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» Let L be a mean-zero Lévy process defined on [0, T7.
» Let A\ be stochastic process, independent of L.

> )\ is positive dt x dP a.e., continuous in probability and
E[ f," As ds] < oc.

> Let A, := fot A ds
Then
N = L/”\t
is a process with conditionally independent increments (Cll). We
have

t ~
L;\t 4 B; +/ / z H(ds, dz)
~~ 0 JRo N——

Time changed Brownian Doubly stochastic Poisson



Define the random measure A on [0, T] x R by

T T
/\(A) = 1{(t,O)EA}(t) Aedt + 1A(t,z) V(dz))\tdt,
0 0 Ro

Let F* be the o-algebra generated by A.
The time changed Brownian motion

P(B(A) < z|F) = P(B(A) < z[A(8)) = o i),
reR, ACI0,T]x {0}. Here ® is the CDF for the standard
normal r.v.

The doubly stochastic Poisson

P(H(D) = k|FN) = P(H(A) = k|NA)) = MAY —A(B),

keN, AC0,T] xRg. Set H(dt,dz) = H(dt,dz) — v(dz)\dt,
where v is a deterministic on Ry satisfying [ 22v(dz) < .




Definition
The signed random measure p is given by

u(8) == B(AN[0, T]x{0})+H (AN[0, T]xRo), A C [0, T]xR.

» F:={F;,t€|0,T]} is the filtration generated by .
> G :={G, t €0, T]} with G = F; v FN.
» 4 is a martingale random field with respect to G and F.

Some properties:
> E[u(A) | 7] = 0.
> E[p(A1)u(A2) | FA =0 for AN Ay =0
> E[pu(A)* | FN = AD).



Relevance to mathematical finance

The time-changed Lévy processes occur in mathematical finance in
the modeling of asset prices as follows:

as, = Se. (v dt + / bul2) u(dt, dz)

= S, (o dt + 44(0) dBy + / vi2) Edt dz)) S >0. (1)

Ro

v

Here S would be F-adapted.

Examples include stochastic volatility models like [1, Carr et al
'03], [2, Stein et al '91].

When the independence between L and A is satisfied, also [3,
Heston '93].

Models of this type is also used in credit risk [4, Lando '98]
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The integral representation

T is the G—pred|ctable random fields satisfying
Elfy fr#s(2)*N(ds, d2)] <

Theorem ( Jacod and Shiryaev (2003) [5] )
Assume & € Ly(Q, F,P). Then there exists a unique ¢ € L such

that ,
E[¢|FN + / / u(ds, dz). 2)
0

» The two summands in (2) are orthogonal.

» The representation in (2) is not possible with ¢ F-adapted
unless A is deterministic.



The BSDE

Let £ € Ly(Q, Fr,P). (Remark that Fp = Gr.)
We are interested in

§ / ()\57 Y57¢5 /T/¢s dS dZ
t R
T

=t [ 00 Ver0) s

t

#\’ﬂ

64(0) dB, — / / 6.(2) B (ds, d2)

t Ro

with ¢ € 7 and suitable conditions on g.



Definition
We say that (&, g) are standard parameters when § € Ly(Q, F,P)
and g: [0, T] x [0,00)? x R x ® x Q — R such that g satisfies (for

some K, > 0)

g.(\, Y, ¢,-)is G-adapted,

IEJ[/OTgs(A,O,O)2 ds] < oo,

196 ((A), 1, 6M) = ge(A), 92, 6P| < Kg<|y1 — 1]

+190(0) ~ 6AOVA + J [1606) - g0 )2 (V).
Ro

for all (\) € [0,00)%, 41, % € R, and
60 + 6®)(0)]* + / 6D () + 163 (2)]* v(dz) < 0o dt x dP ae
Ro



Theorem

Let (g,&) be standard parameters. Then there exists a unique
couple (Y, ) € S x T such that

Y = §+igs(As, Ys, ¢s) ds—/T/ os(2) u(ds, dz)
t t
=£+/Tgs(ks, Y, ¢s) ds /Tqbs(o dB, — //qf)s(z (ds, d2).
t t t Ro

Remark. From the construction in the proof and properties of
integral representation we have

T

Yo = E[f + / gs()\s> Y, ¢s) ds ‘]:A}

0



Proof.
Let (g,&) be standard parameters. S is the space of G-adapted
stochastic processes such that

1/2
1 Y]|s := E[supgc;<r | Vil?] /? < 0.
Define the mapping

©:SxIT—SxI, O,y :=(Y,0¢)

as follows. The component ¢ is given by martingale representation
as the unique element in Z so that

Mt:Mg—i—/Ot/Rqﬁs(z)u(ds, d&z), telo,T]

of the martingale M; = E[¢ + [, gs(\s, Us,s) ds |Gy].
The component Y in the mapping © is defined by

Yt = E[§ + /tTgs()‘57 Usvws) ds ‘gt}7 te [07 T]'



proof cont.

» From the inequalities in the conditions on the standard
parameters we can show that © is well defined.

» © is a contraction on the interval [¢, T] for some 0 < t; < T.

