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Motivation: pricing and hedging problems in finance

Financial market model:

o W = (Wht)tepo, 7 @ Brownian motion defined on the probability
space (Q, (Ft)eep, 71, P)

o Risk-free asset S° := (57)ccpo, 7,

S0 — SOr dt
o Asset S :=(St)icp, 1]
dSt - St (0t dt + th)7

where 6 is predictable and bounded.
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Motivation: pricing and hedging problems in finance

Investing strategy (r = 0): (x, (I¢)¢) such that the associated
wealth process denoted (X;”""), and defined for all t € [0, T] by:

t dS t
X" ::x+/ ﬂus—“:x+/ Mu(dW, + 0,du).
0 u 0
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Motivation: pricing and hedging problems in finance

Investing strategy (r = 0): (x, (I¢)¢) such that the associated
wealth process denoted (X;”""), and defined for all t € [0, T] by:

t dS t
X" ::x+/ ﬂus—“:x+/ Mu(dW, + 0,du).
0 u 0

o Utility function U(x) := —e™ ¥
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Motivation: pricing and hedging problems in finance

Investing strategy (r = 0): (x, (I¢)¢) such that the associated
wealth process denoted (X;”""), and defined for all t € [0, T] by:

t dS t
X" ::x+/ ﬂus—“:x+/ Mu(dW, + 0,du).
0 u 0

o Utility function U(x) := —e™ ¥
e Utility maximisation problem:

V(x) = sup BIU(X7" = F)].

where F is a F1 measurable variable (the liability of the investor).
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Motivation: pricing and hedging problems in finance

Hu, Imkeller and Miiller have showed that it can be reduced to solve a
BSDE (Backward Stochastic Differential Equation) of the form:

- T
Ye = F +/ h(57 Ys, Zs)ds _/ stW57 Yr=F
t t

with an explicit formula for the generator h, where (Y, Z) is a pair of
adapted processes "regular enough".
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Motivation: pricing and hedging problems in finance

Hu, Imkeller and Miiller have showed that it can be reduced to solve a
BSDE (Backward Stochastic Differential Equation) of the form:

- T
Ye = F +/ h(57 Ys, Zs)ds _/ stW57 Yr=F
t t

with an explicit formula for the generator h, where (Y, Z) is a pair of

adapted processes "regular enough".
The value is given by V(x) = —e—2(=Yo),

Optimal strategies are characterized by Z;.
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If we are in the Markovian case, we consider the Forward BSDE:

Xe = Xo+ [y b(s, Xs)ds + [5 (s, Xs)dW;

Y: =g(Xr)+ [ h(s, Xs, Ys, Zs)ds — [T Z,dWs, teo,T]
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If we are in the Markovian case, we consider the Forward BSDE:

Xe = Xo+ [y b(s, Xs)ds + [5 (s, Xs)dW;

Y: =g(Xr)+ [ h(s, Xs, Ys, Zs)ds — [T Z,dWs, teo,T]

Problem: Solve numerically this kind of equation.
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If we are in the Markovian case, we consider the Forward BSDE:
Xe = Xo+ [y b(s, Xs)ds + [5 (s, Xs)dW;
Yo =g(Xr)+ [ h(s, X, Ys, Zs)ds — [ Z.dW,, te[0,T]

Problem: Solve numerically this kind of equation.

Idea: Get the existence of densities for the Y process and for the Z
process with estimates of these densities.
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Malliavin calculus and densities estimates

o Let H = L2([0, T], dt).
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Malliavin calculus and densities estimates

o Let H = L2([0, T], dt).
@ Let C the space of random variables of the form:

F=Ff(Wy,...,W,.), (t1,....tn) €0, T]", f € Co(R").
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Malliavin calculus and densities estimates

o Let H = L2([0, T], dt).
@ Let C the space of random variables of the form:

F=Ff(Wy,...,W,.), (t1,....tn) €0, T]", f € Co(R").

@ The Malliavin derivative DF of F is the H-valued random variable
defined as:

n OFf
DF = Z aixi(tha EERR th)l[o’t"]'
i=1
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Malliavin calculus and densities estimates

o Let H = L2([0, T], dt).
@ Let C the space of random variables of the form:

F=Ff(Wy,...,W,.), (t1,....tn) €0, T]", f € Co(R").

