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The course consists of two lectures (1.5 hours each). It will be ex-
plained in the lectures how the implied volatility (the smile) behaves
at large strikes. We will discuss and prove several known results de-
scribing the smile asymptotics. There results include Lee’s moment
formulas, the tail-wing formula of Benaim and Friz, and the asymp-
totic formulas with error estimates due to the author. The presenta-
tion of the material in the course follows that in Chapters 9 and 10 of
the book “A. Gulisashvili, Analytically Tractable Stochastic Stock Price
Models, Springer Finance, 2012”.

LECTURE 1

What will be explained in the lecture:

Call Pricing Functions, the Black-Scholes Model, Implied Volatility,
——————————————————————————————
A Model-Free Asymptotic Formula.
——————————————————————————————

The implied volatility was first introduced under the name “the im-
plied standard deviation” in the paper “H. A. Latané and R. J. Rendle-
man, Standard deviations of stock price ratios implied in option prices,
Journal of Finance 31 (1976), pp. 369-381”. Latané and Rendleman
studied standard deviations of asset returns, which are implied in
actual call option prices when investors price options according to
the Black-Scholes model. For a general model of call option prices,
the implied volatility can be obtained by inverting the Black-Scholes
call pricing function with respect to the volatility variable and com-
posing the resulting inverse function with the original call pricing
function.
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1. General Call Pricing Functions.
———————————————–
We model the random behavior of the asset price by an adapted
positive stochastic process X defined on a filtered probability space
(Ω,F , {Ft} , P∗). It is assumed that the following conditions are sat-
isfied:

• The interest rate r is a nonnegative constant.
• The process X starts at x0 > 0.
• The process X is integrable. This means that E∗ [Xt] < ∞ for

every t ≥ 0.
• P∗ is a risk-neutral measure. More precisely, the discounted

stock price process
{

e−rtXt
}

t≥0 is an ({Ft} , P∗)-martingale.

In the model described above, the asset price distributions are mod-
eled by the marginal distributions of the process X with respect to
the probability measure P∗. Note that the integrability condition for
X implies the existence of asset price moments only for the orders
between zero and one, while the martingality condition for the dis-
counted asset price process leads to fair pricing formulas for Euro-
pean call and put options.

Let X be an asset price process under a risk-neutral measure P∗.
For every real number u set u+ = max{u, 0}. An European style call
option on the underlying asset, with strike price K and maturity T, is
a special contract, which gives its holder the right, but not the obli-
gation, to buy one unit of the asset from the seller of the option, for
the price K on the date T. The price that the buyer of the option pays
for the contract is called the option premium. Note that call options
can be exercised only on the expiration date. Buying options is less
risky than buying units of underlying asset, because the holder of
the option has no obligation to exercise it if things go wrong.

In a risk-neutral environment, a natural way to price an European
style option is to choose the expected value of the discounted payoff
of the option at maturity to be the option premium. For a call option,
this payoff is given by (XT − K)+. Combining the premiums for
all maturities and strikes, we obtain the so-called pricing function
associated with the option.

Definition 1. The European call option pricing function C in a stochastic
asset price model is defined as follows:

C(T, K) = e−rTE∗
[
(XT − K)+

]
, T ≥ 0, K ≥ 0.
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2. The Black-Scholes Call Pricing Function.
———————————————————

For every strike K > 0 and maturity T,

CBS(T, K) =
x0√
2π

∫ d1

−∞
e−

y2
2 dy− Ke−rT

√
2π

∫ d2

−∞
e−

y2
2 dy,

where

d1 =
log x0 − log K +

(
r + 1

2 σ2
)

T

σ
√

T
and

d2 =
log x0 − log K +

(
r− 1

2 σ2
)

T

σ
√

T
.

3. Implied Volatility.
———————————

Definition 2. Let C be a call pricing function. For (T, K) ∈ (0, ∞)2, the
implied volatility I(T, K) associated with C is the value of the volatility σ
in the Black-Scholes model for which C(T, K) = CBS(T, K, σ). The implied
volatility I(T, K) is defined only if such a number σ exists and is unique.

In the next definition, we introduce a special class of call pricing
functions.

Definition 3. The class PF∞ consists of all call pricing functions C, for
which one of the following equivalent conditions holds:

(1) C(T, K) > 0 for all T > 0 and K > 0 with x0erT ≤ K.

(2) For every T > 0 and all a > 0 the random variable XT is such that
P∗ [XT < a] < 1.

