Cylindrical Lévy processes

in Banach spaces and Hilbert spaces

Markus Riedle

King's College

London

Wiener processes

Definition Let U be a Hilbert space.

A stochastic process $(W(t):t\geqslant 0)$ with values in U is called Wiener process, if

- (1) W(0) = 0;
- (2) W has independent, stationary increments;
- (3) $W(t) W(s) \stackrel{\mathscr{D}}{=} N(0, (t-s)Q)$ for all $0 \leqslant s \leqslant t$,

where $Q:U\to U$ is a linear operator with the following properties:

symmetric: $\langle Qu, v \rangle_U = \langle u, Qv \rangle_U$ for all $u, v \in U$;

non-negative: $\langle Qu, u \rangle_U \geqslant 0$ for all $u \in U$;

nuclear: $\sum_{k=1}^{\infty} \langle Qe_k, e_k \rangle_U < \infty$ for an orthonormal basis $\{e_k\}_{k \in \mathbb{N}}$.

Cylindrical random variables

and

cylindrical measures

Cylindrical processes

Let U be a Banach space with dual space U^* and dual pairing $\langle \cdot, \cdot \rangle$ and let (Ω, \mathscr{A}, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping

$$X:U^* \to L^0_P(\Omega;\mathbb{R})$$
 linear and continuous.

A cylindrical process in U is a family $(X(t): t \ge 0)$ of cylindrical random variables.

- I. E. Segal, 1954
- I. M. Gel'fand 1956: Generalized Functions
- L. Schwartz 1969: seminaire rouge, radonifying operators

Cylindrical measures

Let $X: U^* \to L^0_P(\Omega; \mathbb{R})$ be a cylindrical random variable.

For $a_1, \ldots, a_n \in U^*$, $B \in \mathfrak{B}(\mathbb{R}^n)$ and $n \in \mathbb{N}$ the relation

$$\mu\Big(\left\{u\in U:\, (\langle u,a_1\rangle,\ldots,\langle u,a_n\rangle)\in B\right\}\Big):=P\Big((Xa_1,\ldots,Xa_n)\in B\Big)$$

defines the cylindrical measure

 $\mu : \{ \text{all cylindrical sets} \} \rightarrow [0, 1].$

Cylindrical measures

Let $X: U^* \to L^0_P(\Omega; \mathbb{R})$ be a cylindrical random variable.

For $a_1, \ldots, a_n \in U^*$, $B \in \mathfrak{B}(\mathbb{R}^n)$ and $n \in \mathbb{N}$ the relation

$$\mu\Big(\left\{u\in U:\, (\langle u,a_1\rangle,\ldots,\langle u,a_n\rangle)\in B\right\}\Big):=P\Big((Xa_1,\ldots,Xa_n)\in B\Big)$$

defines the cylindrical measure

$$\mu: \{\text{all cylindrical sets}\} \rightarrow [0,1].$$

• for fixed $a_1, \ldots, a_n \in U^*$ the mapping

$$B \mapsto \mu \Big(\{ u \in U : (\langle u, a_1 \rangle, \dots, \langle u, a_n \rangle) \in B \} \Big)$$

is a probability measure on $\mathfrak{B}(\mathbb{R}^n)$;

- finitely additive on the sets of cylindrical sets;
- not defined on the Borel σ -algebra $\mathfrak{B}(U)$.

cylindrical measures: characteristic function

For a cylindrical measure μ the mapping

$$\varphi_{\mu}: U^* \to \mathbb{C}, \qquad \varphi_{\mu}(a) := \int_U e^{i\langle u, a \rangle} \, \mu(du)$$

is called characteristic function of μ .

Theorem (Uniqueness)

For cylindrical measures μ and ν the following are equivalent:

- (1) $\mu = \nu$;
- (2) $\varphi_{\mu} = \varphi_{\nu}$.

Example: induced cylindrical random variable

Example: Let $X:\Omega \to U$ be a (classical) random variable. Then

$$Z: U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Za := \langle X, a \rangle$$

defines a cylindrical random variable.

Example: induced cylindrical random variable

Example: Let $X:\Omega \to U$ be a (classical) random variable. Then

$$Z: U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Za := \langle X, a \rangle$$

defines a cylindrical random variable.

But: not for every cylindrical random variable $Z:U^*\to L^0_P(\Omega;\,\mathbb{R})$ there exists a classical random variable $X:\Omega\to U$ satisfying

$$Za = \langle X, a \rangle$$
 for all $a \in U^*$.

