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Motivation: pricing and hedging problems in finance

Financial market model:

W := (Wt)t∈[0,T ] a Brownian motion defined on the probability
space (Ω, (Ft)t∈[0,T ],P)

Risk-free asset S0 := (S0
t )t∈[0,T ],

dS0
t = S0

t r dt

Asset S := (St)t∈[0,T ],

dSt = St

(
θt dt + dWt

)
,

where θ is predictable and bounded.
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Motivation: pricing and hedging problems in finance

Investing strategy (r = 0): (x , (Πt)t) such that the associated
wealth process denoted (X x,Π

t )t and defined for all t ∈ [0,T ] by:

X x,Π
t := x +

∫ t

0
Πu

dSu

Su
= x +

∫ t

0
Πu(dWu + θudu).

Utility function U(x) := −e−αx

Utility maximisation problem:

V (x) := sup
Π∈A

E[U(X x,Π
T − F )],

where F is a FT measurable variable (the liability of the investor).
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Motivation: pricing and hedging problems in finance

Hu, Imkeller and Müller have showed that it can be reduced to solve a
BSDE (Backward Stochastic Differential Equation) of the form:

Yt = F +

∫ T

t
h(s,Ys ,Zs)ds −

∫ T

t
ZsdWs , YT = F

with an explicit formula for the generator h, where (Y ,Z ) is a pair of
adapted processes "regular enough".

The value is given by V (x) = −e−α(x−Y0).

Optimal strategies are characterized by Zt .
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Problem

If we are in the Markovian case, we consider the Forward BSDE:


Xt = X0 +

∫ t
0 b(s,Xs)ds +

∫ t
0 σ(s,Xs)dWs

Yt = g(XT ) +
∫ T
t h(s,Xs ,Ys ,Zs)ds −

∫ T
t ZsdWs , t ∈ [0,T ]

Problem: Solve numerically this kind of equation.
Idea: Get the existence of densities for the Y process and for the Z
process with estimates of these densities.
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Malliavin calculus and densities estimates

Let H = L2([0,T ], dt).

Let C the space of random variables of the form:

F = f (Wt1 , ...,Wtn ), (t1, ..., tn) ∈ [0,T ]n, f ∈ Cb(Rn).

The Malliavin derivative DF of F is the H-valued random variable
defined as:

DF =
n∑

i=1

∂f
∂xi

(Wt1 , . . . ,Wtn )1[0,ti ].

We denote by D1,2 the closure of C with respect to the Sobolev
norm ‖ · ‖1,2 defined as:

‖F‖1,2 := E[|F |2] + E

[∫ T

0
|DtF |2dt

]
.
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Malliavin calculus and densities estimates

Theorem (Bouleau-Hirsch)

Assume that ‖DF‖L2([0,T ]) > 0 a.s., then F has a probability distribution
which is absolutely continuous with respect to the Lebesgue measure on
R, denoted by ρF .
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Malliavin calculus and densities estimates (F centered)

Assume that DF = ΦF (W ) where ΦF : RH → H. We set:

gF (x) =

∫ +∞

0
e−uE

[
E∗[〈ΦF (W ), Φ̃u

F (W )〉L2([0,T ])]|F = x
]
du

Where Φ̃u
F (W ) := ΦF (e−uW +

√
1− e−2uW ∗)

With W ∗ an independent copy of W defined on a probability space
(Ω∗,F∗,P∗)
Where E∗ is the expectation under P∗.

Theorem (Nourdin-Viens)

F has a density ρF with respect to the Lebesgue measure if and only if
the random variable gF (F ) is positive a.s.. In this case, the support of ρF
is a closed interval of R and for all x ∈ supp(ρF ) :

ρF (x) =
E(|F |)
2gF (x)

exp
(
−
∫ x

0

udu
gF (u)

)
.
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Assumption and notations

We make the classical assumption:

L) h : [0,T ]× R3 → R is Lipschitz in (x , y , z) with Lipschitz constants
respectively kx , ky , kz , i.e. for all (x , x ′, y , y ′, z , z ′) ∈ R6:

|h(x , y , z)− h(x ′, y ′, z ′)| ≤ kx |x − x ′|+ ky |y − y ′|+ kz |z − z ′|.
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Densities existence for BSDEs: previous results

Theorem (Antonelli-Kohatsu Higa (2005))

Assume that L) holds (plus some conditions on the coefficients b, σ, g
and h). We set K := kb + ky + kσkz . Let t ∈ (0,T ]. If for some A ⊂ R
such that P(XT ∈ A|Xt) > 0:{

ge−sgn(g)KT + h(t)
∫ T
t e−sgn(h(s))Ksds ≥ 0

gAe−sgn(gA)KT + h(t)
∫ T
t e−sgn(h(s))Ksds > 0

(1)

or {
ge−sgn(g)KT + h(t)

∫ T
t e−sgn(h(s))Ksds ≤ 0

gAe−sgn(gA)KT + h(t)
∫ T
t e−sgn(h(s))Ksds < 0,

(2)

is met, then Yt has a probability distribution that is absolutely
continuous with respect to the Lebesgue measure.
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Densities existence for BSDEs: previous results

These conditions are sufficient but not necessary. As shown in the
following example.