@ The Malliavin derivative DF of F is the H-valued random variable
defined as:

n OFf
DF = Z aixi(tha EERR th)l[o’t"]'
i=1

@ We denote by D12 the closure of C with respect to the Sobolev

norm || - ||1,2 defined as:
T
HHhZZMWﬂ+Et/|QH%%.
0
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Malliavin calculus and densities estimates

Theorem (Bouleau-Hirsch)

Assume that |DF || 2(jo,77) > 0 a.s., then F has a probability distribution
which is absolutely continuous with respect to the Lebesgue measure on
R, denoted by pr.
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Malliavin calculus and densities estimates (F centered)

Assume that DF = ®£(W) where & : R* — H. We set:

g0 = [ e B [EUORW) SW) oyl F =]
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Malliavin calculus and densities estimates (F centered)

Assume that DF = ®£(W) where & : R* — H. We set:

g0 = [ e B [EUORW) SW) oyl F =]

o Where ®4(W) := dp(e W + 1 — e 2W*)

o With W™ an independent copy of W defined on a probability space
(Q*’ ‘F*7 ]P)*)

o Where E* is the expectation under P*.
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Malliavin calculus and densities estimates (F centered)

Assume that DF = ®£(W) where & : R* — H. We set:

g0 = [ e B [EUORW) SW) oyl F =]

o Where ®4(W) := dp(e W + 1 — e 2W*)

o With W™ an independent copy of W defined on a probability space
(Q*’ ‘F*7 ]P)*)

o Where E* is the expectation under P*.

Theorem (Nourdin-Viens)

F has a density pr with respect to the Lebesgue measure if and only if
the random variable gg(F) is positive a.s.. In this case, the support of pr
is a closed interval of R and for all x € supp(pF) :

- B[ )
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Assumption and notations

We make the classical assumption:

L) h:[0, T] x R® — R is Lipschitz in (x, y, z) with Lipschitz constants
respectively ky, ky, k;, i.e. for all (x,x",y,y’,z,2') € R®:

|h(x,y,z) — h(x',y', 2')| < ke|x = X'| + kyly — Y| + k.|z — 2|
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Densities existence for BSDEs: previous results

Theorem (Antonelli-Kohatsu Higa (2005))

Assume that L) holds (plus some conditions on the coefficients b, o, g
and h). We set K := kyp + k, + kyk,. Let t € (0, T]. If for some A C R
such that P(Xt € A|X;) > 0:

ge—sgn( g)KT + h t)f e—sen(h(s))Ks 4g >0 (1)
gAe*Sg"(g )KT h ft efsgn s))stS >0

or
Ee—sgn( g)KT + h f e—sgn(h(s sts < 0 (2)
gAe—sgn(g KT+ h t) ft e—sgn s))stS < O,

is met, then Y; has a probability distribution that is absolutely
continuous with respect to the Lebesgue measure.
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Densities existence for BSDEs: previous results

@ These conditions are sufficient but not necessary. As shown in the
following example.
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Densities existence for BSDEs: previous results

@ These conditions are sufficient but not necessary. As shown in the
following example.
e Example (M., Possamai, Réveillac).
Let T=1, g(x)=x, X =W, h(s,x,y,z) = (s — 2)x.
(2) is not satisfied for any t € [0, T].

(1) is not satisfied for any t € [0, 3_2\/'?’)-

However for all t € [0, 1]:

Y,—E {Wl + /tl(s - 2)Wsds)]:t}

1 1 2
= Wi(1 +/ (s —2)ds) = We(—= +2t— =),
. 2 2
admits a density with respect to the Lebesgue measure except when

t=2-—+3.
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Densities existence for BSDEs: previous results

Antonelli and Kohatsu-Higa have proved an other theorem with upper
order conditions on h when it does not depend on z. Let:

E(x) = &' () + (T = )h(T, x,(x)),

1
h(s,x,y,z) = —(hxt = By + 5 (o + 22y + 2 b))

+ hyhy + oxhe + zaXth)) (s,x,¥).
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Densities existence for BSDEs: previous results

Theorem (Antonelli-Kohatsu Higa)