» We can prove an unique solution ¥, ¢ exist on [t;, T] in a
suitable sense.

» Consider a new BSDE on the interval [0, t;] with terminal
condition Y3, and driver g.

» There exist 0 < {5 < ¢ so that © is a contraction on the
interval [t1, T'] (in a suitable sense).

» Repeating the procedure and combining the results from
different intervals yields the result.



Optimization

The performance functional:

T

J(u) :E[/ft()\t,ut,Xt_)dt—i— I(Xr)],

with state process X;, Xy € R,

dX; = bt(/\t, U, Xt_) dt + /Ht(z, Aty Ut Xt_) M(dt, dz),
R

> (z,w), z € R, w € Q differentiable in z.

> i\ u,2,w), t€[0, T, A€[0,0)?, uelU, z€ER, weQ
differentiable in x

» U/ C R is a closed, convex set.



Definition
The admissible controls are caglad stochastic processes
u: [0, T] x Q — U, such that X has a unique strong solution,

T
B[ [ 1C s X0 )P dt 4+ 10X0)| + [0,1(X7) 2] < oc,
0

and for some K; > 0 we have

8951175(0, )\t, U, Xt_)‘\/rt < Kl dt x dIP’—a.e,

k(2 AL, U, Xt )) v(az t < Ky dt x dP-a.e,
/(a (2, Aps g, X)) ov(d2) VA < Ky dt x dP
Ro

|8xbt()\t,ut,Xt_)| < Kl dt x dP-a.e.

The admissible controls are either G-predictable or [F-predictable
and we denote these sets as A% and AF respectively.



We define the Hamiltonian,
H:[0,T] x[0,00) ) xUXxRXxRx®xQ— R by

Hi(Ne, ug, Xe, Vi, 00) = fi(Aes e, Xi) + be( g, ug, Xi) Yy

+ a(0, Mg, s, X2) e (0) A + / ki(2, A, 2)(2) A v(dz2).
Ro

Corresponding to the admissible pair (u, X) is the couple (Y, ),
which is the solution to the BSDE

T
Yy, = 0,1(X7) —l—/(??-[ (N, us, X\ Y5,¢S)ds—//¢5 w(ds, dz),

t



Theorem
Let & € AC. Assume that

| / / ¥ a(2) — ()[R X)) A, d2)] < oo

for all u € AC. If
hi(z) = max Hi( Ay u, 2, Vie, dy)

exists and is a concave function in x for all t € [0, T] P-a.s., and
He(Mes e, Xie, Vi, 60) = he(X)

for all t € [0, T, then 1 is optimal for J(u).



Proof.
We use a technique from [6, Framstad et al 2004]

E| UXr) - UX1)| > E[0, U&r)(Xr - X1)| =E| Vo (X7 - X7)]

Combining the above with

>

}s _fs = 7:[5(@5, j\(s—) - 7:[5(“57 Xs—) - (?)s - bs) s-
= (3a(0) = Aa(O)BOA = [ (F(2) = w2 () Mev(d2),

0
gives

A~

TORMOEIF RIS
= Ay, X,) = (X = X0 )0 (0, Xy )} ds].

The result then follows from a concavity argument. O



Theorem
Let & € A¥. Assume the integrability conditions holds. Denote

H]f()\h u,x, i\/t—a ggt) = E[Ht(Atv u,r, AYt—7 (th) |‘Fti|
= ft()\ta u, l‘) + bt()\t, u, I)E[Yt_ }./T"t] + Iit(o, )\t, u, I)E [Q@f(o) |ft]

+ /Iit(z, A, u, 2)E[04(2) | Fi] A v(dz)
Ro

for all t € [0, T]. If
hi (z) = max Hi (A, u, @, V1., 1)

exists and is a concave function in x for all t € [0, T], and
HE e, Ko, Vi d0) = 1 (X0,

then (1, X ) is the optimal F-adapted solution.



Proof.

We can use the same arguments as in the G-predictable case to get

T A
J(0) — J(u) > E[/O Hs(fs, Xs-) — Ho(us, Xs-)—
(X — Xo) A5, X, ) ds].

By the linearity of the strictly G-measurable terms

T A ~ N N ~ A
E[/ Hs(a& Xs—) - Hs(“s: Xs—) - 8$Hs(as; Xs—)(Xs— - Xs—) ds]
0
T A ~ A
_ E[/ FE (e, R = F (e, X)) — O (e, K) (R — Xo) ds].
0

Which is exactly the expression & € AF maximizises. O



A necessary maximum principle

Assume the following

» Forall t,r €[0,T], t <r < T, and F;-measurable random
variables « satisfying a(w) € U a.s., the control
B(s) = a(w)1(y,(s) belongs to AF.

» For all u, 8 € AF with 3 bounded there exists § > 0 such that
u+yB e AF for y < 4.

> For y<o

aft()\t, ug + yBe, X yﬂ) is uniformly dt x dP-integrable.

dcgl’( ;ﬁﬂ’ﬁ) is unlformly P-integrable

» The process C,Eu’ = ayX”erﬂ|y o exists as an element of
I5(Q,G,P).



