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Motivation

Lévy process. A (one dimensional) process with stationary and independent
increments which has paths which are right continuous with left limits. (incl. Brownian

motion with drift, compound Poisson processes, stable processes amongst many others.)

A popular (and often criticised) model in mathematical finance for the evolution of
a risky asset is

St := eXt , t ≥ 0

where {Xt : t ≥ 0} is a Lévy process. (other applications: queuing theory, genetics, population

models, random fluctuations with jump, also used in insurance risk models!)

Of interest in several fields are quantities involving the first passage time
(American options), the overshoot (debt at ruin in actuarial models), the
undershoot (nature of the ruin event), the supremum (Barrier options), etc ...
(Computing these quantities accurately is notoriously hard for general Lévy processes.)

The first approach to compute a path quantity for a stochastic process is to
produce a skeleton approximating the path of the stochastic process at an equally
spaced grid points (Euler scheme), missing the possible excursions of the
process. (Even for a BM, where the Euler scheme is exact computing the supremum in this way leads

to a significant bias)1

1Broadie, M., Glasserman, P. and Kou, S. G. (1999) Connecting discrete and continuous path-dependent
options. Finance Stoch. 3, 55–82.
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Original WH scheme: Kuznetsov et al. (2011)2

(Produces a path skeleton for Lévy processes which captures the value of the process and its supremum)

Consider a Poisson process with arrival rate n. Denote by τ1, τ2, · · · the arrival
times.

1

Note that τn is the sum of n i.i.d exponential random variables, each with mean
1/n. We could therefore write

τn =
nX

i=1

1
n
Ei

d
= g(n, n),

where Ei are i.i.d. exponential random variables with unit mean. Hence by SLLN

τn → 1 almost surely.

Hence for a suitably large n, we have in distribution

(Xτn ,X τn ) ' (X1,X 1).

Since 1 is not a jump time (Xτn ,X τn )→ (X1,X 1) a.s.

2Kuznetsov, A., Kyprianou, A. E., Pardo, J. C. and van Schaik, K. (2011) A Wiener-Hopf Monte Carlo
simulation technique for Lévy processes. Ann. Appl. Probab. 21, 2171–2190.
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simulation technique for Lévy processes. Ann. Appl. Probab. 21, 2171–2190.



Euler-Poisson schemes for Lévy processes Silde 3
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Wiener-Hopf factorization
A formulation of the Wiener-Hopf factorization states that

XE(q)
d
= S(q) + I(q)

`
E[eizXE(q) ] = E[eizXE(q) ] E[eizXE(q) ]

´

where S(q) is independent of I(q) and they are respectively equal in distribution to
XE(q) and XE(q); E(q) is an exponential distribution with mean q−1 and
independent of X .
(X t = infs≤t Xs and X t = sups≤t Xs)
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Feasibility
For many years only a few number of Lévy process with explicit Wiener-Hopf
factors were known. Some of these included stable processes, subclasses of
spectrally one sided processes and a handful more.

Very recent results have incorporated a new family to this class:
Meromorphic Lévy processes.

Let X be a Lévy process, then it is characterized by

log E[eiθXt ] = −tψ(θ) = −t
„

iAθ +
1
2

Σ2
θ

2 +

Z
R

“
1− eiθx + iθx1{|x|<1}

”
ν(dx)

«
,

where (A,Σ, ν) are called the Lévy triplet and ψ the Lévy exponent

ν({0}) = 0 ,
Z

R
(1 ∧ x2)ν(dx) <∞ .

A Lévy process X is said to belong to the meromorphic class (M-class) if its Lévy
measure ν decomposes as ν+(x) = ν((x ,∞)), ν−((−∞,−x)) for x > 0 and ν+, ν−

are discrete completely monotone functions.

f (x) =

Z
[0,∞)

e−xz
µ(dz), x > 0 .

The previous scheme has proved to be extremely flexible.
Many popular models in finance can be approximated by members of the M-class
keeping the desired stylized features (VG, Meixner, CGMY, etc ...)
The original scheme can be improved and modified easily (multilevel Monte Carlo
schemes, discrete schemes for Lévy driven SDEs, compute other quantities than the
supremum, etc ... )

(Ask me later if you want more detail)
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For many years only a few number of Lévy process with explicit Wiener-Hopf
factors were known. Some of these included stable processes, subclasses of
spectrally one sided processes and a handful more.
Very recent results have incorporated a new family to this class:
Meromorphic Lévy processes.
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Heuristics behind Euler-Poisson schemes (I)

The Wiener-Hopf scheme should be a good scheme for path dependent quantities

3Let {Xτk }k≥0, then the random variables

Mk := sup
τk≤t<τk+1

Xt and mk := inf
τk≤t<τk+1

Xt

can be written as

Mk = S(n)
0 + Y (+)

k and mk = I(n)
0 + Y (−)

k ,

where {Y (+)
k }k≥0 and {Y (−)

k }k≥0 are random walks with the same distribution as
{Xτk }k≥0 and independent of S(n)

0 and I(n)
0 respectively.

Stochastic bound/sausage.

