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Problem:
Given X1, ,X2, , . . . sequence of i. i. d. random variables with distribution function F ,
find the limit behavior of

Mn = max(X1, . . . ,Xn).

Concretely, we are interested in the case that the Xn have standard normal distribution.

We first give some some important results on Extreme value Theory.
A first easy result is:

Defining
xF = sup{x ∈ R : F (x) < 1} ≤ ∞

as the right endpoint of F , then

Mn −→ xF a. s..
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Indeed, for any ω ∈ Ω, Mn(ω) is an increasing sequence, so the limit

M(ω) := lim
n

Mn(ω)

exists (it can be +∞).
In order to identify the limit, first consider the case xF <∞. We have, for any x < xF

P{Mn ≤ x} =
(
F (x)

)n → 0,

so, Mn converges in law to xF (observe that P{Mn ≤ xF} = 1).
In the case xF =∞, we have that

P{M =∞} = lim
K→∞

P{M > K}.

But,
P{M > K} ≥ P{Mn > K} = 1− F (K )n −→ 1, as n→∞.
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The above result suggests us that in order to obtain a non degenerate limit, we must
suitably normalize the random variables Mn.
So, we will study the possible limit laws of

Mn − bn

an
,

that is, the limit of (
F (anx + bn)

)n

for some convenient sequences {an} and {bn}, that are called norming (or
normalizing) constants.
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The main result of EVT: Fisher-Tippet theorem

Theorem
If there exist norming constants an > 0 and bn ∈ R such that

Mn − bn

an
−→ H in law

then H belongs to the type of one of the three following distribution functions.
Fréchet:

Φα(x) =

{
exp{−x−α}, x > 0
0 x < 0. α > 0

Weybull-type:

Ψα(x) =

{
exp{−(−x−α)}, x < 0
1 x ≥ 0. (α > 0)

Gumbel:
Λ(x) = exp{−e−x}.
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Figure: Densities of the possible limit laws for the normalized maxima. Black
line: Gumbel density. Red line: Fréchet density.
Blue line: the Weibull-type density.
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Sketch of the proof

We have that for any t > 0

F [nt](a[nt]x + b[nt])→ H(x).

However
F [nt](anx + bn) =

(
F n(anx + bn)

)[nt]/n → H t (x).
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This implies that there exist functions γ(t) > 0, δ(t) satisfying that

lim
n→∞

an

a[nt]
= γ(t), lim

n→∞

bn − b[nt]

a[nt]
= δ(t)

and
H t (x) = H

(
γ(t)x + δ(t)

)
.

From this, it is not difficult to deduce the following functional equations for the
functions γ and δ:

γ(st) = γ(s)γ(t), δ(st) = γ(t)δ(s) + δ(t).

The solution of these functional equations leads to the three types Λ, Φα and Ψα.
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The domain of attraction of the Gumbel law

We are interested in the limit law of the maxima of standard normal distributions.
As in Central Limit Theorems, the three possible limit laws of the maxima have their
corresponding maximum domain of attraction.
It is known that the normal law belongs to the maximum domain of attraction of the
Gumbel distribution, this is because of the following results.

Definition
Von Mises function: Let F be a distribution function with right endpoint xF ≤ ∞.
Suppose that there exists some z ∈ [−∞, xF ) such that F has the representation

1− F (x) = C exp
{
−
∫ x

z

1
D(t)

dt
}
, z < x < xF ,

where C is some positive constant, D is a positive absolutely continuous function such
that

lim
x→xF

D′(x) = 0.

In this case, we say that F is a Von Misses function.
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Theorem
Suppose that the distribution function F is a von Mises function. Then, it belongs to
the domain of attraction of the Gumbel law.
Moreover, as norming constants, one can take

bn = F←(1− 1
n

), an = D(bn).

Here F← denotes the generalized inverse function of F .
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Representation of the standard normal distribution function as a von Mises function
We will use the habitual notations

φ(x) =
1√
2π

e−x2/2

Φ(x) =

∫ x

−∞
φ(t)dt .