Assume that h does not depend on the variable z and suppose that L)
holds (plus some conditions on the coefficients). Let t € (0, T]. If for
some A € R such that P(Xt € A|X;) > 0:

ge —sgn(g KT+h f e*Sg"(h(S))KS(T s)ds >0
e —sgn(g” KT 1 B(t) f e=en(B(SDKs(T _ 5)ds >0

A

gefsgn( VKT + h f e*Sgn(h(s))KS(T s)ds <0
g 7sgn(g VKT 4 h f e*Sg"( (5))K5( S)dS <0

is met, then Y; has a probability distribution which is absolutely
continuous with respect to the Lebesgue measure.
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Densities existence for BSDEs: previous results

We study now the existence of a density for Y and Gaussian estimates of
this density in the general case.

Hl:Forall§ < T,g€Ci(R), 0< c<g'(X7)DeXt < C,a.s.
H2:0<h, < C
H3:0 <o < C and |[b,0]| £ Mo
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Densities existence for BSDEs: previous results

We study now the existence of a density for Y and Gaussian estimates of
this density in the general case.

Hl:Forall§ < T,g€Ci(R), 0< c<g'(X7)DeXt < C,a.s.
H2:0<h, < C
H3:0 <o < C and |[b,0]| £ Mo

Theorem (Aboura-Bourguin (2012))
Under the above assumptions H1),H2) and H3), Y; has a density for
t € (0, T) denoted by py, satisfying:
E[Y: — E[Y:]]] (v —E[Y4])?
—ite =it _V H ) <
2ct P 2Ct < vly)
EflY. — B[Vl (_ - E[Yr])Q).

<
Pr(y) < 2Ct 2ct
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Densities existence: our contribution for Y

We study the quadratic case under the following assumption:

Q) h:[0, T] x R® — R such that for all (t,x,y,z) € ([0, T] xR) :
|h(t,x,y,z)| < K(1+ |y| + |z|?) for some K > 0.

Theorem (M., Possamai, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not
on the sign of DXt). Fixt € (0, T]. If for some A C R such that

P(X7 € AlX:) >0, g’ >0, g4 >0 and h(t) >0 (resp. g’ < 0,8, <0
and h(t) < 0), then Y; has a probability distribution which is absolutely
continuous with Lebesgue measure.
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Densities existence: our contribution for Y

We study the quadratic case under the following assumption:

Q) h:[0, T] x R® — R such that for all (t,x,y,z) € ([0, T] xR) :
|h(t,x,y,z)| < K(1+ |y| + |z|?) for some K > 0.

Theorem (M., Possamai, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not
on the sign of DXt). Fixt € (0, T]. If for some A C R such that

P(X7 € AlX:) >0, g’ >0, g4 >0 and h(t) >0 (resp. g’ < 0,8, <0
and h(t) < 0), then Y; has a probability distribution which is absolutely
continuous with Lebesgue measure.

Notice that in this theorem we do not need a sign for DXr.
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Densities existence: our contribution for Y

We study the quadratic case under the following assumption:

Q) h:[0, T] x R® — R such that for all (t,x,y,z) € ([0, T] xR) :
|h(t,x,y,z)| < K(1+ |y| + |z|?) for some K > 0.

Theorem (M., Possamai, Réveillac)

Assume that Q) holds with some conditions on the coefficients (but not
on the sign of DXt). Fixt € (0, T]. If for some A C R such that

P(X7 € AlX:) >0, g’ >0, g4 >0 and h(t) >0 (resp. g’ < 0,8, <0
and h(t) < 0), then Y; has a probability distribution which is absolutely
continuous with Lebesgue measure.

Notice that in this theorem we do not need a sign for DXr.

< In the proof we just need to control the norm of DXr.
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Densities existence: our contribution for Y

Example Consider the BSDE:

T 1 T
Y, = WT+/ §|Zs|2dsf/ ZsdW.
t t

Then:

according to the previous theorem, g’ =1 > 0 so, Y; admits a
density for all t € (0, T].
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Densities existence: our contribution for Y

Example Consider the BSDE:

T 1 T
Y, = WT+/ §|Zs|2dsf/ ZsdW.
t t

Then:
according to the previous theorem, g’ =1 > 0 so, Y; admits a
density for all t € (0, T].

