EMS-SCM joint meeting

Barcelona, May 28-30, 2015

On stochastic partial differential equations of parabolic type
István Gyöngy
School of Mathematics and Maxwell Institute
Edinburgh University
I. Filtering problem
II. Equations of nonlinear filtering
III. Some problems in filtering theory

- Innovation problem
- Robustness of the filter
- Accelerated numerical schemes

I. Filtering theory

1. Estimating future values of signals
in the framework of stationary processes

2. State-space filtering model

$$
\begin{aligned}
d X_{t} & =b X_{t} d t+\theta d W_{t}, \quad X_{0}=\xi \sim N(m, R) \\
d Y_{t} & =B X_{t} d t+d V_{t}, \quad Y_{0}=\eta \sim N(\bar{m}, \bar{R}),
\end{aligned}
$$

$\left(W_{t}, V_{t}\right)_{t \geq 0}$ is multi-dimensional Wiener process, b, B and θ are given matrices.

Task:
At t estimate $\varphi\left(X_{t}\right)$ from observations $\left(Y_{s}\right)_{s \in[0, t]}=: \mathcal{Y}_{t}$. with smallest mean square error; i.e., let $\hat{\varphi}$ denote the optimal estimate

$$
E\left|\hat{\varphi}-\varphi\left(X_{t}\right)\right|^{2}=\min _{f} E\left|f\left(\mathcal{Y}_{t}\right)-\varphi\left(X_{t}\right)\right|^{2}
$$

Clearly,

$$
\begin{gathered}
\hat{\varphi}=P_{t}(\varphi):=E\left(\varphi\left(X_{t}\right) \mid Y_{s}, s \leq t\right)=\int_{\mathbb{R}^{d}} \varphi(x) P_{t}(d x) \\
=\int_{\mathbb{R}^{d}} \varphi(x) \pi_{t}(x) d x
\end{gathered}
$$

where

$$
P_{t}(d x):=P\left(X_{t} \in d x \mid Y_{s}, s \leq t\right)=p_{t}(x) d x
$$

Note that $\left(X_{t}, Y_{t}\right)$ is Gaussian process. Hence given \mathcal{Y}_{t}, $P_{t}(d x)$ is also Gaussian. It is sufficient to determine its mean, m_{t} and its covariance C_{t}, or equivalently,

$$
\begin{gathered}
m_{t}=E\left(X_{t} \mid Y_{s}, s \leq t\right), \quad \gamma_{t}=E\left\{\left(X_{t}-m_{t}\right)\left(X_{t}-m_{t}\right)^{*}\right\} \\
d m_{t}=b m_{t} d t+\gamma_{t} B^{*} d \bar{V}_{t}, \quad m_{0}=E X_{0} \\
\dot{\gamma}_{t}=a \gamma_{t}+\gamma_{t} a^{*}-\gamma_{t} B^{*} B \gamma_{t}+\theta \theta^{*}, \quad \gamma_{0}=E\left\{\left(X_{0}-m_{0}\right)\left(X_{0}-m_{0}\right)^{*}\right\} \\
\bar{V}_{t}:=Y_{t}-\int_{0}^{t} B m_{s} d s
\end{gathered}
$$

Remark. $\left(\bar{V}_{t}\right)_{t \geq 0}$ is called innovation process. It is a Wiener process.

Interpretation:

$$
\bar{V}_{t+\Delta t}-\bar{V}_{t}=Y_{t+\Delta t}-Y_{t}-H m_{t} \Delta t
$$

carries new information, relative to $\left(Y_{s}\right)_{s \in[0, t]}$. Clearly, for each $t \geq 0$

$$
\sigma\left(\bar{V}_{s}: s \leq t\right) \subset \sigma\left(Y_{s}: s \leq t\right)
$$

Innovation problem: $\sigma\left(\bar{V}_{s}: s \leq t\right)=\sigma\left(Y_{s}: s \leq t\right)$?
Does the innovation process carry the same information as the observation process?