We have that, in this case xΦ = +∞ and

1− Φ(x) = exp {log {1− Φ(x)}} = exp
{
−
∫ x

−∞

φ(t)
1− Φ(t)

dt
}

this gives that our function D is

D(t) =
1− Φ(t)
φ(t)

.

It is not difficult to see that
lim

x→∞
D′(x) = 0.
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This function D is the so called Mills ratio of the normal standard distribution, that in
what follows se will denote by M.
Applying the above theorem with this representation, we can take

bn = Φ−1(1− 1
n

) an = M(bn) =
1− Φ(bn)

φ(bn)
.
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In order to have other possibilities for the choice of the norming constants, we can use
the following general result on convergence in law, adapted to our situation.

Proposition

Suppose that
Mn − bn

an
→ G in distribution. If the sequences {a′n, n ≥ 1} and

{b′n, n ≥ 1} satisfy

lim
n

an

a′n
= 1 and lim

n

bn − b′n
an

= 0,

then
Mn − b′n

a′n
→ G in distribution.

(Here, we are denoting by G a random variable with Gumbel’s law).
And we can also make use of this other property.

Proposition
Let F be a distribution function right tail equivalent to Φ, that means,

lim
x→∞

1− Φ(x)

1− F (x)
= 1.

Then the norming constants of F and Φ can be taken equal.
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Properties of the Mills Ratio of the standard normal
distribution

In order to obtain other norming constants and for the proof of our result we need to
study the behavior of the Mills ratio.
On one hand, it is easy to see that

M ′(x) = xM(x)− 1,

and from this we obtain that for any n ≥ 1

M(n)(x) = Pn(x)M(x)−Qn(x),

with Pn polynomial of degree n, Qn with degree n − 1 and having both non negative
coefficients. This fact allows to find the asymptotical behavior of M (as x →∞).
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Properties of the Mills Ratio

On other hand,

M(x) =
1− Φ(x)

φ(x)
=

∫∞
x e−t2/2 dt

e−x2/2
=

∫ ∞
0

e−xt e−t2/2dt .

This expression gives the sign of the derivatives of M:

(−1)n M(n)(x) > 0, for all x .

Using this, one have
M ′(x) = xM(x)− 1 < 0

M ′′(x) = (1 + x2)M(x)− x > 0

that imply
x

x2 + 1
< M(x) <

1
x
,
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This gives the asymptotics

M(x) ∼ 1
x
, as x →∞,

That is,

1− Φ(x) ∼ 1
x
φ(x) =

1
x

1√
2π

e−x2/2 as x →∞.
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Other norming constants

We can take a distribution function F such that, for some x0 > 0, it satisfies

1− F (x) =
1
x

1√
2π

e−x2/2, x ≥ x0.

So, we have that

lim
x→∞

1− F (x)

1− Φ(x)
= 1.

By applying the general results on normalizing constants stated above, we can take b∗n
such that F (b∗n ) = 1− 1

n .
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Or equivalently, b∗n satisfying

1
b∗n

1√
2π

e−(b∗n )2/2 =
1
n
,

and
a∗n =

1− F (b∗n )

F ′(b∗n )

(Observe that bn and b∗n tend to∞ as n→∞). Some direct computations give that

1− F (x)

F ′(x)
=

x
x2 + 1

, x ≥ x0.

So, we can take

a∗n =
b∗n

(b∗n )2 + 1
,

or even
a∗n =

1
b∗n
.
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Hall’s results on the velocity of convergence

Peter Hall proved that taking b∗n such that

1√
2π

1
b∗n

e−(b∗n )2/2 =
1
n

and a∗n = 1/b∗n ,

the following result holds.

Theorem
For n ≥ 2,

C′

log n
< sup

x∈R
|Φn(a∗nx + b∗n )− Λ(x)| < C

log n
, (1)

with C = 3

He proved also that the rate of convergence cannot be improved by choosing a
different sequence of norming constants.
Notice that if 2 ≤ n ≤ 20, then 3/ log n > 1, so the upper bound in (1) gives no
information.
It should also be remarked that Hall points out that his constant C in (1) can be
decreased to 0.91 when n ≥ 106.
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Main result

Our choice of norming constants is:

bn = Φ−1(1− 1
n

), an =
bn

b2
n + 1

.

