Cylindrical Lévy processes

in Banach spaces and Hilbert spaces

Markus Riedle

King's College

London



Wiener processes

Definition Let U be a Hilbert space.
A stochastic process (W (t) : t > 0) with values in U is called
Wiener process, if

(1) W(0)=0;

(2) W has independent, stationary increments;

(3) W(t) — W(s) Z N(0, (t — 5)Q) forall 0<s<t,

where () : U — U is a linear operator with the following properties:
symmetric: (Qu,v)y = (u, Qu)y for all u,v € U;

non-negative: (Qu,u)y = 0 for all u € U;
©.@)

nuclear: Z(Qek,ek>U < oo for an orthonormal basis {e }ren.
k=1



Cylindrical random variables

and

cylindrical measures



Cylindrical processes

Let U be a Banach space with dual space U* and dual pairing (-, )
and let (€2, @7, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping
X :U* — L%(Q:;R) linear and continuous.

A cylindrical process in U is a family (X(t) : t > 0) of cylindrical

random variables.

e |. E. Segal, 1954
e I. M. Gel'fand 1956: Generalized Functions

e L. Schwartz 1969: seminaire rouge, radonifying operators



Cylindrical measures

Let X :U* — LY(Q;R) be a cylindrical random variable.

For ai,...,a, € U*, B €*B(R") and n € N the relation
p({ueU: (wa),.... (wan) € B} ) = P((Xar

defines the cylindrical measure

- {all cylindrical sets} — [0, 1].

...,Xan)eB)



Cylindrical measures

Let X :U* — LY(Q;R) be a cylindrical random variable.

For ai,...,a, € U*, B €*B(R") and n € N the relation
p({ueU: (war),.... (ua.) € BY ) == P((Xay,

defines the cylindrical measure

- {all cylindrical sets} — [0, 1].

e for fixed aq,...,a, € U* the mapping
Bl—),u({u cU: ((u,ay),...,{u,ay)) € B})
is a probability measure on B(R");

e finitely additive on the sets of cylindrical sets;

e not defined on the Borel o-algebra 6 (U).

...,Xan)EB)



cylindrical measures: characteristic function
For a cylindrical measure 1 the mapping

o, U — C, pu(a) = /Uei<“’a> p(du)

is called characteristic function of .

Theorem (Uniqueness)

For cylindrical measures 1 and v the following are equivalent:



Example: induced cylindrical random variable

Example: Let X : QQ — U be a (classical) random variable. Then
Z:U* = L% R), Za:= (X, a)

defines a cylindrical random variable.



Example: induced cylindrical random variable

Example: Let X : QQ — U be a (classical) random variable. Then
Z:U* = L% R), Za:= (X, a)
defines a cylindrical random variable.

But: not for every cylindrical random variable Z : U* — L%(Q; R) there
exists a classical random variable X : 2 — U satisfying

Za=(X,a) for all a € U™,



Example: cylindrical Wiener process

Definition:
A cylindrical process (W (t) : t > 0) is called a cylindrical Wiener
process, if for all a1,...,a, € U* and n € N the stochastic process :

((W(t)al, W (Bay) : > o)

is a centralised Wiener process in R".



Example: cylindrical Wiener process

Definition:
A cylindrical process (W (t) : t > 0) is called a cylindrical Wiener
process, if for all a1,...,a, € U* and n € N the stochastic process :

<(W(t)a1, L W(bay) s > o)

is a centralised Wiener process in R".

“Theorem”

Every object which satisfies one of the definitions of a cylindrical Wiener

process in the literature satisfies (in a certain sense) the definition above.



Cylindrical Lévy processes



Definition: cylindrical Lévy process

Definition: (Applebaum, Riedle (2010))
A cylindrical process (L(t) : t > 0) is called a cylindrical Lévy process,
if for all a1,...,a, € U" and n € N the stochastic process :

((L(t)al, L L(ay): > o)

is a Lévy process in R".



Infinitely divisible cylindrical measure

Definition
A cylindrical measure p is called infinitely divisible if for each £ € N

there exists a cylindrical measure 1 such that

pu(a) = (¢, (a))*  forallaecU*

Example: if (L(t) : t > 0) is a cylindrical Lévy process then the
cylindrical distribution of L(1) is infinitely divisible.



Lévy-Khintchine formula

Theorem: For a cylindrical measure i the following are equivalent:
(1) w is infinitely divisible;

(2) the characteristic function of y is of the form

@A@:qmpmeyr@myﬁL(aW@—1—¢mﬂm@4@¢m)yum>
=: exp (Yp,q,u(a)>

where e p: U* — R is (non-linear) continuous and p(0) = 0;

e ¢g:U* — R is a quadratic form;

e v cylindrical measure, / ((u,a>2 A 1),V(du) < oo for all a € U*;
U

.cu»(mmyﬂL(aw®—1—¢m@m@4m@»)Vum)

Is negative definite.