3Doney, R. A. (2004) Stochastic bounds for Lévy processes. Ann. Probab. 32(2), 1545–1552.
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Heuristics behind Euler-Poisson schemes (II)
4 [Feynman-Kac] Under some conditions if u(t , x) is a classical solution of the
PIDE

∂

∂t
u(t , x) = AX u(t , x) and u(0, x) = f (x) , (1)

then u(1− t , x) = E[f (X1)|Xt = x ] := Ex [f (X1−t )]. The converse also holds with
stronger assumptions.

Consider the Laplace-Carlson transform, L, of u(t , x), that is

L[u](x) :=

Z ∞
0

n
T

e−nt/T u(t , x)dt =

Z ∞
0

n
T

e−nt/T Ex [f (Xt )]dt = Ex [f (Xτ1 )] .

Then
L[u](x)− f (x)

T/n
= AYL[u](x) .

Consider the discretization of (1) given by

ui (x)− ui−1(x)

T/n
= AX ui (x) ,

for i = 1, . . . , n with u0(x) = f (x). Then, for all i = 1, . . . , n,

ui (x) = Ex [f (Xτi )] .

4Carr, P. (1998) Randomization and the American Put. Rev. Fin. Studies. 11(3), 597–626.
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Some applications (I): Other fluctuation quantities Actuarial science

Consider the following random variables:
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Some applications (I): Other fluctuation quantities Actuarial science
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Some applications (I): ctd.

Under the previous notation we have the following result:

Theorem
Let X be any Lévy process. Fix some t > 0 and u > 0. Set for all n ∈ N

κ
(n)
u := inf{k ∈ {0, . . . , n} | J(n/t)

k > u}

(where as usual we understand inf ∅ =∞). Then we have as n→∞„
t
n

(κ
(n)
u ∧ n),V (n/t)

κ
(n)
u ∧n
− u, u − V (n/t)

(κ
(n)
u −1)∧n

, u − J(n/t)

(κ
(n)
u −1)∧n

«
d−→
“
τu ∧ t ,Xτu∧t − u, u − X(τu∧t)−, u − X (τu∧t)−

”
.

Theorem
Using the same notation, we have

E

"„
t
n

(κ
(n)
u ∧ n)− τ ∧ t

«2
#
≤ 2t2

n
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Some applications (II): Numerical schemes for Lévy driven SDEs

Let Y := {Yt}t∈[0,T ] be the solution of the stochastic differential equation

Yt = y0 +

Z t

0
a(Ys−)dXs t ∈ [0,T ] ,

The Euler-Poisson scheme is then given by the discrete Markov chain eY := {eYτi }i≥0

defined recursively by

eYτi := eYτi−1 + a(eYτi−1 )∆XEi (n/T ) for i ≥ 1 and eY0 := y0 ,

where ∆XEi := XEi (n/T ) − XEi−1(n/T )
d
= XE(n/T ) and τi :=

Pi
j=0 Ej (n/T ) .

In this context we only assume knowledge of the resolvent of the Lévy process.
The Wiener-Hopf factorization gives way more information than the resolvent.

It is not trivial how to incorporate the information of the supremum.

Zt = y0 +

Z t

0
a(Zs−,X s−)dXs or Zt = y0 +

Z t

0
a(Zs−,X s−)dXs .

Chemical reactions, stochastic population models, ...
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Some applications (II): Numerical schemes for Lévy driven SDEs
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Some applications (II): ctd.

Theorem

Let a := RdY → RdY ⊗ RdX be a measurable function such that

|a(x)− a(x ′)| ≤ k |x − x ′| and |a(y0)| ≤ k

for x , x ′ ∈ RdY and k ′ ∈ R+. And the driving process X (Lévy–Khinchine) satisfiesZ
RdX
|x |2ν(dx) ≤ k2 , |Σ| ≤ k , |A| ≤ k and |y0| ≤ k .

Then
E[|YT − eYτn |

2] ≤ Kn−1/2 ,

where K is a positive constant depending on k and T only.

The key idea of the proof is to split the error into
Discretization: what happens in [0,T ]

Conditioned on the number of arrivals of a Poisson process up to T these are
distributed as uniform deviates.

Hitting: what happens in [T , τn]

Centered moments of a Gamma distribution: τn
d
= g(n, n/t)
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Some applications (II): ctd.

Theorem

Let a := RdY → RdY ⊗ RdX be a measurable function such that

|a(x)− a(x ′)| ≤ k |x − x ′| and |a(y0)| ≤ k

for x , x ′ ∈ RdY and k ′ ∈ R+. And the driving process X (Lévy–Khinchine) satisfiesZ
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Some applications (III): Fast computation of derivatives Pricing barrier options

E.g. pricing a Barrier option by a Monte Carlo method:

E[f (Xt )I{X t>b}] =: E[F (Xt ,X t )] ≈ E[F (Xτn ,X τn )] := E[F n]

One of the current hot topics in Monte Carlo methods are multilevel Monte Carlo
schemes, which increments the speed of the estimators.