Theorem

Given n0 ≥ 5, for all n ≥ n0 it holds that

sup
x∈R
|Φn(an x + bn

)
− Λ(x)| < C(n0)

log n
,

with

C(n0) =

1, when n0 ≤ 15( 2
3b2

n0

+
1√
en0

)
log(n0) < 1 when n0 ≥ 16.

Moreover limn0→∞ C(n0) = 1/3.
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The above result is quite sharp because our numerical analysis shows that when n0

moves in the range [1020, 1060], then C(n0) cannot be taken smaller than 0.12.

We can give some bounds for {b2
n} (see the next proposition) that in particular prove

that when n0 ≥ 16,

C(n0) ≤ C̃(n0) =
1
3

1

1− log(4π log n0))

2 log n0

+
log n0√

en0
,

obtaining explicit and simple computable upper bounds for C(n0).

To have an idea of how C(n0) and C̃(n0) change with n0 we present some values in
Table 1.

Gasull, J., Utzet (UAB) On norming constants for normal maxima 22 / 42



n0 16 30 50 102 104 106 1010 1020 10100

C(n0) 0.90 0.75 0.67 0.60 0.45 0.41 0.38 0.36 0.34

C̃(n0) 1.10 0.82 0.72 0.63 0.45 0.41 0.38 0.36 0.34

Table: Several upper approximations for C(n0) and C̃(n0).
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Motivation
With

Yn =
Mn − bn

an
with our constants

Y ∗n =
Mn − b∗n

a∗n
with Hall’s constants

-2 0 2 4 6

Figure: Gumbel density and density of the maximum of 100 standard
Gaussian random variables with different norming constants. Solid line:
Gumbel density. Dotted blue line: Density of Y ∗

n . Dashed red line: Density of
Yn.
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Some ideas of the proof of the main result

Proposition

Let bn = Φ−1(1− n−1). For each n ≥ 2 the following inequalities hold:

2 log n − log(4π log n) < b2
n < 2 log n. (2)

Proof: Recall that
bn = Φ−1(1− 1

n ).
We will only see the right hand side inequality in (2). First of all, observe that for n = 2
we have that b2 = 0, while 2 log 2 > 0. So, we consider the case n ≥ 3.
We will prove that for n ≥ 3,

1− 1
n
< Φ

(√
2 log n

)
.

By the change of variables y =
√

2 log n, this inequality is equivalent to
1− e−y2/2 < Φ(y), for y ≥

√
2 log 3 ≈ 1.14823.

This is the same that ∫ ∞
y

1√
2π

e−x2/2dx <
∫ ∞

y
x e−x2/2dx ,

for y ≥
√

2 log 3. And this inequality is clear because 1√
2π
≈ 0.3989.
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In several parts of this work we will get the rate of convergence of Φn(anx + bn) to
Λ(x) in terms of b2

n , and later we translate it in terms of log n. To this end, we use the
following result:

Proposition
For any n0 ≥ 3 and any n > n0 the following inequality is satisfied:

b2
n > K (n0) log n, with K (n0) =

b2
n0

log n0
.
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Computing the difference Φn(an + bnx) − Λ(x)

Recall the expression of the Mills ratio

M(t) =
1− Φ(t)
φ(t)

and denote
V (t) =

1
M(t)

=
φ(t)

1− Φ(t)
.

Recall also the expression of Φ as a Von Mises function

1− Φ(x) = exp
{
−
∫ x

−∞

φ(t)
1− Φ(t)

dt
}

= exp
{
−
∫ x

−∞
V (t) dt

}
.