3. Nonlinear filtering

State: $d X_{t}=b\left(Z_{t}\right) d t+\theta\left(Z_{t}\right) d W_{t}+\rho\left(Z_{t}\right) d V_{t}, \quad X_{0}=\xi$
Observation: $d Y_{t}=B\left(Z_{t}\right) d t+d V_{t}, \quad Y_{0}=0$,
where $Z_{t}:=\left(X_{t}, Y_{t}\right) \in \mathbb{R}^{d+d_{1}},(W, V)$ is a multidimensional Wiener; b and B are Lipschitz continuous vector fields, and θ and ρ are Lipschitz continuous matrix fields on $\mathbb{R}^{d+d_{1}} ; \xi$ is a random vector, independent of (W, V).

As we know, for functions of $X_{t}, \varphi\left(X_{t}\right)$, the optimal estimator, given the observations $\left(Y_{t}\right)_{s \in[0, t]}$, is

$$
P_{t}(\varphi):=E\left(\varphi\left(Z_{t}\right) \mid Y_{s}, s \leq t\right) .
$$

Innovation process: $\bar{V}_{t}=Y_{t}-\int_{0}^{t} P_{s}(B) d s$.

Questions:

1. Innovation problem: $\sigma\left(\bar{V}_{s}, s \leq t\right)=\sigma\left(Y_{s}, s \leq t\right)$?
2. How to compute $P_{t}(\varphi)$?
3. Robustness of the filter: does the computation of $P_{t}(\varphi)$ depend continuously on the observations?
4. How to calculate $P_{t}(\varphi)$ numerically?

1. Innovation problem

Assumption 1. There is $\delta>0$ such that $\rho \rho^{*} \geq \delta I$ for all $\lambda \in \mathbb{R}^{d}, z \in \mathbb{R}^{d+d_{1}}$, where

$$
\left(\rho \rho^{*}\right)^{i j}:=\rho^{i r} \rho^{j r} .
$$

Assumption 2. ξ has a probability density $\pi_{0} \in H_{p}^{1}$ for some $p \geq 2$,

Assumption 3. $\left(1+|x|^{2}\right)^{\alpha} p_{0} \in L_{2}$, for some $\alpha>d / 2$.
Theorem 1.(N.V. Krylov, I.G.) Let Assumptions 1-3
hold. Then $\sigma\left(\bar{V}_{s}, s \leq t\right)=\sigma\left(Y_{s}, s \leq t\right)$.
Generalizes a result of N.V. Krylov 1979.

2. Equations of nonlinear filtering

Some notation:

$$
\begin{gathered}
b_{t}(x):=b\left(x, Y_{t}\right), \quad \rho_{t}(x)=\rho\left(x, Y_{t}\right), \quad \theta_{t}(x):=\theta\left(x, Y_{t}\right), \\
B_{t}(x)=B\left(x, Y_{t}\right), \quad a_{t}(x):=\left(\rho_{t} \rho_{t}^{*}(x)+\theta_{t} \theta_{t}^{*}(x)\right) / 2, \quad x \in \mathbb{R}^{d} \\
L_{t}=a_{t}^{i j}(x) D_{i} D_{j}+b_{t}(x)^{i} D_{i}, \quad M^{r}=\theta_{t}^{i r}(x) D_{i}+B_{t}^{i}(x)
\end{gathered}
$$

Filtering equation:

$$
\begin{align*}
d P_{t}(\varphi) & =P_{t}(L \varphi) d t+\left\{P_{t}\left(M^{r} \varphi\right)-P_{t}\left(B_{t}^{r}\right) P_{t}(\varphi)\right\} d \bar{V}_{t}^{r} \tag{1}\\
P_{0}(\varphi) & =E\left(\varphi\left(X_{0}\right)\right) \tag{2}
\end{align*}
$$

where \bar{V} is the innovation process. If $\pi_{t}(x):=P_{t}(d x) / d x$ exists, then it satisfies

$$
\begin{aligned}
d \pi_{t}(x) & =L_{t}^{*} \pi_{t}(x) d t+\left\{M_{t}^{r *} \pi_{t}(x)-\left(\pi_{t}, B_{t}^{r}\right) \pi_{t}(x)\right\} d \bar{V}_{t}^{r}, \\
\pi_{0}(x) & =P\left(X_{0} \in d x\right) / d x=: p_{0} .
\end{aligned}
$$

