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The first-passage problem: 

How do we measure search efficiency? 
 
i) Time distribution to the first passage:   𝑓(𝑡; 𝑥0) 

ii) Mean time to the first passage:   𝑇 =  𝑡𝑓 𝑡; 𝑥0 𝑑𝑡
∞

0
 

iii) First-passage probability up to time 𝑡𝑚:   𝑆 𝑡𝑚 =  𝑓 𝑡; 𝑥0 𝑑𝑡
𝑡𝑚
0
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Random search theory:   𝐴 + 𝐵 →  𝐴 
 
We will describe the position of the 𝑖-th particle through a stochastic process 𝑋𝑖(𝑡). 
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The target problem: 
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The trapping problem: 
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Movement ecology represents a new area of ecology which requires a detailed data 
processing of individual animal trajectories (obtained through telemmetry, GPS,…). 
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Search at the microscopic level 
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Human searches: 
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SAR applications 

Experiments 

Everyday experiences 



A Wiener process 𝑊(𝑡) is defined as a stationary process whose increments 𝑊(𝑡2) −
𝑊(𝑡1) follow a Gaussian distribution with zero mean and variance 𝑡2 − 𝑡1 . 
 
 
 
 
 
 

If we assume that 𝑋 𝑡 = 𝑥0 + 2𝐷𝑊(𝑡) then: 
 
i) The probability density 𝑝(𝑥, 𝑡) follows a Gaussian distribution with 𝑋 = 𝑥0 and 

𝑋2 = 2𝐷𝑡 + 𝑥0
2 

ii) It becomes impossible to define a characteristic speed for A 
iii) The problem of infinite propagation signals emerge 

 
…but the advantage is that we can describe 𝑋 𝑡  as a Gaussian (stable) process. 
 

A 

Types of motion (I):    ‘Pure’ diffusion model 
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We define the position of the particle after 𝑛 jumps as:  𝑋𝑛 =  𝑍𝑖
𝑛
𝑖=1  

…and the time it takes to perform these 𝑛 jumps as:  𝑇𝑛 =  Θ𝑖
𝑛
𝑖=1  

 
 
 
 
 
 
 
 
 
…where 𝑍𝑖 and Θ𝑖 each are i.i.d. random variables distributed, respectively, according to 
 

ϕ 𝑥 : Jump-length probability distribution function (dispersal kernel) 
𝜑 𝑡 : Waiting-time probability distribution function 

 
(This is typically known as a Continuous-Time Random Walk –CTRW- and includes the 
Lévy Flight case as a particular case) 

A 

Types of motion (II):    ‘Jump’ model 
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We use the same definition as before  𝑋𝑛 =  𝑍𝑖
𝑛
𝑖=1   𝑇𝑛 =  Θ𝑖

𝑛
𝑖=1  

 
 
 
 
 
 
 
 
 
…where now 𝜑 𝑡  and ϕ 𝑥  are not independent, but coupled through a velocity 
distribution ℎ(𝑣) in the form 
 

ϕ 𝑥 =  𝑑𝑡
∞

0

 𝜑(𝑡) 𝑑𝑡 𝛿 𝑥 − 𝑣𝑡 ℎ(𝑣)
∞

−∞

 

 
(This is typically known as the “velocity version” of the CTRW, and includes the Lévy walk 
case, together with some other that ‘mimic’ the Ornstein-Uhlenbeck process in 𝑣) 

A 

Types of motion (III):    ‘Velocity’ model 

CTRW 
Velocity CTRW 

𝑣1 
𝑣2 

𝑣3 
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𝑋(𝑡) 



Direct resolution:  
We formally define the problem as 𝐿𝐹𝑃 𝑝(𝑥, 𝑡) = 0 with boundary condition 
𝑝(𝛺, 𝑡) = 0, being 𝛺 the surface of the target, and computing the flux at 𝛺. For the 

Wiener process, for example, 𝐿𝐹𝑃 =
𝜕

𝜕𝑡
− 𝐷

𝜕2

𝜕𝑥2
. 