Example (M., Possamaï, Réveillac).
Let T = 1, g(x) = x , X = W , h(s, x , y , z) = (s − 2)x .

(2) is not satisfied for any t ∈ [0,T ].

(1) is not satisfied for any t ∈ [0, 3−
√

5
2 ).

However for all t ∈ [0, 1]:

Yt = E
[
W1 +

∫ 1

t
(s − 2)Wsds

∣∣∣Ft

]
= Wt(1 +

∫ 1

t
(s − 2)ds) = Wt(−1

2
+ 2t − t2

2
),

admits a density with respect to the Lebesgue measure except when
t = 2−

√
3.

Thibaut Mastrolia Density Analysis of BSDEs



Densities existence for BSDEs: previous results

These conditions are sufficient but not necessary. As shown in the
following example.
Example (M., Possamaï, Réveillac).

Let T = 1, g(x) = x , X = W , h(s, x , y , z) = (s − 2)x .

(2) is not satisfied for any t ∈ [0,T ].

(1) is not satisfied for any t ∈ [0, 3−
√

5
2 ).

However for all t ∈ [0, 1]:

Yt = E
[
W1 +

∫ 1

t
(s − 2)Wsds

∣∣∣Ft

]
= Wt(1 +

∫ 1

t
(s − 2)ds) = Wt(−1

2
+ 2t − t2

2
),

admits a density with respect to the Lebesgue measure except when
t = 2−

√
3.

Thibaut Mastrolia Density Analysis of BSDEs



Densities existence for BSDEs: previous results

Antonelli and Kohatsu-Higa have proved an other theorem with upper
order conditions on h when it does not depend on z . Let:

g̃(x) := g ′(x) + (T − t)hx(T , x , g(x)),

h̃(s, x , y , z) := −
(
hxt − hhxy +

1
2

(hxxx + 2zhxxy + z2hxxy )

+ hyhx + σxhxx + zσxhxy )
)

(s, x , y).
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Densities existence for BSDEs: previous results

Theorem (Antonelli-Kohatsu Higa)
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Densities existence for BSDEs: previous results

We study now the existence of a density for Y and Gaussian estimates of
this density in the general case.


H1 : For all θ ≤ T , g ∈ C1

b(R), 0 < c ≤ g ′(XT )DθXT ≤ C , a.s.
H2 :0 ≤ hx ≤ C
H3 :0 ≤ σ ≤ C and |[b, σ]| ≤ Mσ

Theorem (Aboura-Bourguin (2012))

Under the above assumptions H1),H2) and H3), Yt has a density for
t ∈ (0,T ) denoted by ρYt satisfying:

E[|Yt − E[Yt ]|]
2ct

exp
(
− (y − E[Yt ])2

2Ct

)
≤ ρYt (y)

ρYt (y) ≤ E[|Yt − E[Yt ]|]
2Ct

exp
(
− (y − E[Yt ])2

2ct

)
.
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Densities existence: our contribution for Y

We study the quadratic case under the following assumption:
Q) h : [0,T ]× R3 → R such that for all (t, x , y , z) ∈ ([0,T ]× R) :
|h(t, x , y , z)| ≤ K (1 + |y |+ |z |2) for some K > 0.

Theorem (M., Possamaï, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not
on the sign of DXT ). Fix t ∈ (0,T ]. If for some A ⊂ R such that
P(XT ∈ A|Xt) > 0, g ′ ≥ 0, g ′A > 0 and h(t) ≥ 0 (resp. g ′ ≤ 0, g ′A < 0
and h(t) ≤ 0), then Yt has a probability distribution which is absolutely
continuous with Lebesgue measure.

Notice that in this theorem we do not need a sign for DXT .
↪→ In the proof we just need to control the norm of DXT .
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Densities existence: our contribution for Y

Example Consider the BSDE:

Yt = WT +

∫ T

t

1
2
|Zs |2ds −

∫ T

t
ZsdWs .

Then:
according to the previous theorem, g ′ ≡ 1 > 0 so, Yt admits a
density for all t ∈ (0,T ].

Indeed, by the uniqueness of the solution to this BSDE:
Yt = Wt + 1

2 (T − t), Zt = 1 and Yt admits a density for all
t ∈ (0,T ].