(Kushner-Shiryayev equation)

Idea of the proof of Thm1: Consider the system

$$
\begin{aligned}
d \pi_{t}(x)= & L_{t}^{*} \pi_{t}(x) d t \\
& +\left\{M_{t}^{r *} p_{t}(x)-\left(\pi_{t}, B_{t}^{r}\right) \pi_{t}(x)\right\} d \bar{V}_{t}^{r}, \quad \pi_{0}=p_{0} \\
d Y_{t}= & \left(\pi_{t}, B_{t}\right) d t+d \bar{V}_{t}^{r}, \quad Y_{0}=0
\end{aligned}
$$

Step 1. Approximation $\pi^{(0)}=p_{0}, Y^{(0)}=0, n=1,2, \ldots$

$$
\begin{gathered}
d \pi_{t}^{(n)}=L^{(n)} \pi_{t}^{(n)} d t+\left\{\left(M^{(n)} \pi_{t}^{n}-\left(\pi^{(n-1)}, B^{n}\right) \pi^{n}\right\} d \bar{V}_{t}^{r}\right. \\
d Y_{t}^{(n)}=\left(\pi_{t}^{(n-1)}, B_{t}^{(n)}\right) d t+d \bar{W}_{t}
\end{gathered}
$$

Step 2. $\exists\left(\pi_{t}^{(n)}, Y_{t}^{(n)}\right)$, which is $\sigma\left(\bar{V}_{s}: s \leq t\right)$-measurable.
Step 3. Show that in probability

$$
\sup _{t \in[0, T]}\left|\pi_{t}^{(n)}-\pi_{t}\right|_{L_{2}} \rightarrow 0, \quad \sup _{t \in[0, T]}\left|Y_{t}^{(n)}-Y_{t}\right| \rightarrow 0
$$

Existence and analytic property of the density π_{t}.

The Kushner-Shiryayev equation can be transform into a linear SPDE (Zakai equation):

$$
\begin{aligned}
d u_{t}(x) & =L^{*} u_{t}(x) d t+M^{r *} u_{t}(x) d Y_{t}^{r} \\
u_{0}(x) & =p_{0}(x)
\end{aligned}
$$

Under Assumptions 1 and $2 \exists$ a (generalised) solution $\left(u_{t}\right)_{t \in[0, T]} \in L_{p}\left([0, T], H_{p}^{1}\right),\left(u_{t}, 1\right)>0$ and

$$
\pi_{t}(x)=\frac{u_{t}(x)}{\left(u_{t}, 1\right)}
$$

3. Robustness of the filter

Let $Y^{(n)}$ be continuous processes of bounded variation, $Y_{0}^{(n)}=0$.
Question: $\sup _{t \leq T}\left|Y_{t}^{(n)}-Y_{t}\right| \rightarrow 0 \Rightarrow \pi_{t}^{(n)} \rightarrow \pi_{t}$?
Consider

$$
\begin{aligned}
d u_{t}^{(n)}(x) & =L^{*(n)} u_{t}^{(n)}(x) d t+M^{r *(n)} u_{t}^{(n)}(x) d Y_{t}^{r(n)} \\
u_{0}(x) & =p_{0}(x)
\end{aligned}
$$

Define $A_{t}^{(n) i j}:=\int_{0}^{t} Y_{s}^{(n) i} d Y_{s}^{(n) j}-\int_{0}^{t} Y_{s}^{(n) j} d Y_{s}^{(n) i}$,

$$
\begin{aligned}
A_{t}^{i j}:= & \int_{0}^{t} Y_{s}^{i} d Y_{s}^{j}-\int_{0}^{t} Y_{s}^{j} d Y_{s}^{i}, \quad i, j=1, \ldots, d_{1} \\
& S_{t}^{(n) i j}:=\int_{0}^{t}\left(Y_{s}^{i}-Y_{s}^{(n) i}\right) d Y_{s}^{(n) j}
\end{aligned}
$$

Theorem 2. (I.G. 1988) Let $m \geq 0$. Let
(i) $\sup _{t \in[0, T]}\left|Y_{t}^{(n)}-Y_{t}\right| \rightarrow 0, \quad \sup _{t \in[0, T]}\left|S_{t}^{(n)}-S_{t}\right| \rightarrow 0$,

$$
\left\|S^{(n)}\right\|_{T}=o(\ln n)
$$

(ii) $b(x, y), \rho(x, y)$ sufficiently smooth in x; $B(x, y), \theta(x, y)$ are sufficiently smooth in (x, y),
(iii) $p_{0} \in H_{2}^{k}$ with sufficiently high k.