 
Master equation approach: 
For the Bernoulli random walk (with probability ½ to each side, jump size 𝑎 and waiting 
time 𝜏) we have 

𝑇 𝑥0 =
1

2
𝑇 𝑥0 + 𝑎 + 𝜏 +

1

2
𝑇 𝑥0 − 𝑎 + 𝜏  

 
𝑎2

2𝜏
 
𝜕2 𝑇 (𝑥0)

𝜕𝑥0
2

= −1 

 

𝑇 (𝑥0) =
𝑥0 𝐿 − 𝑥0 𝜏

𝑎2
 

Methods for finding 𝑓(𝑡) and/or 𝑇  
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Methods for finding 𝑓(𝑡) and/or 𝑇  

The renewal approach 
We assume one target located at 𝑥 = 𝑥𝑡 and introduce 𝑘𝑛(𝑡; 𝑥0) as the rate at which 
the 𝑛-th passage occurs. Using a renewal assumption we have 

 𝑘 𝑡; 𝑥0 𝑑𝑡 = 𝑘1 𝑡; 𝑥0 𝑑𝑡 + 𝑘2 𝑡; 𝑥0 𝑑𝑡 + 𝑘3 𝑡; 𝑥0 𝑑𝑡 + ⋯ = 
= 𝑓 𝑡; 𝑥0 + 𝑓 𝑡; 𝑥0 ∗ 𝑓 𝑡; 𝑥𝑡 + 𝑓 𝑡; 𝑥0 ∗ 𝑓 𝑡; 𝑥𝑡 ∗ 𝑓 𝑡; 𝑥𝑡 +⋯  𝑑𝑡 

𝑘 𝑠; 𝑥0 = 𝑓 𝑠; 𝑥0  𝑓 𝑠; 𝑥𝑡
𝑖

∞

𝑖=0

=
𝑓(𝑠; 𝑥0)

1 − 𝑓(𝑠; 𝑥𝑡)
 

𝑓 𝑠; 𝑥0 =
𝑘(𝑠; 𝑥0)

1 + 𝑘(𝑠; 𝑥𝑡)
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𝑻𝟏  

An essential advantage of this framework is that it allows a very general and intuitive 
understanding of the Mean First Passage Time (MFPT):  

𝑇 =  𝑑𝑡 𝑡𝑓(𝑡; 𝑥0)
∞

0

= lim
𝑠→0

𝑑𝑓(𝑠; 𝑥0)

𝑑𝑠
= lim

𝑠→0

𝑘∗ 𝑠; 𝑥𝑡
𝑘(∞)

−
𝑘∗(𝑠; 𝑥0)

𝑘 ∞
+

1

𝑘(∞)
 

 
 

 
𝑻𝟐  
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2. The optimal walk to the (Lévy) walk 



WHAT ARE LEVY FLIGHTS AND LEVY WALKS? 

The Lévy Flight fits our ‘jump’ model scheme with 
ϕ 𝑥  a jump length distribution which decays according 
to lim

𝑡→∞
ϕ 𝑥 ~𝑥−𝜇, with 1 < 𝜇 < 3  

 
The Lévy Walk fits our ‘velocity’ model scheme, with 𝑣 
fixed and 𝜑 𝑡  a flight time distribution which decays 
according to  lim

𝑡→∞
𝜑 𝑡 ~𝑡−𝜇, with 1 < 𝜇 < 3. 

 Note that this implies that 𝑥𝑞 ≡  𝑑𝑥ϕ 𝑥 𝑥𝑞∞

−∞
 and 𝑡𝑞 ≡

 𝑑𝑡𝜑(𝑡)𝑡𝑞
∞

0
, respectively, diverge for  𝑞 − 𝜇 ≥ −1 

 
In the Lévy Flight case these divergences extend to the overall 
behavior of the particle, so 𝑋2  also diverges. In contrast, for the Lévy 
Walk case, thanks to the coupling between flight durations and lengths 
through 𝑣: 
 