Density existence for the Z process ?
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Densities existence: previous results for Z

↪→ Aboura and Bourguin proved that Zt admits a density under
convexity and growth conditions for the terminal condition g and for
the generator h when h(x , y , z) = f̃ (x , y) + αz where α is constant.

↪→ They have Gaussian estimates of this density when h ∈ C2
b(R) and

g ∈ C2
b(R).

↪→ Using the fact that Zt can be represented by the Clark-Ocone
formula and after, taking the Malliavin derivative of Zt .
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Densities existence: our contribution for Z

We consider the following FBSDE:{
Xt = X0 +

∫ t
0 b(s,Xs)ds +

∫ t
0 σ(s,Xs)dWs

Yt = g(XT ) +
∫ T
t (f̃ (s,Xs ,Ys) + h(Zs))ds −

∫ T
t ZsdWs .

Theorem (M., Possamaï, Réveillac)

Assume that Q) holds with some conditions which ensure that DXT > 0
and D2XT ≥ 0 and assume that f̃x , f̃xx , f̃xy , f̃yy ≥ 0. Then, if there exists
A ⊂ R such that P(XT ∈ A|Xt) > 0, g ′ ≥ 0, g ′′ ≥ 0, g ′′A > 0 and h′′ ≥ 0
then, for all t ∈ (0,T ], Zt has a density with respect to the Lebesgue
measure.
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Densities existence: our contribution for Z

Assume now that there exists a function f ∈ C2(R) such that for all
t ∈ [0,T ]: Xt = f (t,Wt).

Under this assumption, for all 0 ≤ r , s ≤ t ≤ T : DrYt = DsYt and
DrZt = DsZt , P-a.s..
To simplify assume that f̃ ≡ 0 (the generator of the BSDE depends
only on z through h).

Theorem (M., Possamaï, Réveillac)

Assume that Q) and conditions on coefficients hold. Assume that h′′ ≥ 0
and (g ◦ f )′′ ≥ 0. Then, if there exists A ⊂ R such that
P(XT ∈ A|Xt) > 0 and (g ◦ f )′′A > 0, then for all t ∈ (0,T ] Zt has a
density with respect to the Lebesgue measure.
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Densities estimates: linear Feynman-Kac’s formula

 ∂tv(t, x) + b(t, x) · Dv(t, x) + 1
2Tr .[σσ

T (t, x)D2v(t, x)] = 0

v(T , ·) = g(·).

”⇔”
dX t,x

s = b(s,X t,x
s )ds + σ(s,X t,x

s )dWs

X t,x
t = x .

v(t, x) = E[g(X t,x
T )] = Pt,Tg(x), (v ∈ C1,2)
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Densities estimates: semi-linear Feyman-Kac’s formula

 ∂tv(t, x) + b(t, x) · Dv(t, x) + 1
2Tr .[σσ

T (t, x)D2v(t, x)] = h(t, ·, v , σT · Dv)

v(T , ·) = g(·).

”⇔” dX t,x
s = b(s,X t,x

s )ds + σ(s,X t,x
s )dWs ; X t,x

t = x .

dY t,x
s = h(t,X t,x

s ,Y t,x
s ,Z t,x

s )ds − Z t,x
s dWs ; Y t,x

T = g(X t,x
T ).

v(t, x) = Y t,x
t , (v ∈ C1,2)

Rk.: h ≡ 0 =⇒ Y t,x
s = E[g(X t,x

T )|Fs ].
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Densities estimates

Let u(t,Wt) := v(t,Xt) where Xt =: f (t,Wt). Then,
u(t,Wt) := Yt and u′(t,Wt) = v ′(t,Xt)f ′(t,Wt) := Zt .

Let α∗u := inf{α > 0, u(t, x) = O(xα)}.

P) Assume that α∗u′ ∈ (0,+∞) and α∗u′′ ∈ (0,+∞).

Theorem (M., Possamaï, Réveillac)

Assume Q) and P) hold. Suppose that there exists δ > 0 such that
(g ◦ f )′′ ≥ δ > 0 and h′′ ≥ 0. Then, there exist C > 0, δ > 0 and
γ ∈ (0, 1) such that for all t ∈ (0,T ] the probability distribution of Zt
has a law which admits a density ρZt such that for all z ∈ R:

E[|Zt − E[Zt ]|]
2tC (1 + |z |2γ)

e
−z2
2tδ2 ≤ ρZt (z) ≤ E[|Zt − E[Zt ]|]

2tδ2
e−

1
2tδ2

∫ z−E[Zt ]
0

xdx
1+|x|2γ

A same result holds for Yt (we just use the first derivative of u).
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