Indeed, by the uniqueness of the solution to this BSDE:
Ye =W+ (T —t), Z: =1 and Y; admits a density for all
te (0, T].

Thibaut Mastrolia Density Analysis of BSDEs



Densities existence: our contribution for Y

Example Consider the BSDE:

T 1 T
Y, = WT+/ §|Zs|2dsf/ ZsdW.
t t

Then:

according to the previous theorem, g’ =1 > 0 so, Y; admits a
density for all t € (0, T].

Indeed, by the uniqueness of the solution to this BSDE:

Ye =W+ (T —t), Z: =1 and Y; admits a density for all
te (0, T]

Density existence for the Z process 7
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Densities existence: previous results for Z

< Aboura and Bourguin proved that Z; admits a density under
convexity and growth conditions for the terminal condition g and for
the generator h when h(x, y,z) = f(x,y) + az where « is constant.
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Densities existence: previous results for Z

< Aboura and Bourguin proved that Z; admits a density under
convexity and growth conditions for the terminal condition g and for
the generator h when h(x, y,z) = f(x,y) + az where « is constant.

< They have Gaussian estimates of this density when h € C3(R) and
g € Cj(R).
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Densities existence: previous results for Z

< Aboura and Bourguin proved that Z; admits a density under
convexity and growth conditions for the terminal condition g and for
the generator h when h(x, y,z) = f(x,y) + az where « is constant.

< They have Gaussian estimates of this density when h € C3(R) and
g € Cj(R).

< Using the fact that Z; can be represented by the Clark-Ocone
formula and after, taking the Malliavin derivative of Z;.
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Densities existence: our contribution for Z

We consider the following FBSDE:

Xe = Xo+ Ji bs, x )ds + [ o (s, Xs)dW,
Yo =g(Xr)+ [ (F(s, Xs, Y)+ h(Zs))ds— 1.7 Zodws.

Theorem (M., Possamai, Réveillac)

Assume that Q) holds with some conditions which ensure that DX > 0
and D*X1 > 0 and assume that ?X, ?XX, )N‘Xy, 7yy > 0. Then, if there exists
A C R such that P(Xt € A|X:) >0,g">0,g8">0, g >0and h” >0
then, for all t € (0, T|, Z; has a density with respect to the Lebesgue
measure.
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Densities existence: our contribution for Z

Assume now that there exists a function f € C?(RR) such that for all
te [07 T] Xt = f(t, Wt)
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Densities existence: our contribution for Z

Assume now that there exists a function f € C?(RR) such that for all
te [07 T] Xt = f(t7 Wt)

Under this assumption, forall 0 < r,s <t < T: D,Y; = DsY; and
Dth = DSZtv P—as
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Densities existence: our contribution for Z

Assume now that there exists a function f € C?(RR) such that for all
te [07 T] Xt = f(t7 Wt)

Under this assumption, forall 0 < r,s <t < T: D,Y; = DsY; and
Dth = DSZtv P—as

To simplify assume that f =0 (the generator of the BSDE depends
only on z through h).
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Densities existence: our contribution for Z

Assume now that there exists a function f € C?(RR) such that for all
te [07 T] Xt = f(t7 Wt)

Under this assumption, forall 0 < r,s <t < T: D,Y; = DsY; and
Dth = DSZtv P—as

To simplify assume that f =0 (the generator of the BSDE depends
only on z through h).

Theorem (M., Possamai, Réveillac)

Assume that Q) and conditions on coefficients hold. Assume that h"” >0
and (g o f)” > 0. Then, if there exists A C R such that

P(X7 € A|X:) >0 and (g o f)4s > 0, then for all t € (0, T| Z; has a
density with respect to the Lebesgue measure.
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Densities estimates: linear Feynman-Kac's formula

{ dev(t,x) + b(t,x) - Dv(t,x) + 2 Tr.[oo ™ (t,x)D?v(t,x)] = 0

v(T,) =g()

=
{ dX2* = b(s, X2*)ds + o (s, XE¥)dW,

t,
X7 = x.
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Densities estimates: linear Feynman-Kac's formula