𝑋2 ~ 
𝑡2      , 1 < 𝜇 < 2

𝑡4−𝜇  , 2 < 𝜇 < 3
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2. The optimal walk to the (Lévy) walk 

THE LÉVY FLIGHT OPTIMAL SOLUTION 
 

Define the search efficiency  
1

𝑙 𝑁
 , where 𝑙  is the mean flight distance between 

targets and 𝑁 the mean number of flights to cover the distance between targets  
 
Given ϕ 𝑥 ~𝑥−𝜇 and a mean path between targets of 𝛽,  

𝑙 ≈
 𝑑𝑥 𝑥1−𝜇
𝛽

0
+ 𝛽  𝑑𝑥 𝑥−𝜇∞

𝛽

 𝑑𝑥 𝑥−𝜇∞

0

 

 

and the mean number of flights satisfies 𝑁~𝛽(𝜇−1)/2 if the target is close enough. 
All this leads to a search efficiency optimization for 𝜇 = 2. 
 
INTUITIVE MEANING 
 
    Optimal ballistic approach          Optimal reorientation (‘correction’) 

0                            𝐿 0                            𝐿 

(Viswanathan et. al. Nature 401, 911 (1999) 



2. The optimal walk to the (Lévy) walk 

THE LEVY FLIGHT FORAGING HYPOTHESIS 
 
“Given Lévy Flight optimality, evolution should have favoured sensorymotor 
mechanisms that facilitate the emergence of motion patterns similar to the Lévy case in 
search situations of poor information.”  



ARE LÉVY FLIGHTS SO SPECIAL? 

2. The optimal walk to the (Lévy) walk 



3. The optimal walk to the (intermittent) walk 



Practical example 1:  DNA facilitated target location  (1D sliding + jumping) 

3. The optimal walk to the (intermittent) walk 

Practical example 2:  Saltatory search strategies 



3. The optimal walk to the (intermittent) walk 

O. Bénichou et. al. Rev. Mod. Phys. 83, 81 (2011)  



3. The optimal walk to the (intermittent) walk 

Static mode (1D) 

For a domain of size b: 



3. The optimal walk to the (intermittent) walk 

Diffusive mode (1D) 
 
 
𝑏𝐷2 < 𝑎3𝑉2  
 
 
 
 
 
 
 
𝑏𝐷2 > 𝑎3𝑉2  

 
 



3. The optimal walk to the (intermittent) walk 

Diffusive mode (1D) 
O. Bénichou et. al. Phys. Rev. Lett. 94, 198101 (2005)  

𝜏1 ≫ 𝐷/𝑉2 𝜏1 ≪ 𝐷/𝑉2 
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4. The optimal walk to the (myopic) walk 

For a constant probability 𝛼 of detection, 𝑘 𝑡; 𝑥0 → 𝛼𝑘(𝑡; 𝑥0) 
 
 
For a speed-dependent probability 𝛼 = 𝛼(𝑣): 
 
 
 
 
 
 
 
In general, 𝛼 = 𝛼(𝑥, 𝑣, 𝑡): 
 
 
 

𝑘 𝑡; 𝑥0 𝑑𝑡 =  𝑑𝑣
∞

0

 𝑑𝑥
0

0−𝑣𝑑𝑡

𝛼(𝑣)𝑝 𝑥, 𝑣, 𝑡; 𝑥0 + 𝑑𝑣
0

−∞

 𝑑𝑥
𝑣𝑑𝑡

0

𝛼(𝑣)𝑝 𝑥, 𝑣, 𝑡; 𝑥0 ≈ 

≈  𝑑𝑣
∞

0

𝑣𝛼(𝑣)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 +  𝑑𝑣
0

−∞

𝑣𝛼(𝑣)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 

𝑘 𝑡; 𝑥0 𝑑𝑡 ≈  𝑑𝑣
∞

0

𝑣𝛼 𝑥, 𝑣, 𝑡 𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 −  𝑑𝑣
0

−∞

𝑣𝛼(𝑥, 𝑣, 𝑡)𝑝 0, 𝑣, 𝑡; 𝑥0 𝑑𝑡 



4. The optimal walk to the (myopic) walk 

 
 
