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I. Filtering theory
1. Estimating future values of signals
in the framework of stationary processes




2. State-space filtering model
dX; =bXydt+0dWy, Xg=&~ N(m,R)

dY; = BX;dt +dV;, Yp=mn~ N(m,R),

(Wi, Vi)e>0 is multi-dimensional Wiener process, b, B
and 6 are given matrices.



Task:

At t estimate p(X;) from observations (Ys)se[o,t] =: V.
with smallest mean square error; i.e., let © denote the
optimal estimate

M¢—mxm2=¢pEuow—¢@mF.

Clearly,

7 = P#) 1= E(e(X)|Vs,s <) = |

[ #(@) Pi(da)

= | ,e@)m(a) da.

where

Pi(dx) ;= P(X¢ € dx|Ys, s < t) = pi(x) d.



Note that (X3, Y:) is Gaussian process. Hence given ),
P(dx) is also Gaussian. It is sufficient to determine its
mean, m; and its covariance C%, or equivalently,

my = E(Xy|Ys,s <t), vy = E{(Xy—m)(Xy—my)"}.
dmy = bmy dt + ’th* d‘_/t, mo = E X
Y = avitya" =y B By+00", o = E{(Xo—mo)(Xo—mo)™},
_ ¢
7, ::Y;—/O Bms ds.

Remark. (V;);>0 is called innovation process. It is a
Wiener process.



Interpretation:

Vienr — Vi =Y ne — Vi — Hmy At

carries new information, relative to (Ys)sci04- Clearly,
foreach t >0

Innovation problem: o(Vs:s<t) =0c(Ys:5<t)7?
Does the innovation process carry the same information
as the observation process?



3. Nonlinear filtering
State: dXy =b(Zy) dt + 0(Zy) dWy + p(Zy) dVy, Xog =€

Observation: dY; = B(Zy)dt+ dV;, Yy =0,

where Z; := (X, Y;) € Rétdi (W, V) is a multidimen-
sional Wiener; b and B are Lipschitz continuous vector
fields, and 6 and p are Lipschitz continuous matrix fields
on R4t+di: ¢ is a random vector, independent of (W, V).

As we know, for functions of X;, o(X;), the optimal
estimator, given the observations (Yt)se[o,t]r is

Pi(p) := E(o(Z1)]Ys, s < t).

Innovation process: V; = Y; — [§ Ps(B) ds.



Questions:

1.

2.

3.

4.

Innovation problem: o(Vs,s <t) = o (Ys,s<t) ?
How to compute Pi(p)?

Robustness of the filter: does the computation of
P;(p) depend continuously on the observations?

How to calculate P;(¢) numerically?



1. Innovation problem

Assumption 1. There is § > 0 such that pp* > 61 for
all A e R4 2 ¢ RITd1 where

(,0,0* 1] — pirpjr.

Assumption 2. ¢ has a probability density o € H} for
some p > 2,

Assumption 3. (1 4+ |z|?)%pg € Lo, for some a > d/2.

Theorem 1.(N.V. Krylov, 1.G.) Let Assumptions 1-3
hold. Then o(Vs,s <t) =o0(Ys,s <1t).

Generalizes a result of N.V. Krylov 1979.
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2. Equations of nonlinear filtering
Some notation:

bi(z) :=b(z, Y1), pi(z) =p(z, V), 0Oi(z):=0(z,Y1),
By(z) = B(2,Yy), ai(x) := (pupi (z)+0,07 (2))/2, =€ R

Ly = aij(x)DiDj + b (z)'D;,  M" =6 (x)D; + Bj(x)
Filtering equation:

dP(¢) =P(Ly) dt + {P(M"¢) — Py(B[)P(¢)}dV; (1)

Po(p) =E(¢(Xo)), (2)
where V is the innovation process. If m¢(x) := Pi(dx)/dx
exists, then it satisfies

dri(x) =Lime(x) dt + {M{ m¢(x) — (m¢, By )m(x) } dVY,

7'(‘0(:13) :P(XQ S da:)/dx = Po.

(Kushner-Shiryayev equation)
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Idea of the proof of Thm1l: Consider the system
dri(x) =Lim(x) dt
+ {M{"pi(x) — (mi, B)mi(2)}dV)',  mo = po
dYy =(m¢, By) dt +dV), Yy =D0.
Step 1. Approximation 79 =pg, Y0 =0, n=1,2,...
d7r§n> — L(n)ﬂ't(n) dt + {(M(n)ﬂ'? _ (ﬂ-(n—l)’ Bn>ﬂ_n} d‘_/tr

dy,\™ = (=", By at + aw.

Step 2. 3 (7rt(”),Yt(”)), which is o(Vs : s < t)-measurable.

Step 3. Show that in probability

sup |7r,fn) — mt|r, =0,  sup |Yt(”) —Y;| — 0.
tc[0,T7] te[0,T]
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Existence and analytic property of the density my.