Theorem
Let & € A¥. Suppose

//’Y 8/~<;s u,B 855 )‘ _’_|C;Lﬁ¢ (z)‘Q (ds,dz)} < 0o

holds for all bounded, admissible controls 3 € AF.
If @ is a critical point for J(u), in the sense that

gyj(ﬂ + yﬁ)]yzo =0 for all bounded 3 € AF,
then

B[ D (i, R B[ 7] =0, dix dP-ae

)



Proof.
» Assume % is a critical point
» Compute d%J(fH— yf3) evaluated at y = 0.

> Let f4(w) = a(w)ls +4(s) where a is a Fy-measurable
random variable and 0 < ¢t < t+ h < T.

This leads to

. t+h
OzE{t/ (g‘ﬁ + V. ab Jads + t/R/%/r(z)qgs(z)a/\(ds, dz)}

Taking the derivative of h at h = 0 gives the desired result.

O



Application: Optimal mean-variance portfolio selection
Two assets, a risk free asset R and a risky asset S defined by
dR: = pt Ry dt, Ry =1,
dS; = ;S dt + Sy / bs(2) ulds, dz), S > 0.
R

Let u denote the amount of wealth invested in the risky asset S
and assume the portfolio is self-financing. The wealth equation is

dX; = [pe Xt + (ar — pe)ug] dt + ut/ws(z) w(ds, dz).
R

Want to solve the mean-variance portfolio problem

sup J(u) = sup E[— %(XT — k)ﬂ, keR
u€ AF uc AF



Theorem
Consider the feedback control & € AF given by

1 (e = po) (B[4 FIX(EF) + E[C|F)
CE[AF] [i0)PAF + fi, [e(2) 12 M v(d2)

where A and C is given by

~F
ut -

_ (e ps)2 _
At“‘”‘p{‘t/ GO+ Ty WP AT @)~ 20

B (as — PS)Q B o
t/ GO+ oy o)

Cy = kexp{

If certain integrability assumptions holds then
J(&F) = supyear J(u).



Proof.

>

Studying the linear representation, we guess that

Y; = E[A,|F)X; + E[Cy|F]

Study Y; via the product rule from Itds formula. This requires
the computation of dE[A¢|F].

Show that with & as in the Theorem, Y is indeed a solution
of the adjoint equation.

Show that the conditions from the sufficient maximum
principle are satisfied.



Linear BSDEs

Theorem

~dYi = [AYi+ G+ BOo(OVN + [ Bi(2)ou(2) ()] dt
—00) dBi — [ o) (e, d), Vi =& 3)

where the coefficients satisify (for some Kg > 0)

» A is a bounded stochastic process P-a.s.,

> B[S, |es]? ds] < oo,

» FcT,

» 0 < Ey(z) < Kgz for z € Ry, and |E,(0)| < Kg dt x dP-a.e.
Then (3) has an unique solution (Y, ¢) in S x I.



Linear BSDEs continued

... furthermore Y has representation

T
v, = E[er (1) —|—/Fs(t)05 ds|G,]. te[o, 7],

t

where

1 1 -~
ary(s) = Fe(s) (4 dt+Et(O)% dB+ / Ei(2) {\A/%O} F(at, dz)).
Ro

for s <t < T and we have I',(t) = 1. (The equation on the
previous page was:

~dYi = [AYi+ G+ BOo(OVN + [ Bi2)ou(2)v(d2)v/N] dt
—o0)dBi— [ o) H(dtd). Y =¢).



1
The term % occurs because we need
t

[1EG I < J JIEE u(dz)J [ v,
Ro Ro

Ro
< KEJ/Z2 V(dz)\l

Ro Ro
1
to have standard parameters. But we also need that Et(z)%
t

is square integrable with respect to A x P.



Proof.

» The conditions on the coefficients ensure that it is a BSDE
with standard parameters.

> with I, = [4(0)

d(Y[y) =

1
— T Cydt + {Ft_@(O) + Yt_Et(O) {\);)\it()}} dBy —|—/ [(ﬁt(z)rt_
Ro

1 1 ~
+ Yt_rt_Et(z)% + rt_qﬁt(z)Et(z)%} f(dt, d2).
t t

» Hence Y;I'; + fot MsCsds, t €10, T), is a G-martingale so that

t T
Ytrt+/rsos ds:JE[YTrT+/rSCS ds]gt]
0 0



Theorem

Let (¢, M) and (¢, £®)) be two sets of standard parameters
for the BSDE's with solutions (Y1), ¢(1)), (Y ¢(2)) € § x T.
Assume that

3O 9.60) = £ (1 60OV, [ $(2)mi(2) () VA w)
Ro

where k € T satisfies certain boundedness conditions and f
satisfies, for some K; > 0,

fi(y, b, h) = fi(y', V', )| < Kf(\y — |+ [b—V]+|h— h'|), dt x dP a

E[/OT 1£:(0,0,0)[ dt] < 0.

IFEM < €® Puas and g0, Y, 61V) < o0, ¥, 6V)
dt x dPP-a.e., then

Y < v® gt x dP-a.e.
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