Example: cylindrical Wiener process

Definition:

A cylindrical process $(W(t): t \ge 0)$ is called a *cylindrical Wiener* process, if for all $a_1, \ldots, a_n \in U^*$ and $n \in \mathbb{N}$ the stochastic process :

$$\left((W(t)a_1, \dots, W(t)a_n) : t \geqslant 0 \right)$$

is a centralised Wiener process in \mathbb{R}^n .

Example: cylindrical Wiener process

Definition:

A cylindrical process $(W(t): t \ge 0)$ is called a *cylindrical Wiener* process, if for all $a_1, \ldots, a_n \in U^*$ and $n \in \mathbb{N}$ the stochastic process :

$$\left((W(t)a_1, \dots, W(t)a_n) : t \geqslant 0 \right)$$

is a centralised Wiener process in \mathbb{R}^n .

"Theorem"

Every object which satisfies one of the definitions of a cylindrical Wiener process in the literature satisfies (in a certain sense) the definition above.

Cylindrical Lévy processes

Definition: cylindrical Lévy process

Definition: (Applebaum, Riedle (2010))

A cylindrical process $(L(t): t \ge 0)$ is called a *cylindrical Lévy process*, if for all $a_1, \ldots, a_n \in U^*$ and $n \in \mathbb{N}$ the stochastic process :

$$\left((L(t)a_1, \dots, L(t)a_n) : t \geqslant 0 \right)$$

is a Lévy process in \mathbb{R}^n .

Infinitely divisible cylindrical measure

Definition

A cylindrical measure μ is called infinitely divisible if for each $k \in \mathbb{N}$ there exists a cylindrical measure μ_k such that

$$\varphi_{\mu}(a) = (\varphi_{\mu_k}(a))^k$$
 for all $a \in U^*$.

Example: if $(L(t):t\geqslant 0)$ is a cylindrical Lévy process then the cylindrical distribution of L(1) is infinitely divisible.

Lévy-Khintchine formula

Theorem: For a cylindrical measure μ the following are equivalent:

- (1) μ is infinitely divisible;
- (2) the characteristic function of μ is of the form

$$\varphi_{\mu}(a) = \exp\left(i p(a) - \frac{1}{2}q(a) + \int_{U} \left(e^{i\langle u, a \rangle} - 1 - i\langle u, a \rangle \, \mathbbm{1}_{B_{1}}(\langle u, a \rangle)\right) \, \nu(du)\right)$$

$$=: \exp\left(\mathscr{S}_{p,q,\nu}(a)\right)$$

where \bullet $p:U^* \to \mathbb{R}$ is (non-linear) continuous and p(0)=0;

- $q:U^* \to \mathbb{R}$ is a quadratic form;
- \bullet ν cylindrical measure, $\int_U \left(\langle u,a \rangle^2 \wedge 1\right), \nu(du) < \infty$ for all $a \in U^*$;

$$\bullet \quad a \mapsto \left(ip(a) + \int_U \left(e^{i\langle u,a\rangle} - 1 - i\langle u,a\rangle \, \mathbbm{1}_{B_1}(\langle u,a\rangle)\right) \; \nu(du)\right)$$
 is negative definite.

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

:

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example 0: for h_k standard, real-valued Brownian motion:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^\infty\iff \text{cylindrical (Wiener) L\'{e}vy process}$$

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^2\iff \mathsf{honest}\;(\mathsf{Wiener})\;\mathsf{L\'{e}}\mathsf{vy}\;\mathsf{process}$$

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example 1: for h_k Poisson process with intensity 1:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^2\iff \text{cylindrical L\'evy process}$$

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^1\iff \mathsf{honest}\;\mathsf{L\'{e}}\mathsf{vy}\;\mathsf{process}$$

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example 2: for h_k compensated Poisson process with intensity 1:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^\infty\iff ext{cylindrical L\'evy process}$$
 $(\sigma_k)_{k\in\mathbb{N}}\in\ell^2\iff ext{honest L\'evy process}$

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^2\iff \mathsf{honest}\;\mathsf{L\'{e}vy}\;\mathsf{process}$$

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example 3: for h_k symmetric, standardised, α -stable:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^{(2lpha)/(2-lpha)}\iff ext{cylindrical L\'evy process}$$
 $(\sigma_k)_{k\in\mathbb{N}}\in\ell^lpha \iff ext{honest L\'evy process}$

Example: subordination

Theorem

Let W be a cylindrical Wiener process in a Banach space U, ℓ be a real-valued Lévy subordinator, independent of W.

Then, for each $t \ge 0$,

$$L(t): U^* \to L_P^0(\Omega; \mathbb{R}), \qquad L(t)u^* = W(\ell(t))u^*$$

defines a cylindrical Lévy process $(L(t): t \ge 0)$ in U.