Remark 4. Suppose the maturity T > 0 is fixed, and consider the
pricing function C and the implied volatility I as functions of the
strike price K. If C ∈ PF∞, then the implied volatility I(K) is defined
for large values of K. This allows to study the asymptotic behavior
of the implied volatility as K → ∞.
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4. A Model-Free Asymptotic Formula for the Implied Volatility.
———————————————————————————-
The following assertion was obtained in “A. Gulisashvili, Asymp-
totic formulas with error estimates for call pricing functions and the
implied volatility at extreme strikes, SIAM Journal on Financial Math-
ematics 1 (2010), 609-641”.

Theorem 5. For any call pricing function C ∈ PF∞,

I(K) =
√

2√
T

[√
log K + log

1
C(K)

−
√

log
1

C(K)

]

+ O

((
log

1
C(K)

)− 1
2

log log
1

C(K)

)
as K → ∞.

We call the formula in the previous theorem a model-free asymp-
totic formula for the implied volatility with an error estimate.

LECTURE 2

What will be explained in the lecture:

Lee’s Moment Formula for the Implied Volatility at Large Strikes,
—————————————————————————————–
Tail-Wing Formulas Due to Benaim and Friz,
————————————————————–
Special Models.
———————-

1. Lee’s Moment Formula.
————————————-

The moment formulas obtained by R. Lee are arguably the first model-
free formulas for the implied volatility at extreme strikes. In this lec-
ture, we will show how to derive Lee’s moment formula for large
strikes from the model-free formula for the implied volatility with
an error estimate discussed in the first lecture. Lee’s formula is a cer-
tain relation between the implied volatility and the order of the first
exploding moment of the stock price.
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Definition 6 (Moments of random variables). Let X be a nonnegative
random variable on a probability space (Ω,F , P). The moment mp(X) of
order p ∈ R of the random variable X is defined as follows:

mp(X) = E∗ [Xp] .

The next assertion was established in “R. Lee, The moment for-
mula for implied volatility at extreme strikes, Mathematical Finance
14 (2004), 469-480”.

Theorem 7. Let C be a call pricing function, and let I be the implied
volatility associated with C. Fix T > 0, and define the number p̃ by

p̃ = sup
{

p ≥ 0 : m1+p (XT) < ∞
}

.

Then the following equality holds:

lim sup
K→∞

TI(K)2

log K
= ψ( p̃)

where the function ψ is given by

ψ(u) = 2− 4
(√

u2 + u− u
)

, u ≥ 0.

Lee’s formula identifies the leading term in the asymptotic expan-
sion of the implied volatility as K → ∞. It shows that for models
with moment explosions, the implied volatility K 7→ I(K) behaves
at infinity like a constant multiple of the function K 7→

√
log K.

2. Tail-Wing Formulas.
——————————

Tail-wing formulas characterize the asymptotics of the implied volatil-
ity at extreme strikes (the wing asymptotics) in terms of the tail be-
havior of the stock price density. We will next formulate and discuss
the tail-wing formulas established in “S. Benaim and P. Friz, Regu-
lar variation and smile asymptotics, Mathematical Finance 19 (2009),
1-12”.

We will denote by F the complementary cumulative distribution
function of the stock price XT, and by D the distribution density of
XT (if this density exists).

Definition 8 (Regular variation). A positive function f on [a, ∞), where
a > 0, belongs to the class Rα with α ∈ R if for every λ > 0,

lim
x→∞

f (λx)
f (x)

= λα.
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Functions from the class Rα are called regularly varying with index α.

Functions of regular variation play an important role in the work
of Benaim and Friz.

Theorem 9 (Benaim-Friz). Let C be a call pricing function, and suppose
the stock price XT satisfies the condition

m1+ε (XT) < ∞ for some ε > 0.

Then the following are true:
(1) If C(K) = exp {−η(log K)} with η ∈ Rα, α > 0, then

I(K) ∼
√

log K√
T

√
ψ

(
− log C(K)

log K

)
as K → ∞.

(2) If F(y) = exp {−ρ(log y)} with ρ ∈ Rα, α > 0, then

I(K) ∼
√

log K√
T

√
ψ

(
− log[KF(K)]

log K

)
as K → ∞.

(3) If the distribution µT of the stock price XT admits a density D and
if

D(x) =
1
x

exp {−h(log x)}
as x → ∞, where h ∈ Rα, α > 0, then

I(K) ∼
√

log K√
T

√
ψ

(
− log[K2D(K)]

log K

)
as K → ∞.

The tail-wing formulas can be derived from the model-free for-
mula for the implied volatility with an error estimate. We will also
explain how to obtain a little stronger formulas than those estab-
lished by Benaim and Friz using similar ideas.

3. Special Models.
——————————-

The model-free formulas discussed in the lectures will be applied
to popular option pricing models with stochastic volatility. It will
be explained how the implied volatility behaves in the case of the
Stein-Stein model and the Heston model.