Using this, we have

1− Φ(anx + bn) = exp
{
−
∫ bn

−∞
V (t) dt

}
exp

{
−
∫ anx+bn

bn

V (t) dt
}

=
1
n

exp
{
−
∫ anx+bn

bn

V (t) dt
}
,

where we have used that Φ(bn) = 1− 1/n.
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Computing the difference Φn(an + bnx) − Λ(x)

Then,

Φ(anx + bn) = 1− 1
n

exp
{
−
∫ anx+bn

bn

V (t) dt
}
, (3)

and so
log Φn(a′nx + bn) = n log

(
1− 1

n
e−In(x)

)
= −e−In(x) − nSn(x), (4)

where we are denoting by

In(x) =

∫ anx+bn

bn

V (t) dt ,

Sn(x) is the remaining term of first order Taylor’s development of

log(1− u),

for u ∈ (0, 1), with

u =
1
n

e−In(x)

(Observe that, by (3), e−In(x)/n ∈ (0, 1)).
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Computing the difference Φn(an + bnx) − Λ(x)

Hence,

Φn(anx + bn)− Λ(x) = exp log Φn(anx + bn)− Λ(x)

= exp
(
− e−In(x) − nSn(x)

)
− Λ(x)

= e−nSn(x)Λ
(
In(x)

)
− Λ(x).

Adding and subtracting the term e−nSn(x)Λ(x) we arrive at:

Φn(anx + bn)− Λ(x) = e−nSn(x)
(

Λ
(
In(x)

)
− Λ(x)

)
+ Λ(x)

(
e−nSn(x) − 1

)
Recall that

In(x) =

∫ anx+bn

bn

V (t) dt .

On the other hand, it can be seen that

0 < Sn(x) <
Cn(x)2

2(1− Cn(x))
, with Cn(x) =

1
n

e−In(x).
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Φn(anx + bn)− Λ(x) = e−nSn(x)
(

Λ
(
In(x)

)
− Λ(x)

)
+ Λ(x)

(
e−nSn(x) − 1

)
In(x) =

∫ anx+bn

bn

V (t) dt ; 0 < Sn(x) <
Cn(x)2

2(1− Cn(x))
, Cn(x) =

1
n

e−In(x).

We divide the proof of our main Theorem in two cases: x ≥ 0 and x < 0.
The case x ≥ 0 is easier, since in this case

In(x) ≥ 0,

that implies
0 < Cn(x) ≤ 1/n

and then
0 < Sn(x) <

1
2n(n − 1)

.
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Recall

Φn(anx + bn)− Λ(x) = e−nSn(x)
(

Λ
(
In(x)

)
− Λ(x)

)
+ Λ(x)

(
e−nSn(x) − 1

)
In(x) =

∫ anx+bn

bn

V (t) dt ; 0 < Sn(x) <
Cn(x)2

2(1− Cn(x))
, Cn(x) =

1
n

e−In(x).

So, the more difficult term to study is

|Λ(In(x))− Λ(x)|.

For this, we use that
x

x2 + 1
< M(x) <

1
x
,

and consequently we have

x < V (x) < 1 +
1
x
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It is necessary to separate the two cases In(x) < x and In(x) ≥ x .
For instance, if In(x) < x :

∣∣∣Λ(In(x)
)
− Λ(x)

∣∣∣ = Λ(x)− Λ
(
In(x)

)
≤ Λ′

(
In(x)

)(
x − In(x)

)
= Λ

(
In(x)

)
e−In(x)(x − In(x)

)
≤ ex−In(x)e−x(x − In(x)

)
. (5)

where we have used that for x > 0, Λ(x) is increasing, Λ′(x) is decreasing, the Mean
Value Theorem and that Λ

(
In(x)

)
≤ 1.

At this point observe that since an = bn/(b2
n + 1),

0 < x − In(x) ≤ x −
∫ anx+bn

bn

t dt = x − (anx)2

2
− anbnx ≤ (1− anbn)x =

x
b2

n + 1
,

where we utilize the bound V (t) > t .
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Hence ∣∣∣Λ (In(x))− Λ(x)
∣∣∣ ≤ ex−In(x)e−x(x − In(x)

)
≤ e

x
b2
n+1 e−x x

b2
n + 1

= e
− b2

nx

b2
n+1 x

b2
n + 1

= e
− b2

nx

b2
n+1 b2

nx
b2

n + 1
1
b2

n
≤ max

y∈[0,∞)

{
e−y y

} 1
b2

n
=

1
eb2

n
.
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Some words about the case x < 0

We have divided the values of x according whether

x ∈ (−∞,−bn/an), x ∈ [−bn/an,−1.25 log bn] or x ∈ (−1.25 log bn, 0).