Stochastic integration

Stochastic integration w.r.t cylindrical semi-martingales

- M. Métivier, J. Pellaumail, 1980
- G. Kallianpur, J. Xiong, 1996
- R. Mikulevicius, B.L. Rozovskii, 1998.

Stochastic integral: motivation

Assume: Y classical Lévy process in a Hilbert space H

$$\Psi(s) := \sum_{k=0}^{n-1} \mathbb{1}_{(t_k, t_{k+1}]}(s) \Phi_k \text{ for } \Phi_k : \Omega \to \mathscr{L}_2(H, H).$$

Then
$$\langle \int_0^T \Psi(s) \, dY(s), h \rangle = \sum \langle \Phi_k \big(Y(t_{k+1}) - Y(t_k) \big), h \rangle$$

= $\sum \langle Y(t_{k+1}) - Y(t_k), \Phi_k^* h \rangle$

Stochastic integral: motivation

Assume: Y classical Lévy process in a Hilbert space H

$$\Psi(s) := \sum_{k=0}^{n-1} \mathbb{1}_{(t_k, t_{k+1}]}(s) \Phi_k \text{ for } \Phi_k : \Omega \to \mathscr{L}_2(H, H).$$

Then
$$\langle \int_0^T \Psi(s) \, dY(s), h \rangle = \sum \langle \Phi_k \big(Y(t_{k+1}) - Y(t_k) \big), h \rangle$$

$$= \sum \langle Y(t_{k+1}) - Y(t_k), \Phi_k^* h \rangle$$

$$= \sum \Big(L(t_{k+1}) - L(t_k) \Big) \big(\Phi_k^* h \big)$$

if $(L(t): t \ge 0)$ is a cylindrical Lévy process in H.

Stochastic integral: motivation

Assume: Y classical Lévy process in a Hilbert space H

$$\Psi(s) := \sum_{k=0}^{n-1} \mathbb{1}_{(t_k, t_{k+1}]}(s) \Phi_k \text{ for } \Phi_k : \Omega \to \mathscr{L}_2(H, H).$$

Then
$$\langle \int_0^T \Psi(s) \, dY(s), h \rangle = \sum \langle \Phi_k \big(Y(t_{k+1}) - Y(t_k) \big), h \rangle$$

$$= \sum \langle Y(t_{k+1}) - Y(t_k), \Phi_k^* h \rangle$$

$$= \sum \Big(L(t_{k+1}) - L(t_k) \Big) \big(\Phi_k^* h \big)$$

if $(L(t): t \ge 0)$ is a cylindrical Lévy process in H.

Two problems:

• does there exists a random variable $J_k: \Omega \to H$ such that:

$$\langle J_k, h \rangle = (L(t_{k+1}) - L(t_k))(\Phi_k^*h)$$
 for all $h \in H$.

• Is the mapping $\Psi \mapsto \int_0^T \Psi(s) \, dL(s)$ continuous?

Radonifying the increments

Consider for fixed $0 \le t_k \le t_{k+1}$ a simple random variable

$$\Phi: \Omega \to \mathscr{L}_2(H, H) \qquad \Phi(\omega) := \sum_{i=1}^n \mathbb{1}_{A_i}(\omega)\varphi_i,$$

where $\varphi_i \in \mathscr{L}_2(H,H)$

$$A_i \in \mathscr{F}_{t_k} := \sigma(L(s)h : s \in [0, t_k], h \in H).$$

Since φ_i is Hilbert-Schmidt there exists $Z_i:\Omega \to H$ such that

$$(L(t_{k+1}) - L(t_k))(\varphi_i^* h) = \langle Z_i, h \rangle$$
 for all $h \in H$.

Radonifying the increments

Consider for fixed $0 \le t_k \le t_{k+1}$ a simple random variable

$$\Phi: \Omega \to \mathscr{L}_2(H, H) \qquad \Phi(\omega) := \sum_{i=1}^n \mathbb{1}_{A_i}(\omega) \varphi_i,$$

where $\varphi_i \in \mathscr{L}_2(H,H)$

$$A_i \in \mathscr{F}_{t_k} := \sigma(L(s)h : s \in [0, t_k], h \in H).$$

Since φ_i is Hilbert-Schmidt there exists $Z_i:\Omega\to H$ such that

$$(L(t_{k+1}) - L(t_k))(\varphi_i^* h) = \langle Z_i, h \rangle$$
 for all $h \in H$.

