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Introduction

Introduction

The analysis of the spread of a communicable disease dates back to the
18th century.
The mathematical models developed to describe this have been
deterministic or stochastic and they may involve many factors such as

mode of transmission,

incubation periods,

infectious periods,

quarantine periods.
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Introduction

We will consider communicable disease models that describe a directly
transmitted viral or bacterial agent in a closed population of fixed size n,
consisting of susceptibles (S), infectives (I) and recovers (R).
Denoting by S(t), I (t) and R(t) the numbers of individuals in each class
at time t, the basic SIR models assume that

S −→ I −→ R

Basic assumptions:

The population size n remains constant, i.e.

S(t) + I (t) + R(t) = n;

At the beginning the population consists of n-1 susceptibles and 1
infectious individual.

Individuals that become infected are also infectious;
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Introduction

In this talk I will present the generalisation of a simple, discrete-time
stochastic SIR type model defined by Tuckwell and Williams in Math.
Biosci. 208 (2007) in order to include

1 incubation period (E);

2 quarantine procedures (H).

This allows us to model the evolution of diseases that presents large
latency periods like varicela, which on the contrary are poorly described
by standard SIR models.
Furthermore, we derive a diffusion approximation of these models which
leads to stochastic differential equations with multiple delays in a natural
way and that can represent a new class of models on his own.

Ferrante et al. SEiHR models 5 / 51



The Greenwood - Reed and Frost model

The Greenwood - Reed and Frost model

Reed and Frost proposed the prototype of the SIR models in 1928.
Assume that the size of the population is fixed and equal to n and that the
time is discrete t = 0, 1, 2, . . . The natural unit for the duration of an
epoch is one day.
In this model, there are successive generations -indexed by t- of infective
which are only able of infecting susceptible for one generation.
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The Greenwood - Reed and Frost model

Let X (t) denotes the number of individuals which are susceptible at time
t, and Y (t) the number of individuals which are new infective at time t.
Then the initial condition is

X (0) + Y (0) = n

and
X (t + 1) + Y (t + 1) = X (t)

for t = 0, 1, 2, . . .
Then, for any t = 0, 1, 2, . . .

X (t) +
t∑

i=0

Y (i) = n .
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The Greenwood - Reed and Frost model

Assuming that the number of infectives of generation t + 1 is a binomial
random variable with parameters X (t) and p(Y (t)), which is the
probability that an existing susceptible will become infected when the
number of invectives is Y (t), it is immediate that {X (t),Y (t)} forms a
Markov chain, with

P(Y (t + 1) = k |X (t) = x ,Y (t) = y) =

(
x

k

)
p(y)k(1− p(y))x−k

In the Greenwood model, p(y) = p is a constant not depending on y ,
while in the Reed-Frost model it is supposed that the probability any
susceptible is infected escapes being infected when there are y invectives is

1− p(y) = (1− p)y .
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The SIR model by Tuckwell and Williams

The SIR model by Tuckwell and Williams

Tuckwell and Williams in 2006 proposed a more sophisticated model,
based on a discrete time Markovian approach. With respect to the Reed
and Frost model they introduce the following new assumptions:

Definition af a sick individual, given any individual i , with i = 1, .....n,
we define a stochastic process Y i = {Y i (t), t = 0, 1, 2, ...} such that
Y i (t) = 1 if the individual is infectious at time t, otherwise
Y i (t) = 0. The total number of infectious individuals at time t ≥ 0
will be therefore equal to Y (t) =

∑n
i=1 Y i (t).

Daily encounters, each individual i , over (t, t + 1], will encounter a
number of other individuals equal to Ni (t) = Ni + Mi (t) where Ni is
a fixed number, while Mi (t) is a random number of daily encounters.

Duration of the disease, any individual remains infectious for r
consecutive days, where r is a positive integer. After this period, the
individual recovers and cannot be reinfected.

Ferrante et al. SEiHR models 9 / 51



The SIR model by Tuckwell and Williams

If an individual who has never been diseased up to and including time
t, encounters an individual in (t,t+1] who is infectious at time t, then
independently of the results of other encounters, the encounter results
in transmission of the disease with probability p.