In the case x ∈ (−∞,−bn/an), we have that

x < 0, and anx + bn < 0

and this allows to bound separately

Λ(x) and Φn(anx + bn).

And this is not difficult.
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In the case x ∈ [−bn/an,−1.25 log bn] we have

x < 0, anx + bn ≥ 0.

Nevertheless, we can also study separately

Λ(x) and Φn(anx + bn).

HARD!
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Case x ∈ (−1.25 log n, 0).
We now must use once more

Φn(anx + bn)− Λ(x) = e−nSn(x)
(

Λ
(
In(x)

)
− Λ(x)

)
+ Λ(x)

(
e−nSn(x) − 1

)
In(x) =

∫ anx+bn

bn

V (t) dt ; 0 < Sn(x) <
Cn(x)2

2(1− Cn(x))
, Cn(x) =

1
n

e−In(x).

We comment only the study of first summand of the expression of the difference
Φn(anx + bn)− Λ(x). The problem, here is that −x and −In(x) are now positive.
But we can see that

−In(x) ≤ −x .
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Using also that −x ≤ 1.25 log bn, and then b2
n ≥ exp(−8x/5), and after some not

difficult computations, one can see that

Λ
(
In(x)

)
− Λ(x) ≤ 1

b2
n

(
− x +

x2

2

)
exp

{
−x − e−x +

(
− x +

x2

2

)
e3x/5

}
=

1
b2

n
Q(x)
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We can prove that

0 < max
x<0

Q(x) < 0.63

Idea about how to prove this:

Draw this function with some software and see that there is a unique global
maximum x∗ and that Q(x∗) seems to be less than 0.63.

Prove that Q′(x) has an only zero that corresponds to a maximum. (This is the
most difficult part!)

In our graphic of Q we see that x∗ is around −1.05. Then, using Bolzano’s
theorem we see that x∗ ∈ (x , x) = (−1.051, −1.050)

Finally:

max
x<0

Q(x) = Q(x∗) <
(
− x +

x2

2

)
exp

{
−x − e−x +

(
− x +

x2

2

)
e3x/5

}
< 0.63,
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Explicit expressions for the norming constants

Recall that
bn = Φ−1(1− 1

n
), an =

bn

b2
n + 1

.

As n is very big, we must find the inverse of the distribution function of the standard
normal distribution at points near to 1. This is a numerical problem.
This fact leads to the necessity of finding some useful asymptotic expansions of the
bn’s.

Proposition
It holds that

bn = βn + O
(

(log log n)2

(log n)5/2

)
, n→∞,

where

βn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log log(n2/(2π))− 2
log(n2/(2π))

)1/2

.
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Explicit expressions for the norming constants
Its proof uses sharper bounds of the Mills ratio

r(x) <
1− Φ(x)

φ(x)
< R(x),

with

r(x) =
x

x2 + 1
and R(x) =

x2 + 2
x3 + 3x

,

that implies
r(x)φ(x) < 1− Φ(x) < R(x)φ(x),

We use also the asymptotic development of Lambert-type functions. That is, the
asymptotic development, as t →∞, of functions g(t) that are solutions of the equation

yγey D
(1

y

)
= t ,

where

D(y) =
∞∑

n=0

dnyn, with d0 6= 0,

is a power series convergent in a neighborhood of the origin.
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Explicit expressions for the norming constants

Finally, we propose the following approximations of bn that work better for moderate
n’s.

βn =

(
log
(
n2/(2π)

)
− log log

(
n2/(2π)

)
+

log
(

log(n2) + 1/2
)
− 2

log
(
n2/(2π)

) )1/2

,

(We change the term log log
(
n2/(2π)

)
of the numerator of the last fraction in the

expression of βn by log
(

log(n2) + 1/2
)
.)

n 10 102 105 1010 1030 1060

bn 1.28155 2.32635 4.26489 6.36134 11.46402 16.39728
βn 1.27115 2.32632 4.26488 6.36132 11.46402 16.39728
βn 1.18090 2.31828 4.26430 6.36123 11.46401 16.39728

Table: Comparison of the proposed constants βn and βn with bn.
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