Define the H-valued random variable

$$\Phi(L(t_{k+1}) - L(t_k)) := \sum_{i=1}^{n} \mathbb{1}_{A_i} Z_i.$$

It satisfies for each $h \in H$:

$$\langle \Phi(L(t_{k+1}) - L(t_k)) \rangle \langle h \rangle = \sum_{i=1}^{n} \mathbb{1}_{A_i} (L(t_{k+1}) - L(t_k)) (\varphi_i^* h)$$

Radonifying the increments

Theorem: (with A. Jakubowski)

Let $0 \leqslant t_k \leqslant t_{k+1}$ be fixed. For each \mathscr{F}_{t_k} -measurable random variable

$$\Phi:\Omega\to\mathscr{L}_2(H,H),$$

there exists a random variable $Y:\Omega\to H$ and a sequence $\{\Phi_n\}_{n\in\mathbb{N}}$ of simple random variables such that $\Phi_n\to\Phi$ P-a.s. and

$$Y = \lim_{n \to \infty} \Phi_n \left(L(t_{k+1}) - L(t_k) \right)$$
 in probability.

Define: $\Phi(L(t_{k+1}) - L(t_k)) := Y$.

For a simple stochastic process of the form

$$\Psi : [0,T] \times \Omega \to \mathcal{L}_2(H,H), \qquad \Psi(t) = \sum_{j=0}^{N-1} \mathbb{1}_{(t_j,t_{j+1}]}(t)\Phi_j,$$

where $0 = t_0 < t_1 < \cdots < t_N = T$,

$$\Phi_j:\Omega o\mathscr{L}_2(H,H)$$
 is ${\mathscr F}_{t_j}$ -measurable,

define the H-valued stochastic integral

$$I(\Psi) := \sum_{j=0}^{N-1} \Phi_j (L(t_{j+1}) - L(t_j))$$

For a simple stochastic process of the form

$$\Psi : [0, T] \times \Omega \to \mathcal{L}_2(H, H), \qquad \Psi(t) = \sum_{j=0}^{N-1} \mathbb{1}_{(t_j, t_{j+1}]}(t) \Phi_j,$$

where $0 = t_0 < t_1 < \cdots < t_N = T$,

$$\Phi_j:\Omega o\mathscr{L}_2(H,H)$$
 is ${\mathscr F}_{t_j}$ -measurable,

define the H-valued stochastic integral

$$I(\Psi) := \sum_{j=0}^{N-1} \Phi_j (L(t_{j+1}) - L(t_j))$$

Simple stochastic processes are dense in

$$\mathscr{H}(\mathscr{L}_2) := \big\{ \Psi : \Omega o D_- ig([0,T], \mathscr{L}_2(H,H) ig) : \mathsf{predictable} \big\},$$

where
$$D_-ig([0,T],\mathscr{L}_2(H,H)ig):=\{f:[0,T] o\mathscr{L}_2(H,H): {\sf càglàd}\},$$
 equipped with the Skorokhod J_1 -topology.

Theorem: (with A. Jakubowski)

For every $\Psi \in \mathscr{H}(\mathscr{L}_2)$ there exists an H-valued random variable $I(\Psi)$ and a sequence $\{\Psi_n\}_{n\in\mathbb{N}}$ of simple stochastic processes such that $\Psi_n \to \Psi$ P-a.s. in J_1 and

$$\int_0^T \Psi(s) \, dL(s) := \lim_{n \to \infty} I(\Psi_n) \qquad \text{in probability.}$$

Theorem: (with A. Jakubowski)

For every $\Psi \in \mathscr{H}(\mathscr{L}_2)$ there exists an H-valued random variable $I(\Psi)$ and a sequence $\{\Psi_n\}_{n\in\mathbb{N}}$ of simple stochastic processes such that $\Psi_n \to \Psi$ P-a.s. in J_1 and

$$\int_0^T \Psi(s) \, dL(s) := \lim_{n \to \infty} I(\Psi_n) \quad \text{in probability.}$$

Proof: Show that

- (1) $\{I(\Psi_n): n \in \mathbb{N}\}$ is tight
- (2) for every $h \in H$ there exists a real-valued random variable Y_h such $\langle I(\Psi_n), h \rangle \to Y_h$ in probability

Special case: deterministic integrands

Let U, V be separable Banach spaces

$$\Psi := \psi$$
 for deterministic $\psi : [0,T] \to \mathscr{L}(U,V)$

Theorem: Let L be a cylindrical Lévy process with cylindrical characteristic $\mathscr{S}: U^* \to \mathbb{C}$. Then the following are equivalent:

- (1) ψ is integrable w.r.t. L;
- (2) The function $\varphi:V^*\to\mathbb{C}$,

$$\varphi(v^*) := \exp\left(\int_0^T \mathscr{S}(\psi^*(s)v^*) ds\right)$$

is the characteristic function of a Radon measure on $\mathfrak{B}(V)$.