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

WV
=

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t > 0).

Example 0: for h; standard, real-valued Brownian motion:

(0k)ken € £7° <= cylindrical (Wiener) Lévy process

(0k)ken € £2 <= honest (Wiener) Lévy process



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

WV
=

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢

Example 1: for h; Poisson process with intensity 1:

(0k)keN € (?* <= cylindrical Lévy process

(0k)keN € ¢! <= honest Lévy process



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t > 0).

Example 2: for h; compensated Poisson process with intensity 1:

(0k)ken € £° <= cylindrical Lévy process

(0k)keN € (> <= honest Lévy process



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

(e, u")ophi(t)

Mg

k=1

WV
=

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : ¢

Example 3: for h; symmetric, standardised, a-stable:

(0k)keN € ¢20)/(2=2) . cylindrical Lévy process

(0k)ken € LY <= honest Lévy process



Example: subordination

Theorem
Let W be a cylindrical Wiener process in a Banach space U,
¢ be a real-valued Lévy subordinator, independent of .

Then, for each t > 0,
L(t):U" — L%(Q; R), L(t)u™ =W (£(t))u"

defines a cylindrical Lévy process (L(t): t > 0) in U.



Stochastic integration



Stochastic integration w.r.t

cylindrical semi-martingales

o M. Métivier, J. Pellaumail, 1980
e G. Kallianpur, J. Xiong, 1996

e R. Mikulevicius, B.L. Rozovskii, 1998.



Stochastic integral: motivation

Assume: Y classical Lévy process in a Hilbert space H

n—1
U(s) =Y Ly t,,)()Pk for @4 :Q — Z(H, H).
k=0

Then { /O () dY (), h) = S (@(Y (tesr) — Y (). h)
= Z<Y(tk+1) — Y (tx), Prh)



Stochastic integral: motivation

Assume: Y classical Levy process in a Hilbert space H

Zﬂ(tk o] (5)@5 for @y Q — L(H, H).

Then ( /O B(s)dY (s), h) = Z(@k(Y(tkH) _Y(t). h)
— Z tk—l—l )7 ¢Zh>

= Z ( (thy1) — )) (®%h)

if (L(t):t=>0)is a cylindrical Lévy process in H.



Stochastic integral: motivation

Assume: Y classical Levy process in a Hilbert space H

Zﬂ(tk o] (5)@5 for @y Q — L(H, H).

Then ( /O B(s)dY (s), h) = Z(@k(Y(tkH) _Y(t). h)
— Z tk—l—l )7 ¢Zh>
= Z ( (thy1) — )) (®%h)

if (L(t):t=>0)is a cylindrical Lévy process in H.

Two problems:

e does there exists a random variable Jj : {2 — H such that:

(Jg, h) = (L(tkH) — L(ty,))(®h) forall h e H.

e Is the mapping ¥ — fo s)dL(s) continuous?



Radonifying the increments

Consider for fixed 0 < t; < tx11 a simple random variable

©:Q— LH(HH)  Bw):=) La(we
i=1
where ¢, € % (H, H)
A e Fy =0(L(s)h: se€|0,tg], h € H).

Since ; is Hilbert-Schmidt there exists Z; : {) — H such that

(L(tps1) — L(ty)) (03h) = (Zi,h)  forall h e H.



Radonifying the increments

Consider for fixed 0 < t; < tx11 a simple random variable

b0 — L(H, H) ZJIA W) i,
where ¢, € % (H, H)
A€ Fy :=0(L(s)h: s€(0,tg], h € H).
Since ; is Hilbert-Schmidt there exists Z; : {) — H such that
(L(tk+1) — L(tr)) (pih) = (Zi, h) for all h € H.

Define the H-valued random variable
®(L(tpy1) — Z La, Zs.

It satisfies for each h € H:

(P(L(tps1) — Z La; (L(tkt1) — L(tx)) (e} h)



Radonifying the increments

Theorem: (with A. Jakubowski)
Let O < ?x < tr41 be fixed. For each .7 -measurable random variable

®:0— %(H, H),

there exists a random variable Y : 2 — H and a sequence {®,,},cn of
simple random variables such that ®,, - ® P-a.s. and

Y = lim @, (L(tx+1) — L(tx)) in probability.

n—oo

Define: @ (L(tp11) — L(ty)) := Y.



Defining the stochastic integral

For a simple stochastic process of the form

N-1

\P:[O,T]XQ%‘,%Q(H,H), l(t tj-l—l

7=0
where 0 =tg <t;1 < --- <ty =T,
$;:Q— £(H,H) is F,-measurable,
define the H-valued stochastic integral
N—-1
I(W) = )  ©;(L(tj41) — L(t;))

7



Defining the stochastic integral

For a simple stochastic process of the form

N-1
U0, T xQ2— % (H,H), L, tj_|_1 7
7=0
where 0 =tg<t;1 < - <ty =T,
$;:Q— £(H,H) is F,-measurable,
define the H-valued stochastic integral
N—-1
I(W) = )  ©;(L(tj41) — L(t;))
j=0

Simple stochastic processes are dense in

H(Ls) ={V:Q— D_([0,T], %(H,H)) : predictable},

where D_([0,T], %(H,H)) :={f:[0,T] — %(H, H) : caglad},

equipped with the Skorokhod J;-topology.