Assuming that all the variables Ni (t) are independent and identically
distributed (i.i.d.) this model can be seen as a (r + 1)-dimensional Markov
chain. Indeed, let

Yl(t) be the number of individuals who are infected at t and have
been infected for exactly l time units, with l=0,1,2,...,r-1;

X (t) be the number of susceptible individual at time t;

Z (t) be the number of individual who were previously infected and
are recovered at t;
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The SIR model by Tuckwell and Williams

Then it is clear that

V (t) = (X (t),Y0(t),Y1(t), . . . ,Yr−1(t)), t = 0, 1, 2, ...

is a Markov chain with state space

S(n, r) =
{

(x , y0, . . . , yr−1) : x , yi ∈ Z+, for i = 0, . . . , r − 1,

and x +
r−1∑
i=0

yi ≤ n
}
.
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The SIR model by Tuckwell and Williams

In addition to the process Y i = {Y i (t), t = 0, 1, 2, ...}, we can define the
process X i = {X i (t), t = 0, 1, 2, ...}, for i = 1, . . . , n, which indicates
whether individual i is susceptible or not, and the variable

Z i (t) = 1− X i (t)− Y i (t)

which indicates if the individual i is recovered to the disease and no more
infectious. We immediately get

X (t) =
n∑

i=0

X i (t) Y (t) =
n∑

i=0

Y i (t) Z (t) =
n∑

i=0

Z i (t)

Furthermore we can consider the processes Y i
0 ,Y

i
1 , ...,Y

i
r−1, where

i = 1, 2, ..., n, and Y i
k(t) = 1 if the individual i at time t is infective for k

days, zero otherwise.
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The SIR model by Tuckwell and Williams

With these definitions we can consider a new Markovian model

M(t) = [X i (t),Y i
0(t),Y i

1(t), ...,Y i
r−1(t), i = 1, 2, ..., n] (1)

whose state space is now

S1(n, r) =
{

(x1, . . . , y 1
r−1, . . . , x

n, . . . , yn
r−1) ∈ {0, 1}n(r+1) :

αi = x i +
∑r−1

k=0 y i
k ≤ 1 for i = 1, . . . , n, and

∑n
j=0 αj ≤ n

}
.

Let us fix the individual i and study the process

Mi (t) = [X i (t),Y i
0(t),Y i

1(t), ...,Y i
r−1(t)]

If one of the variables Y i
0(t),Y i

1(t), ...,Y i
r−1(t) is equal to 1, then the

process at time t + 1 is determined since the transitions in this case is sure.
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The SIR model by Tuckwell and Williams

The only interesting case is when X i (t) = 1 and we have to calculate the
probability that this susceptible individual becomes infected for the first
time at t + 1.
First of all, assuming that n is much greater than N, we can approximate
the probability of meeting exactly j infectives by the binomial law,
obtaining

P i
j (y ,N; n) ≈

(
N

j

)( y

n − 1

)j(
1− y

n − 1

)N−j
, (2)

where y = Y (t) is the total number of diseased individuals and for
simplicity we take Ni (t) ≡ N.
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The SIR model by Tuckwell and Williams

Assuming that the probability pj of becoming infected if j infected are met
is

pj = 1− (1− p)j , (3)

then

P(Y i
0(t + 1) = 1|X i (t) = 1,Y (t) = y) =

N∑
j=1

pjP
i
j (y ,N; n)

≈ 1−
(

1− py

n − 1

)N
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The SIR model by Tuckwell and Williams

As a particular case, Tuckwell and Williams consider the case where
Ni (t) ≡ N for any i and there is no recovery (that is, r =∞). Under
these assumptions, the process Y (t) is a Markov chain whose transitions
probabilities can be approximated in the following way

P(Y (t + 1) = y + w |Y (t) = y)

≈
(

n − y

w

)(
1−

(
1− py

n − 1

)N)w(
1− py

n − 1

)N(n−y−w)

where w = 0, 1, 2, . . .

Ferrante et al. SEiHR models 16 / 51



The SIR model by Tuckwell and Williams The basic reproduction number

The basic reproduction number

The basic reproduction number R0 of an infection is defined as the
“expected number of secondary cases per primary case in a virgin
population”.
If R0 > 1, then an epidemic is expected to occur following the
introduction of infection.
If R0 < 1 then the number infected in the population is expected to
decrease following introduction and the infection will be eliminated over
time.
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The SIR model by Tuckwell and Williams The basic reproduction number

In the present SIR model under the assumption that N is constant it is
possible to calculate explicitly the basic reproduction number for small
values of r .