Ornstein-Uhlenbeck process

Stochastic evolution equations

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- \bullet $G:U\to\mathscr{L}(U,V)$;
- $(L(t): t \ge 0)$ cylindrical Lévy process in U.

Definition: A stochastic process $(X(t):t\in[0,T])$ in V is called a **weak solution** if it satisfies for all $v^*\in \mathsf{D}(A^*)$ and $t\in[0,T]$ that

$$\langle X(t), v^* \rangle = \langle X(0), v^* \rangle + \int_0^t \langle X(s), A^* v^* \rangle \, ds + L(s)(G^* v^*).$$

Stochastic evolution equations

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- \bullet $G:U\to\mathscr{L}(U,V)$;
- $(L(t): t \ge 0)$ cylindrical Lévy process in U.

Theorem: The following are equivalent:

- (a) $t \mapsto S(t)G$ is stochastically integrable;
- **(b)** there exists a weak solution $(X(t): t \in [0,T])$.

In this case, the weak solution is given by

$$X(t) = S(0)X(0) + \int_0^t S(t-s)G\,dL(s) \qquad \text{ for all } t\in [0,T].$$

Spatial regularity

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- \bullet $G: U \to \mathcal{L}(U,V);$
- $(L(t): t \ge 0)$ cylindrical Lévy process in U.

Corollary:

Assume that $S(t)(V) \subseteq W$ for all t > 0 for a Banach space $W \subseteq V$. Then the solution X is W-valued iff

$$f: [0,T] \to \mathcal{L}(V,W), \qquad f(t) = S(t)G$$

is stochastically integrable.

Temporal regularity

$$dX(t) = AX(t) dt + dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- V Hilbert space with ONB $(e_k)_{k \in \mathbb{N}}$;
- $(L(t): t \ge 0)$ cylindrical Lévy process in V.

Theorem: Let ν be the cylindrical Levy measure of L. If there exists a constant K>0 such that

$$\lim_{n \to \infty} \nu \left(\left\{ v \in V : \sum_{k=1}^{n} \langle v, e_k \rangle^2 > K \right\} \right) = \infty,$$

then the solution does not have a (weak) càdlàg modification.

Temporal regularity

$$dX(t) = AX(t) dt + dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- V Hilbert space with ONB $(e_k)_{k \in \mathbb{N}}$;
- $(L(t): t \ge 0)$ cylindrical Lévy process in V.

Example: (Peszat, Zabczyk, Imkeller,....Liu, Zhai)

Let $(L(t): t \ge 0)$ be of the form

$$L(t)v^* = \sum_{k=1}^{\infty} \langle e_k, v^* \rangle \sigma_k h_k \qquad \text{for all } v^* \in V^*,$$

where h_k are real-valued, α -stable processes and $(\sigma_k) \in \ell^{(2\alpha)/(2-\alpha)} \setminus \ell^{\alpha}$. Then the solution does not have a **càdlàg modification**.

Temporal regularity

$$dX(t) = AX(t) dt + dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in V;
- V Hilbert space with ONB $(e_k)_{k \in \mathbb{N}}$;
- $(L(t): t \ge 0)$ cylindrical Lévy process in V.

Example: (Brzezniak, Zabczyk)

Let $(L(t): t \ge 0)$ be of the form

$$L(t)v^* = W(\ell(t))v^*$$
 for all $v^* \in V^*$,

where W is a cylindrical but not a classical Wiener process in V and ℓ a real-valued Lévy subordinator. Then the solution has not a **càdlàg** modification.

Literature

- D. Applebaum, M. Riedle, Cylindrical Lévy processes in Banach spaces, Proc. of Lond. Math. Soc. 101, (2010), 697 - 726.
- M. Riedle, Cylindrical Wiener processes, Séminaire de Probabilités XLIII, Lecture Notes in Mathematics, Vol. 2006, (2011), 191 – 214.
- M. Riedle, Infinitely divisible cylindrical measures on Banach spaces, Studia Mathematica 207, (2011), 235-256.
- M. Riedle, Stochastic integration with respect to cylindrical Lévy processes in Hilbert spaces: an L^2 approach, to appear in *Infinite Dimensional Analysis, Quantum Probability and Related Topics*, (2013).
- M. Riedle, Ornstein-Uhlenbeck processes driven by cylindrical Lévy processes, *Preprint 2013*