Then $\sup _{t \in[0, T]}\left|u_{t}^{(n)}-\tilde{u}_{t}\right|_{H_{2}^{m}}=0$ (in probability),
where \tilde{u} is the solution of

$$
\begin{gathered}
d \tilde{u}_{t}=\tilde{L}_{t} \tilde{u} d t+M_{t}^{r *} \tilde{u}_{t} d Y_{t}^{r}, \quad \tilde{u}_{0}=p_{0}, \\
\tilde{L}_{t}:=L_{t}^{*}+\frac{1}{2} M_{t}^{r *} M_{t}^{r *}+\sum_{r} N_{t}^{r *}, \quad N_{t}^{r}=\theta_{y^{r}}^{i r}\left(x, Y_{t}\right) D_{i}+B_{y^{r}}^{r}\left(x, Y_{t}\right) .
\end{gathered}
$$

Consider with $\mathcal{L}_{t}^{(n)}:=L_{t}^{(n)}-\frac{1}{2} M_{t}^{r(n) *} M_{t}^{r(n) *}+\sum_{r} N_{t}^{r(n) *}$,

$$
\begin{aligned}
d u_{t}^{(n)}(x) & =\mathcal{L}_{t}^{(n)} u_{t}^{(n)}(x) d t+M^{r *(n)} u_{t}^{(n)}(x) d Y_{t}^{r(n)} \\
u_{0}(x) & =p_{0}(x)
\end{aligned}
$$

Then $\exists H^{m}$-valued unique solutions u and $u^{(n)}$.

$$
\sup _{t \in[0, T]}\left|u_{t}^{(n)}-u_{t}\right|_{H_{2}^{m}} \rightarrow 0, \quad \sup _{t \in[0, T]}\left|\pi_{t}^{(n)}-\pi_{t}\right|_{H_{2}^{m}} \rightarrow 0
$$

where $\pi^{(n)}:=u^{(n)} /\left(u^{(n)}, 1\right)$.
Theorem 3. (P. Stinga, I.G. 2013) For some $\kappa>0$ assume

$$
\left.\sup _{t \leq T}\left|Y_{t}^{(n)}-Y_{t}\right|=O\left(n^{-\kappa}\right), \quad \sup _{t \leq T}\left|S_{t}^{(n)}-S_{t}\right|=O\left(n^{-\kappa}\right) \quad \text { (a.s. }\right)
$$

Then for any $\gamma<\kappa$

$$
\sup _{t \leq T}\left|u_{t}^{(n)}-u_{t}\right|_{H_{2}^{m}}=O\left(n^{-\gamma}\right), \quad\left|\pi_{t}^{(n)}-\pi_{t}\right|_{H_{2}^{m}}=O\left(n^{-\gamma}\right)
$$

4. Accelerated numerical schemes

Assume for $q(h) \approx q$ and for $h \rightarrow 0$ we have

$$
q(h)=q+q_{1} h+O(h) .
$$

Then $\bar{q}(h):=2 q(h / 2)-q(h)=q+O\left(h^{2}\right)$.