Defining α(y) = 1−
(

1− py
n−1

)N
and letting r the number of days any

individual remains infectious and p the transmission probability, we get
that:

R0(1) = (n − 1)α(1) = (n − 1)
(

1−
(

1− py

n − 1

)N)
R0(2) = (n − 1)(2α(1)− α2(1)) = (n − 1)

(
1−

(
1− py

n − 1

)2N)
R0(3) ∼ (n − 1)(3α(1)− 2α2(1))
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The SIR model by Tuckwell and Williams The basic reproduction number

Since we can assume that py
n−1 is small, we can approximate(

1− py

n − 1

)N
∼ 1− Npy

n − 1

obtaining that

R0(1) = (n − 1)α(1) ∼ (n − 1)(1− 1 +
Np

n − 1
) = Np

R0(2) ∼ (n − 1)(1− 1 +
2Np

n − 1
) = 2Np

R0(3) ∼ (n−1)
[
3−3

(
1− py

n − 1

)N
−2
[
1+
(

1− py

n − 1

)2N
−2
(

1− py

n − 1

)N]
∼ (n − 1)

[
1 +

[
1− Np

n − 1

]
− 2
[
1− 2Np

n − 1

]]
= 3Np
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The SIR model by Tuckwell and Williams The basic reproduction number

Our conjecture is that for every k ∈ N, it holds that

R0(k) ∼ kNp

Let us see how the simulated behaviour of the epidemics in the cases N=5
and r=1,2,3 suggests that the role of the basic reproduction number is
confirmed in this case too.
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The SIR model by Tuckwell and Williams The basic reproduction number
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The SIR model by Tuckwell and Williams The basic reproduction number
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The SIR model by Tuckwell and Williams The basic reproduction number
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SEHIR models

The SEHIR model

Starting from the previous model, we propose the following generalization,
whose justification will be clear in the application to the varicella disease
given in the last section.
We will add two new classes E and H in order to take into account the
possibility of a latency period and when the individuals are infectious and
sick, so often hospitalised.
As before we will assume that any individual will remain in each of these
new class for a fixed, deterministic number of days.
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SEHIR models

To fix the ideas we will assume that:

the class E includes the individuals in a latency period, when the
individual has been infected but is still not infective or sick;

the previous class I is now divided into two classes, I and H, where
individuals are infective, but sick just in the second class. We will
denote by YI (t) and YH(t) the number of individuals at time t in
classes I and H, respectively;

the probability of meeting with individuals in the classes I and H are
different, since those in the class H are in hospital or in quarantine.
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SEHIR models

Any individual, once infected, in a deterministic fashion transits through
the states E , I ,H, where it remains, respectively, for rE , rI and rH days,
after that he becomes removed.
Since rE , rI and rH are deterministic, the model will be similar to that
defined in (1) and the state space of this new Markovian model will be
again S1(n, r), where now r = rE + rI + rH .
In this case, in order to calculate the probability of contagion at time t, we
will not consider equal the probabilities to meet an individual in the
classes S ,E and R.
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SEHIR models

So, we will deal with three probabilities

pI which correspond to the probabilities of meeting an individual
belonging to the class I ;

pH which correspond to the probabilities of meeting an individual
belonging to the class H;

pS which correspond to the probability of meeting an individual non
infective, that is, belonging to the classes S ,E and R.
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SEHIR models

In order to have pH still proportional to the number of individual present
in that class, but at a lower rate than for the I class, since the individuals
in H are at some level isolated by the rest of the population, we will
multiply this number by a constant λ ∈ [0, 1].

λ = 0 will characterise the case of a perfect quarantine, adopted for a
severe, contagious disease.

On the contrary, a value of λ close to 1 will characterise the case of a mild
disease, like the flu.
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SEHIR models

With these ingredients, we will define the three values

pH =
λyH

n − 1
(4)

pI =
yI

n − 1− yH
(1− λyH

n − 1
)

pS = (1− pI − pH) = (1− λyH
n − 1

)(
n − 1− yI − yH

n − 1− yH
)

where yI and yH denotes the number of individuals in classes I and H,
respectively, at time t. Note that when λ→ 1 we obtain the same
probabilities of the model (1), while if λ→ 0, pH = 0 and we have a
perfect quarantine.
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SEHIR models

Denoting by jiI , jiH the number of meetings of the i-th individual at time t
with individuals in the classes I and H, respectively, the probability to
meet this proportion of individuals will be approximated by

P i
jiI ,jiH

(yI , yH ,N; n) =
N∑

jiI ,jiH=1

N!

jiI !jiH !jiS !
pjiI
I pjiH

H pjiN
S ,

where jiS = N − jiI − jiH and N denotes the daily encounters of the
individual i .
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SEHIR models

We can also derive the probability of contagion

pjiI +jiH = 1− ((1− qI )
jiI (1− qH)jiH )

where qI and qH denote the probability of transmission of the specific
disease for individuals in the classes I and H, respectively.
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SEHIR models

Then the probability of contagion at time t + 1 of a single individual is
equal to

β = P(Y i
0(t + 1) = 1|X i (t) = 1,YI (t) = yI ,YH(t) = yH)

=
N∑

jiI ,jiH=1

pjiI +jiH

N!

jiI !jiH !jiN !
pjiI
I pjiH

H pjiN
N

= 1−
Ni (t)∑

jiI ,jiH=1

Ni (t)!

jiI !jiH !jiN !
(pI (1− qI ))jiI (pH(1− qH))jiH pjiN

N .