{ dev(t,x) + b(t,x) - Dv(t,x) + 2 Tr.[oo ™ (t,x)D?v(t,x)] = 0

v(T,) =g()

=
{ dX2* = b(s, X2*)ds + o (s, XE¥)dW,

t,
X7 = x.

v(t,x) = E[g(X5)] = Pe.rg(x), (veCt?)
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Densities estimates: semi-linear Feyman-Kac's formula

" ”

54
dXE* = b(s, XEX)ds + o(s, XP¥)dWs; X = x.

dYE* = h(t, X2, YI*, ZE¥)ds — ZE*dWs;  YEX = g(XEY).
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Densities estimates: semi-linear Feyman-Kac's formula

" ”

54
dXE* = b(s, XEX)ds + o(s, XP¥)dWs; X = x.
dYEX = h(t, X%, YEX, ZE¥)ds — ZE%dWy;  YEX = g(XEY).

v(t,x) =Y, (vech?)
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Densities estimates: semi-linear Feyman-Kac's formula

{ Orv(t, x) + b(t,x) - Dv(t,x) + %Tr.[UUT(t,X)DZV(t,X)] = h(t,-,v,oT - Dv)

" ”

54
{ dXE* = b(s, XEX)ds + o(s, XP¥)dWs; X = x.

dYE* = h(t, X2, YI*, ZE¥)ds — ZE*dWs;  YEX = g(XEY).

V(t7X) — Ytt’x, (V S C172)
Rk.: h=0= Y* =E[g(X})|Fs].
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Densities estimates

Let u(t, W;) := v(t, X;) where X; =: f(t, W;). Then,
U(t7 Wt) = Yt and U/(t, Wt) = V/(t,Xt)f/(t, Wt) = Zt-
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Densities estimates

Let u(t, W;) := v(t, X;) where X; =: f(t, W;). Then,
U(t7 Wt) = Yt and u (t Wt) =V ( t, X ) (t, Wt) = Zt-

Let o :=inf{a > 0, u(t,x) = O(x*)}.
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Densities estimates

Let u(t, W;) := v(t, X;) where X; =: f(t, W;). Then,
U(t7 Wt) = Yt and u (t Wt) = V( X) (t Wt) = Zt-
O(x

“)}
€ (0, +o0).

Let of :=inf{a >0, u(t,x) =

P) Assume that o, € (0,+00) and «;,

u’’
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Densities estimates

Let u(t, W;) := v(t, X;) where X; =: f(t, W;). Then,
U(t7 Wt) = Yt and u (t Wt) = V( X) (t Wt) = Zt-
O(x

“)}-
P) Assume that o, € (0,+00) and «,, € (0,400).

Let of :=inf{a >0, u(t,x) =

Theorem (M., Possamai, Réveillac)

Assume Q) and P) hold. Suppose that there exists § > 0 such that
(gof)">08>0andh’ >0. Then, there exist C >0, § > 0 and

v € (0,1) such that for all t € (0, T] the probability distribution of Z,
has a law which admits a density pz, such that for all z € R:

E[|Z — E[Z:
2tC(1 4+ |z|?7)

Ef|z. —E[Z]]] -
2t42

z E[Z¢] _ xdx
2t52 1+[x|2Y

ex® < pz,(2) <
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Densities estimates

Let u(t, W;) := v(t, X;) where X; =: f(t, W;). Then,
U(t7 Wt) = Yt and u (t Wt) = V( X) (t Wt) = Zt-
O(x

“)}-
P) Assume that o, € (0,+00) and «,, € (0,400).

Let of :=inf{a >0, u(t,x) =

Theorem (M., Possamai, Réveillac)

Assume Q) and P) hold. Suppose that there exists § > 0 such that
(gof)">08>0andh’ >0. Then, there exist C >0, § > 0 and

v € (0,1) such that for all t € (0, T] the probability distribution of Z,
has a law which admits a density pz, such that for all z € R:

E[|Z — E[Z:
2tC(1 4+ |z|?7)

Ef|z. —E[Z]]] -
2t42

z E[Z¢] _ xdx
2t52 1+[x|2Y

ex® < pz,(2) <

A same result holds for Y; (we just use the first derivative of u).
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