2s + β −

√
β
2s

]2
. It is increasing

in s (for fixed β) and in β (for fixed s).



A classical experiment (following Donoho and Tanner)

- Fix a large d, say d = 100.

- Consider a pair (s,m) ∈ {1, . . . , d}2 (the values for s and m will
then vary).

- Pick a s-sparse vector x0 ∈ Rd at random.

- Compute Ax0 with A ∈ Mm,d(R) a random Gaussian matrix.
Apply the simplex algorithm. If you (don’t) get x0, then consider
it is a success (failure).

- For each possible value of s and m, repeat this experiment 10
times, and color the point of coordinates (s,m) with the rule:

10 successes → • . . . 5 successes → • . . . no success → •



One observes a strong phase transition. The equation for the
boundary is very close to m = 2s log(d/s)+2s and, as such, agrees
with Candès, Romberg and Tao’s result.



An observation (Gaussian vs Cauchy measurements)



In order to understand the previous threshold phenomenon (in
the Gaussian case only), we will analyze it in a more general
framework.

It will require different mathematical tools, mainly coming from
three distinct areas:

* Gaussian analysis

* geometry of convex cones

* concentration of measure

- D. Amelunxen, M. Lotz, M.B. McCoy, and J.A. Tropp. ”Living on the
edge: phase transitions in convex programs with random data.” Inform.
Inference, to appear.

- M.B. McCoy and J.A. Tropp. “From Steiner formulas for cones to
concentration of intrinsic volumes” . Discrete Comput. Geom., 2014.



Let f : Rd → R ∪ {+∞} be a convex function and let us consider
the minimization problem:

(P ) : min
x
f(x) subject to Ax = Ax0.

Definition. The descent cone of f at x0 is D(f, x0) = {y ∈ Rd :
∃τ > 0 s.t. f(x0 + τy) ≤ f(x0)}.



Fact 1. One has that x0 is the unique solution to (P ) if and
only if D(f, x0) ∩ null(A) = {0}. (nullA = kerA)

Fact 2. Since A is Gaussian, its law is invariant by any orthogo-
nal transformation. As a result, null(A) is distributed as QLd−m,
where Q is chosen at random in O(d) and Ld−m ⊂ Rd stands for
any (fixed) subspace of dimension d−m.



After translation by −x0, our problem can be interpreted as a
question coming from stochastic geometry.

Problem: A closed convex cone C and a subspace Ld−m ⊂ Rd

of dimension d−m being given, compute the probability that

C ∩QLd−m 6= {0},

where Q is chosen at random in O(d).



Towards the Crofton formula (polyhedral case)

v0(C) = 1
2
− α

2Π
, v1(C) = 1

2
, v2(C) = α

2Π

Let ΠC : Rd → C be the projection onto the polyhedral cone C.
Define the intrinsic volumes {vk(C)}k=0,...,d of C as

vk(C) = P{ΠC(g) belongs to k-dimensional face of C},
where g denotes a standard Gaussian vector of Rd.



One has

P (blue cone ∩Q(red line) 6= {0}) = 2
angle

2Π
= 2v2(C)



Crofton’s formula. Provided C is not a subspace, one has

P (C ∩QLd−m 6= {0}) = 2
d∑

j=m+1
j−m−1 even

vj(C)

= 2vm+1(C) + 2vm+3(C) + . . . .



Intrinsic volumes of a closed convex cone are positive and sum
to 1. One can therefore consider a random variable VC defined
as

P (VC = k) = vk(C), k = 0, 1, . . . , d.

And by playing a little bit with the Crofton’s formula and the
definition of VC, one obtains the ‘interlacing property’:

P (VC ≤ m− 1) ≤ P (C ∩QLd−m = {0}) ≤ P (VC ≤ m).

Thus: P (x0 is the unique solution of (P)) ≈ P (VC ≤ m) .



We are now left to study P (VC ≤ m). To do so, we shall rely on
a last and final ingredient, the Master Steiner Formula of McCoy
and Tropp (2013).

This formula is particularly useful in our context, as it provides
a clear bridge between the abstract random variable VC and the
concrete random variable ‖ΠC(g)‖2, where ΠC is the projection
onto the cone C and g ∼ N(0, Id).

It is our gateway towards classical results of concentration of
measure (Talagrand, Ledoux, ...). By pushing this idea fur-
ther, one can mathematically prove the phase transition (see
Amelunxen et al. and McCoy and Tropp).

In this talk and from now on, we won’t interested in bounds but,
instead, in exact asymptotic for P (VC ≤ m) (→ CLT)



Master Steiner Formula (McCoy, Tropp) Let ΠC : Rd → C be
the projection onto the closed convex cone C. Let g ∼ N(0, Id).
Let ϕ : R+ → R+ be a measurable function. One has

E[ϕ(‖ΠC(g)‖2)] =
d∑

k=0

E[ϕ(Xk)]P (VC = k),

where Xk is distributed according to the χ2 law with k degrees
of freedom.

Otherwise stated, ‖ΠC(g)‖2 (law)
=

VC∑
i=1

η2
i , where η1, η2, . . . ∼ N(0, 1)

are independent and also independent from VC.

Corollary/Definition: Statistical dimension δC of a closed con-
vex cone C is defined as E[‖ΠC(g)‖2] = E[VC].



Another corollary of the Master Steiner Formula is that

E[eηVC ] = E[eξ‖ΠC(g)‖2
], with ξ = 1

2(1− e−2η).

An interesting consequence is the following. If Cd is a sequence
of closed convex cone of Rd such that E(VCd) = δCd → ∞ and
lim inf Var(VCd)/δCd > 0 as d→∞, then

VCd − δCd√
Var(VCd)

→ N(0, 1) iff
‖ΠCd(g)‖2 − δCd√

Var(‖ΠCd(g)‖2)
→ N(0, 1).



Theorem (Goldstein, Nourdin, Peccati). Let x0 ∈ Rd, let f :
Rd → R ∪ {+∞} be a convex function and let C = {y ∈ Rd : ∃τ >
0 such that f(x0 + τy) ≤ f(x0)} be the descent cone of f at x0.

Consider the minimization problem

(P ) : min
x
f(x) subject to Ax = Ax0,

where A ∈ Mm×d(R) is Gaussian (all its entries are independent

N(0, 1) random variables) and where m = bδC + t
√

Var(VC)c, t ∈ R .

Suppose that E(VC) = δC →∞ and that lim inf Var(VC)/δC > 0 as
d→∞.

Then, as d→∞,

P (x0 is the unique solution of (P)) =
1√
2π

∫ t
−∞

e−
u2

2 du+O(
1

√
log δC

).



Reading the phase transition.

For instance, selecting m ≥ δC + 1.6
√

Var(VC), one has

P (x0 is the unique solution of (P)) ≥ 0.95.

In contrast, for m ≤ δC − 1.6
√

Var(VC),

P (x0 is the unique solution of (P)) ≤ 0.05

It follows that the phase transition happens on an interval of
length 3.2

√
Var(VC).

(Remark: A crude bound is Var(VC) ≤ 2δC.)