Substituing (4), we then get

β = 1− (pI (1− qI ) + pH(1− qH) + (1− pI − pH))N

= 1−
(

1− 1

n − 1

(yI (n − 1− λyH)

n − 1− yH
qI + λyHqH

))N
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SEHIR models

Let V be number of individuals non susceptible, that is, the number of
individuals in E ∪ I ∪ H ∪ R. We get easily that

P
(

V (t + 1) = yE + yI + yH + yR + y |V (t)− V (t − rE ) = yE ,

V (t − rE )− V (t − rE − rI ) = yI ,

V (t − rE − rI )− V (t − rE − rI − rH) = yH ,

V (t − rE − rI − rH) = yR

)
=

(
n − yE − yI − yH − yR

y

)
βy (1− β)n−yE−yI−yH−yR−y ,

where y = 0, 1, 2, . . . .
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SEHIR models

So, the increment in the number of individuals infected has a mean and a
variance given by

E
(

V (t + 1)− V (t)|V (t)− V (t − rE ) = yE ,

V (t − rE )− V (t − rE − rI ) = yI ,

V (t − rE − rI )− V (t − rE − rI − rH) = yH ,

V (t − rE − rI − rH) = yR

)
= (n − yE − yI − yH − yR)β,

and

Var
(

V (t + 1)− V (t)|V (t)− V (t − rE ) = yE ,

V (t − rE )− V (t − rE − rI ) = yI ,

V (t − rE − rI )− V (t − rE − rI − rH) = yH ,

V (t − rE − rI − rH) = yR

)
= (n − yE − yI − yH − yR)β(1− β),
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SEHIR models The basic reproduction number

The basic reproduction number

For the SEIHR model too is possible to calculate the basic reproduction
number R0, at least for small values of the incubation and infection
durations.
For example, in the case when rI = rH = 1 and any rE , denoting

β(yI , yH , λ) = 1−
(

1− 1

n − 1

(yI (n − 1− λyH)

n − 1− yH
qI + λyHqH

))N
we get

R0(rE , 1, 1) = (n − 1)
[
β(1, 0, λ) + β(0, 1, λ)− β(1, 0, λ)β(0, 1, λ)

]
∼ N(qI + λqH)

Ferrante et al. SEiHR models 35 / 51



SEHIR models The basic reproduction number
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Figure : Spread of the epidemic for λ = 0, 0.25, qI = 0.15, qH = 0.2,N = 5,
n = 100 and rE = 3.
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SEHIR models The basic reproduction number
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Figure : Spread of the epidemic for λ = 0.5, qI = 0.15, qH = 0.2,N = 5, n = 100
and rE = 1, 3, 6.
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SEHIR models The basic reproduction number
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Figure : Spread of the epidemic for λ = 1, qI = 0.15, qH = 0.2,N = 5, n = 100
and rE = 3.
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SEHIR models Diffusion approximation

Diffusion approximation

Following the ideas in Tuckwell and Williams, the study of the one-step
increments of V indicates that for a large population size n and disease
infectious probabilities qI and qH such that nN(qI + qH) is of moderate
size, we can approximate a rescaled version of V by a diffusion process.
Indeed, if we speed up time and rescale the state to define

V̂ n(t) =
V ([nt])

n
, for all t > 0,

where [·] denotes the integer part, then V̂ n(t) is the fraction of the
population that has been infected by the time [nt] in the original time
scale of V .
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SEHIR models Diffusion approximation

Then for large n and small qI and qM such that θI := nNqI and
θH := nNqH are of moderate size, using again the approximation

1− (1− x)N ∼ Nx

for small x , we can compute the (conditional) mean and variance of

V̂ n(t + ∆t)− V̂ n(t)

where ∆t = 1
n and t ∈ {0, 1

n ,
2
n , . . .}.
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SEHIR models Diffusion approximation