Defining the stochastic integral

Theorem: (with A. Jakubowski)
For every U € J7(%,) there exists an H-valued random variable ()

and a sequence {V¥,, },cn of simple stochastic processes such that ¥,, —
v P-a.s. in J; and

T
/ U(s)dL(s) == lim I(¥,) i probability.
0

n—oo



Defining the stochastic integral

Theorem: (with A. Jakubowski)
For every U € J7(%,) there exists an H-valued random variable ()

and a sequence {V¥,, },cn of simple stochastic processes such that ¥,, —
v P-a.s. in J; and

T
/ U(s)dL(s) == lim I(¥,) i probability.
0

n—oo

Proof: Show that
(1) {I(V,): ne N} is tight
(2) for every h € H there exists a real-valued random variable Y}, such

(I(¥,,),h) — Yy in probability



Special case: deterministic integrands

Let U, V be separable Banach spaces
U := ¢ for deterministic ¢ : [0,T] — £ (U, V)

Theorem: Let L be a cylindrical Lévy process with cylindrical characte-
ristic . : U" — C. Then the following are equivalent:

(1) % is integrable w.r.t. L;
(2) The function ¢ : V* — C,

(") = exp ( / F (W (5)0°) ds>

is the characteristic function of a Radon measure on B(V).



Ornstein-Uhlenbeck process



Stochastic evolution equations

dX(t) = AX(t)dt + GdL(t) for all ¢t € [0, T]]

e A generator of Clp-semigroup (S(t))i>0 in V;
e G:U— Z(UV);
e (L(t): t > 0) cylindrical Lévy process in U.

Definition: A stochastic process (X () : t € [0,T]) in V is called
a weak solution if it satisfies for all v* € D(A*) and t € [0,T]
that

(X (1), v") = (X(0),v") + /O (X (s), A*v*) ds + L(s)(G*v").



Stochastic evolution equations

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0, T]]

e A generator of Clp-semigroup (S(t))i>0 in V;
e G:U— Z(UV);
e (L(t): t > 0) cylindrical Lévy process in U.

Theorem: The following are equivalent:
(a) t — S(t)G is stochastically integrable;
(b) there exists a weak solution (X (¢) : t € [0,T]).

In this case, the weak solution is given by

X(t)=5(0)X(0) + /Ot S(t—s)GdL(s) for all t € [0,T].



Spatial regularity

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0, T]]

e A generator of Clp-semigroup (S(t))i>0 in V;
e G:U— Z(UV);
e (L(t): t > 0) cylindrical Lévy process in U.

Corollary:
Assume that S(¢)(V) € W for all t > 0 for a Banach space
W C V. Then the solution X is WW-valued iff

P07 = 2(V, W), f(t) = S(H)G

is stochastically integrable.



Temporal regularity

dX (t) = AX(t)dt + dL(t) for all t € [0,T]

e A generator of Clp-semigroup (S(%))i>0 in V;
e IV Hilbert space with ONB (eg)ren;
e (L(t): t > 0) cylindrical Lévy process in V.

Theorem: Let v be the cylindrical Levy measure of L. If there exists a
constant K > 0 such that

nli_)rr(;u({v cV: i(v,ekﬁ > K}) = 00,

k=1

then the solution does not have a (weak) cadlag modification.



Temporal regularity

dX (t) = AX(t)dt + dL(t) for all ¢t € [0,T]]

e A generator of Clp-semigroup (S(%))i>0 in V;
e IV Hilbert space with ONB (eg)ren;
e (L(t): t > 0) cylindrical Lévy process in V.

Example: (Peszat, Zabczyk, Imkeller,....Liu, Zhai)
Let (L(t) : t > 0) be of the form

ek, O'khk; for all v™ € V*,

Mg

k=1

where hy, are real-valued, a-stable processes and (o},) € ¢(22)/(2=@)\ p

Then the solution does not have a cadlag modification.



Temporal regularity

dX (t) = AX(t)dt + dL(t) for all t € [0,T]

e A generator of Clp-semigroup (S(%))i>0 in V;
e IV Hilbert space with ONB (eg)ren;
e (L(t): t > 0) cylindrical Lévy process in V.

Example: (Brzezniak, Zabczyk)
Let (L(t) : t > 0) be of the form

L(t)v" =W (L(t))v" for all v* € V™,
where W is a cylindrical but not a classical Wiener process in V' and

¢ a real-valued Lévy subordinator. Then the solution has not a cadlag
modification.
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