The Kushner-Shiryayev equation can be transform into
a linear SPDE (Zakai equation):

dui(x) =L us(x) dt + M u(x) dY}
up(z) =po(z)
Under Assumptions 1 and 2 3 a (generalised) solution

(ut)seo. 1) € Lp([0,T), Hy), (ut, 1) > 0 and

ut(x)
(Ut, 1) .

mi(x) =
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3. Robustness of the filter

Le(t)Y(”) be continuous processes of bounded variation,
Y,"/ = 0.
0

Question: sup<p |V = Y| = 0 = 7™ — 72

Consider

dul™ (z) =L ™™ (z) dt + M () ay; ™),
uo(x) =po(z)
Define A(n)zj = (LY, (Wi gy (n)j _ [ y (i gy (mi

AY :=/OYSZ'dYSj—/O Yidyi, ij=1,..ds.
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Theorem 2. (I.G. 1988) Let m > 0. Let

(i) supseqory YA —Yil = 0, supiepoqy I1S™ — Sl =0,
157 = o(Inn)

(ii) b(x,y), p(x,y) sufficiently smooth in z;
B(xz,y), 8(x,y) are sufficiently smooth in (x,vy),

(iii) po € HS with sufficiently high k.

Then sup;¢(g 77 |u§n) — Ut|gp =0 (in probability),

where u is the solution of
diy = Lyudt + M{*a: dYy", g = po,

Ly = Li+sM{*M{*+>_ N{™*, N = 0 (z,Yy) D+ B (z,Yy).
T
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Consider with £™ := & — Lpgrm= pr(m= s nrim

uo(x) =po(x).
Then 3 H™-valued unique solutions u and u(™).

sup_fu™ ;™

te[0,T1]
where 7() 1= u(”)/(u(”), 1).

—ut|H£n—>O, sup ‘7‘(‘

— 7Tt|H72” — O,
te[0,T]

Theorem 3. (P. Stinga, 1.G. 2013) For some k > 0
assume

sup [V, —vi| = 0(n ™), sup|S{ -S| =0 ) (a.s.).
t<T t<T
Then for any v < k
Sup |Ut(n) — ’l,l,t|H72n — O(?’L_Py), |7Tt(n) — 7Tt|H72n = O(n_'y).
t<T
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4. Accelerated numerical schemes

Richardson’s idea:
Assume for q(h) ~ q and for h — 0 we have

q(h) = g+ q1h + O(h).
Then g(h) := 2q(h/2) — q(h) = ¢+ O(h?).
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More generally, assume

h? h* k41
Q(h)—CI+Q1h‘|‘QQ—+ ‘I'Qk_‘I'O(h ),

then
(h) := Xoq(h)+A1q(h/2)+...4Apq(h/2%) = g+O(RFTD),
with constants Ag, A1, ...., A\, defined by
(AO7 Al? ] Al{f) — (17 O? ***) O)V_17
where V~1 is the inverse of V = (V%),
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Accelerated finite difference schemes

Notation: For h > 0, vectors e;, = € R®
1 1
Op, e, () 1= E(SO(SU-I-h@i)—SO(CIJ)), Shp(x) = 5(5h,6i+5—h,ei)

Dy~ 80 Lf~ LM M™ s M7
Consider
dul'(z) =LPul(z) dt + M ul (z) dY)
uf(z) =po(z)
t €[0,T], = € Gy, := hZ<.

Infinite system of SDEs

19



Truncated finite difference schemes
For R > 0 let (g € CRY), s.t., (g(z) =1 if |z| <R,
Cr(z) =0 if |z| 2 p> R.

: h,r .__ —
Set LI = @rL", Mp" = orM"", pf = polr.

Consider
duy " (2) =L i (2) dt + Mphuf " (2)) dYy

ug ' (x) =p&(x)

for t € [0,T] and x € Gy, , := Gy, N {|z| < p}.

Finite system of linear SDEs. J a unique solution s
Set v = Zé?:o )\juh/2‘77R.
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Theorem 4.(M. Gerencsér, N.V. Krylov, I.G.) Let k > 0.
Assume

(i) b, p, 0, B are sufficiently smooth
(i) po € HY

Then the Zakai equation has a classical solution w, and
for R>0, k€ (0,1), ¢g>0

2
£ sup sup ol (@) —up(2)]? < NppIETD 4 Ny vE
te[0,T] zeGpN{|z|<kR}

with positive constants N1, No, v, independent of h.
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Theorem 5. Assume (i), (ii) and (1 + |z|2)%g € Lo for
some a > d. Then for

%Rah(x) S /Uh’R(‘/'E)
! T (R 1)
we have
2
E sup sup |771}1L%,t(5’3)_77t(50)|q < Ny I+ f N e VR

te[0,T] zeGyNn{|xz|<kR}
with positive constants N1, No, v, independent of h.
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Summary: Via problems from filtering theory we showed
a tiny bit of the theory and its applications. of the the-
ory of parabolic SPDEs.
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