E
(

V̂ n(t + ∆t)− V̂ n(t)|V̂ n(t)− V̂ n(t − rE
n

) = ŷE ,

V̂ n(t − rE
n

)− V̂ n(t − rE
n
− rI

n
) = ŷI ,

V̂ n(t − rE
n
− rI

n
)− V̂ n(t − rE

n
− rI

n
− rH

n
) = ŷH ,

V̂ n(t − rE
n
− rI

n
− rH

n
) = ŷR

)
∼ (1− ŷE − ŷI − ŷH − ŷR)N(

1− λŷH
1− ŷH

qI ŷI + λqM ŷH)

= (1− ŷE − ŷI − ŷH − ŷR)(
1− λŷH
1− ŷH

θI ŷI + θM ŷH)∆t,

and
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Var(V̂ n(t + ∆t)− V̂ n(t)|V̂ n(t)− V̂ n(t − rE ) = ŷE ,

V̂ n(t − rE
n

)− V̂ n(t − rE
n
− rI

n
) = ŷI ,

V̂ n(t − rE
n
− rI

n
)− V̂ n(t − rE

n
− rI

n
− rH

n
) = ŷH ,

V̂ n(t − rE
n
− rI

n
− rH

n
) = ŷR

)
∼ (1− ŷE − ŷI − ŷH − ŷR)

N

n
(

1− λŷH
1− ŷH

qI ŷI + λqM ŷH)

= (1− ŷE − ŷI − ŷH − ŷR)
1

n
(

1− λŷH
1− ŷH

θI ŷI + θM ŷH)∆t,
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To simplify the notation from now on we will denote by τE = rE
n ,

τEI = τE + rI
n and by τEIH = τEI + rH

n . By the previous computation, we

can approximate V̂ n by the diffusion process V̂ that lives in [0, 1] and
satisfies the stochastic delay differential equation

dV̂t = (1− V̂t)
(
θI

1− λ(V̂t−τEI − V̂t−τEIH )

1− (V̂t−τEI − V̂t−τEIH )
(V̂t−τE − V̂t−τEI )

+θM(V̂t−τEI − V̂t−τEIH )
)

dt

+
[
(1− V̂t)

1

n

(
θI

1− λ(V̂t−τEI − V̂t−τEIH )

1− (V̂t−τEI − V̂t−τEIH )
(V̂t−τE − V̂t−τEI )

+θM(V̂t−τEI − V̂t−τEIH )
)] 1

2
dWt (5)

where W denotes a standard Brownian motion.
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Since the periods that an individual remains in each class E , I and H are
fixed and deterministic, we can obtain easily the proportion of the
population in each class at time t from the process V̂ .
More precisely, rescaling in the original time scale of V , we have that
V̂t − V̂t−τE gives the proportion of population at time t in the class E ,
V̂t−τE − V̂t−τEI gives the proportion of population in the class I and
V̂t−τEI − V̂t−τEIH gives the proportion of population in the class H.
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In order to compare the diffusion with the previous discrete-time model,
we present a simulation, using the environment R, about the proportion of
infected individuals of both processes for a given set of the parameters. To
facilitate direct comparison of the two plots, in the diffusion plot the time
has been rescaled by n. It appears clear that both process are very close
and the same happens for any other choice of the parameters.
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Figure : Comparison of the Markov and diffusion model for qI = 0.2, qH = 0.8,
delays rE = 16, rI = 4, rH = 5,N = 5, n = 100 and a unique starting infectious
individual.
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Application: Varicella

Varicela

The varicella, common known as chickenpox, is a highly contagious disease
caused by primary infection with varicella zoster virus. Chickenpox is an
airborne disease which spreads easily through coughing or sneezing of ill
individuals or through direct contact with secretions from the rash. The
virus is in a latent state for approximatively 15-20 days, and a person is
infectious up to four days before the rash appears. They remain contagious
until all lesions have crusted over (this takes approximately five days).
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Application: Varicella

This disease can be very well described by a SEIHR model as that defined
before. There are 15-20 days of permanency in the class E , then 4-5 days
in the class I , when the probability of contagion is approximatively of
65-70%, and other 4-6 in the class H, when the probability of contagion
reduces to 18-20%. Therefore to analyse the varicella disease we can use a
SEIHR model with:

rE = 16, rI = 4, rH = 5, qI = 0.65 and qH = 0.18.

Ferrante et al. SEiHR models 48 / 51



Application: Varicella

0 20 40 60 80 100

0
20

40
60

80
10

0

Classes

Time

In
di

vi
du

al
s  E class

 I class
H class
Infected

Figure : Multi-peaks evolution of the number of individuals in the various classes
when N = 4, n = 100, a unique initial infected individual is present and there is
no quarantine.
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Figure : Comparison of the Markov and diffusive model of varicella disease for
N = 5, n = 100 and a unique initial infectious individual.
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