More generally, assume

$$
q(h)=q+q_{1} h+q_{2} \frac{h^{2}}{2}+\ldots .+q_{k} \frac{h^{k}}{k!}+O\left(h^{k+1}\right)
$$

then

$$
\bar{q}(h):=\lambda_{0} q(h)+\lambda_{1} q(h / 2)+\ldots+\lambda_{k} q\left(h / 2^{k}\right)=q+O\left(h^{k+1}\right)
$$

with constants $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}$, defined by

$$
\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right)=(1,0, \ldots, 0) V^{-1}
$$

where V^{-1} is the inverse of $V=\left(V^{i j}\right)$,

$$
V^{i j}=2^{-(i-1)(j-1)}, \quad j=1,2, \ldots, k+1
$$

Accelerated finite difference schemes

Notation: For $h>0$, vectors $e_{i}, x \in \mathbb{R}^{d}$

$$
\begin{gathered}
\delta_{h, e_{i}} \varphi(x):=\frac{1}{h}\left(\varphi\left(x+h e_{i}\right)-\varphi(x)\right), \quad \delta_{i}^{h} \varphi(x):=\frac{1}{2}\left(\delta_{h, e_{i}}+\delta_{-h, e_{i}}\right) \\
D_{i} \rightsquigarrow \delta_{i}^{h}, \quad L_{t}^{*} \rightsquigarrow L^{h}, \quad M^{r *} \rightsquigarrow M^{h, r}
\end{gathered}
$$

Consider

$$
\begin{aligned}
d u_{t}^{h}(x) & =L_{t}^{h} u_{t}^{h}(x) d t+M_{t}^{h, r} u_{t}^{h}(x) d Y_{t}^{r} \\
u_{0}^{h}(x) & =p_{0}(x)
\end{aligned}
$$

$t \in[0, T], x \in \mathbb{G}_{h}:=h \mathbb{Z}^{d}$.
Infinite system of SDEs

Truncated finite difference schemes

For $R>0$ let $\zeta_{R} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, s.t., $\zeta_{R}(x)=1$ if $|x| \leq R$, $\zeta_{R}(x)=0$ if $|x| \geq \rho>R$.

Set $L_{R}^{h}:=\varphi_{R} L^{h}, M_{R}^{h, r}:=\varphi_{R} M^{h, r}, p_{0}^{R}=p_{0} \zeta_{R}$.

Consider

$$
\begin{aligned}
d u_{t}^{h, R}(x) & \left.=L_{R, t}^{h} u_{t}^{h, R}(x) d t+M_{R, t}^{h, r} u_{t}^{h, R}(x)\right) d Y_{t}^{r} \\
u_{0}^{h, R}(x) & =p_{0}^{R}(x)
\end{aligned}
$$

for $t \in[0, T]$ and $x \in \mathbb{G}_{h, \rho}:=\mathbb{G}_{h} \cap\{|x| \leq \rho\}$.
Finite system of linear SDEs. \exists a unique solution $u^{h, R}$. Set $v^{h, R}:=\sum_{j=0}^{k} \lambda_{j} u^{h / 2^{j}, R}$.

Theorem 4.(M. Gerencsér, N.V. Krylov, I.G.) Let $k \geq 0$. Assume
(i) b, ρ, θ, B are sufficiently smooth
(ii) $p_{0} \in H_{2}^{k}$

Then the Zakai equation has a classical solution u, and for $R>0, \kappa \in(0,1), q>0$
$E \sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h} \cap\{|x| \leq \kappa R\}}\left|v_{R, t}^{h}(x)-u_{t}(x)\right|^{q} \leq N_{1} h^{q(k+1)}+N_{2} e^{-\nu R^{2}}$
with positive constants N_{1}, N_{2}, ν, independent of h.

Theorem 5. Assume (i), (ii) and ($\left.1+|x|^{2}\right)^{\alpha} p_{0} \in L_{2}$ for some $\alpha>d$. Then for

$$
\bar{\pi}_{t}^{R, h}(x):=\frac{v^{h, R}(x)}{\left(v^{h, R}, 1\right)}
$$

we have
$E \sup _{t \in[0, T]\} \in \mathbb{G}_{h} \cap\{|x| \leq \kappa R\}} \sup \left|\pi_{R, t}^{h}(x)-\pi_{t}(x)\right|^{q} \leq N_{1} h^{q(k+1)}+N_{2} e^{-\nu R^{2}}$ with positive constants N_{1}, N_{2}, ν, independent of h.

Summary: Via problems from filtering theory we showed a tiny bit of the theory and its applications. of the theory of parabolic SPDEs.

Moltes Gràcies !