 

𝑻𝟏  

 
 
 

𝑻𝟐  

Case 1D ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡 or 𝜑 𝑠 = 𝑒−𝑎 𝑘 𝜇
, 𝛼 = 𝑒−𝛾𝑣  

 𝑇 =
2𝑥0 𝐿−𝑥0 𝜆

𝑣2
+

𝐿

𝑣𝛼(𝑣)
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𝑻𝟏  

 
 
 

𝑻𝟐  

Case 2D or higher ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡, 𝛼 = 𝑒−𝛾𝑣  

𝑇 =
𝐿2

𝑣2
𝑔𝑑 𝑥0 +

𝐿𝑑

𝐴𝑣𝛼(𝑣)
=

𝐿2

𝑣2
𝑔𝑑 𝑥0 +

1

𝜌

1

𝐴𝑣𝛼(𝑣)
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Case 2D with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡 or 𝜑 𝑠 = 𝑒−𝑎 𝑘 𝜇
,  𝛼 = 𝑒−𝛾𝑣  



5. The optimal walk to the (mortal) walk 



For a constant mortality rate 𝜔: 
 
 
 
Here 𝑆(∞) is the most relevant parameter: 
 
 
 
 
For the ‘pure’ diffusion model: 
 
 
 
 

For the ‘velocity’ model with 𝑣 fixed and 𝜑 𝑡 = 𝜆𝑒−𝜆𝑡:  

 𝑘 𝑡; 𝑥0 → 𝑒−𝜔𝑡𝑘(𝑡; 𝑥0)         →       𝑘 𝑠; 𝑥0 → 𝑘 𝑠 + 𝜔; 𝑥0       →     𝑓 𝑠; 𝑥0 =
𝑘(𝑠+𝜔;𝑥0)

1+𝑘(𝑠+𝜔;𝑥𝑡)
                                              

𝑆 ∞ =  𝑑𝑡 𝑓(𝑡; 𝑥0)
∞

0

= lim
𝑠→0

 𝑑𝑡 𝑒−𝑠𝑡𝑓(𝑡; 𝑥0)
∞

0

= lim
𝑠→0

𝑓(𝑠; 𝑥0) 

𝑆 ∞ = 1 −
𝜔(𝜔 + 𝜆) 𝑒− 𝜔 𝜔+𝜆 𝑥0/𝑣 + 𝑒− 𝜔 𝜔+𝜆 𝐿−𝑥0 /𝑣

𝜔 1 − 𝑒− 𝜔 𝜔+𝜆 𝐿/𝑣 + 𝜔(𝜔 + 𝜆) 1 + 𝑒− 𝜔 𝜔+𝜆 𝐿/𝑣
 

𝑆 ∞ = 1 −
𝜔𝜆 𝑒− 𝜔𝜆 𝑥0/𝑣 + 𝑒− 𝜔𝜆 𝐿−𝑥0 /𝑣

1 + 𝑒− 𝜔𝜆 𝐿/𝑣
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Implications for the Lévy flight paradigm: 

5. The optimal walk to the (mortal) walk 



6. The optimal walk to the (systematic?) walk 



NON-PERFECT DETECTION: SACCADE-FIXATION MECHANISM 

𝑐 = 1              𝑐 = 0.2 

6. The optimal walk to the (systematic?) walk 



6. The optimal walk to the (systematic?) walk 

Optimal search theory: 

“Random” search  
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Optimal effort allocation vs optimal path planning 

Parallel 
Sweep (PS) 

Archimedean 
spiral (AS) 
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Errors in pattern sizing 
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Errors in prior information 



6. The optimal walk to the (systematic?) walk 

Example:  Ellberg’s paradox 

30 balls 
 
Red: 10 
Yellow+Black: 20 

Does it make any sense to foresee human errors? 
 
 
    According to psychologycal research during the last 50 years, yes 



6. The optimal walk to the (systematic?) walk 
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