Plain Monte Carlo estimator:

bF n,M
MC :=

1
M

MX
i=1

F n,(i)
.

e(bF n,M
MC )2 =

1
M

V(F n) +
“

E[F n − F (Xt ,X t )]
”2
.

Multilevel Monte Carlo estimator: (ML = n)

bF n0,L,{M`}
ML :=

1
M0

M0X
i=1

F n0,(i) +
LX
`=1

1
M`

MX̀
i=1

(F n`,(i) − F n`−1,(i)).

e(bF n0,L,{M`}
ML )2 =

1
M0

V(F n0 ) +
LX
`=1

1
M`

V(F n` − F n`−1 ) +
“

E[F n − F (X1,X 1)]
”2
.
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Some applications (III): ctd.
In the WHMC method how do we introduce ”levels”?

It is crucial to have a Poisson process for the time randomisations on all levels!
How do we sample on two consecutive levels?

Suppose the ”level `” grid is based on a Poisson process of rate n`. Then by
tossing a coin (thinning) and rejecting arrivals with probability 1/2 we end up with
a Poisson process of rate n`−1: our new coarser ”level `− 1” Poisson grid.
(Not a new idea! Also used by [Glasserman, Merener, 2003], [Giles, Xia, 2012], . . . )

1

1
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Some applications (III): ctd.

Theorem

Assume ∃α, β > 0 with α ≥ 1
2 min{β, 1} such that

(i) |E[F n` − F (Xt ,X t )]| . n−α`
(ii) V[F n` − F n`−1 ] . n−β`
(iii) E[Cn` ] . n`.

Then, ∀ν ∈ N ∃L and {M`}L
`=0 s.t. E

h
C
“bF n0,L,{M`}

ML

”i
. ν and L2 error

R.M.S.E. = e
“bF n0,L,{M`}

ML

”
.

8>><>>:
ν−

1
2 if β > 1 ,

ν−
1
2 log2 ν if β = 1 ,

ν
− 1

2+(1−β)/α if β < 1 .

An important feature of multilevel schemes is that they give a regime of optimal
performance.

The M-class satisfies Assumption (iii).

We can prove that α = 1/4 & β = 1/2 ⇒ O(ν−
1
4 ).
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Some applications (III): ctd.

Limited works: [Jacod et al, 2005] (less general – functionals of Xt only, smooth F );
[Dereich et al, 2011], [Dereich, 2011] (more general – Lévy driven SDEs).

Rates in these papers depend on Blumenthal-Getoor index (“jump activity”):

ρ := inf

(
β > 0 :

Z
(−1,1)

|x |βν(dx) <∞

)
∈ [0, 2].
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Talk based in the papers:

F-C, A., Kyprianou, A.E., Scheichl, R. and Suryanarayana, G. (2014) Multilevel
Monte Carlo simulation for Lévy processes based on the Wiener-Hopf
factorization. Stoch. Proc. Appl., 124 (2), 985–1010.

F-C, A., Kyprianou, A.E. and Scheichl, R. (2013) Euler-Poisson scheme for Lévy
driven SDEs. Preprint

F-C, A., and van Schaik, K. (2014) Applying the Wiener-Hopf Monte Carlo
simulation technique for Lévy processes to path functionals. J. Appl. Probab. (To
appear)

Thanks!
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Feasibility ctd.
Equivalent definition:

(i) The characteristic exponent Ψ(z) is a meromorphic function which has poles at
points {−iρn, iρ̂n}n≥1, where ρn and ρ̂n are positive real numbers.

(ii) For q ≥ 0 function q + Ψ(z) has roots at points {−iζn, iζ̂n}n≥1 where ζn and ζ̂n are
nonnegative real numbers (strictly positive if q > 0). We will write ζn(q), ζ̂n(q) if
we need to stress the dependence on q.

(iii) The roots and poles of q + Ψ(iz) satisfy the following interlacing condition

...− ρ2 < −ζ2 < −ρ1 < −ζ1 < 0 < ζ̂1 < ρ̂1 < ζ̂2 < ρ̂2 < ...

(iv) The Wiener-Hopf factors are expressed as convergent infinite products,

E
h
e−zXEq

i
=
Y
n≥1

1 + z
ρn

1 + z
ζn

E
h
ezXEq

i
=
Y
n≥1

1 + z
ρ̂n

1 + z
ζ̂n

.

For x ≥ 0

P(XEq ∈ dx) = a0(ρ, ζ)δ0(dx) +
∞X

n=1

an(ρ, ζ)ζne−ζnx dx

Here

a0(ρ, ζ) = lim
n→+∞

nY
k=1

ζk

ρk
, an(ρ, ζ) =

„
1− ζn

ρn

«Y
k≥1
k 6=n

1− ζn
ρk

1− ζn
ζk
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Feasibility ctd.

Kuznetsov’s β-family

The corresponding Lévy measure ν has density

π(x) = c1
e−α1β1x

(1− e−β1x )λ1
1{x>0} + c2

eα2β2x

(1− eβ2x )λ2
1{x<0}.

The β-class of Lévy processes includes another recently introduced family of Lévy
processes known as Lamperti-stable processes.


