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Ambit fields

Ambit processes are a class of stochastic processes introduced by

Barndorff-Nielsen and Schmiegel(2005). They consist of an ambit field
given by

X(t,x) = c+/

g(t,5:x,y)o(s, y)L(ds, dy) + /
At(x)

B:(x)

a curve in space-time 7(0) = (t(0), x(#)), and a path through the field

h(t,s; x,y)a(s, y)d(s, y),

X(0) = X(t(6), x(9)).
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Ambit fields

Ambit processes are a class of stochastic processes introduced by

Barndorff-Nielsen and Schmiegel(2005). They consist of an ambit field
given by

X(t,x) = c+/

[ Bltsxy)ots s + / h(t, 5:%,y)a(s, y)d(s, ),

B:(x)

a curve in space-time 7(0) = (t(0), x(#)), and a path through the field
X(0) := X(t(6), x(0)).

Our aim: derive a stochastic calculus with respect to these objects.
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Ambit fields

Ambit processes are a class of stochastic processes introduced by

Barndorff-Nielsen and Schmiegel(2005). They consist of an ambit field
given by

X(t,x) = c+/

[ Bltsxy)ots s + / h(t, 5:%,y)a(s, y)d(s, ),

B:(x)

a curve in space-time 7(0) = (t(0), x(#)), and a path through the field
X(0) := X(t(6), x(0)).

Our aim: derive a stochastic calculus with respect to these objects.
Today's question is: Given a random field Y, what is

Z(t,x) = /Ot/Rd Y(t,s;x,y)X(ds,dy)?
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The Situation

We have a random field

Xt = [ ] ale.sxy)atsy)Wias.ay).
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The Situation
We have a random field
t
X()) = [ el s)o(s)E(S)
where °

g .. .deterministic function, g : H; — H;
o ...predictable random function, o : H — H;

W . ..cylindrical Wiener process on H.
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The Situation
We have a random field

X(¢) = /0 g(t, 5)o(s)AB(s)

where

g .. .deterministic function, g : H; — H;
o ...predictable random function, o : H — H;

W . ..cylindrical Wiener process on H.

Furthermore, we are given stochastic process (Y(t))¢c[o,7] from Hi to Ha.
Then our integral looks like

Z(t) = /O Y (s)aX(s).
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A few examples

Gaussian processes In R and with 0 = 1 we reobtain the results of Alos,
Mazet and Nualart(2001).
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Gaussian processes In R and with 0 = 1 we reobtain the results of Alos,
Mazet and Nualart(2001).
Turbulence g(t,s) = (t —s)” " Lexp(—A(t — s)) for v > 1/2 and A > 0.
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A few examples

Gaussian processes In R and with 0 = 1 we reobtain the results of Alos,
Mazet and Nualart(2001).

Turbulence g(t,s) = (t —s)” " Lexp(—A(t — s)) for v > 1/2 and A > 0.

fBM Choose o = Q/2 where Q is a nonnegative, selfadjoint, trace-class
operator and

g(t,s) = cu(t—s)"Y2 4 ¢y <% - H> /S (U_S)H73/2(1 _ (S/u)1/27H)du.

Then X is a Hilbert-valued fBM with covariance operator Q.
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A few examples

Gaussian processes In R and with 0 = 1 we reobtain the results of Alos,
Mazet and Nualart(2001).

Turbulence g(t,s) = (t —s)” " Lexp(—A(t — s)) for v > 1/2 and A > 0.

fBM Choose o = Q/2 where Q is a nonnegative, selfadjoint, trace-class
operator and

g(t,s) = CH(t*S)H71/2+cH <; B H) /t(us)H3/2(1(s/u)l/zH)du.

Then X is a Hilbert-valued fBM with covariance operator Q.
OU process For g(t,s) = exp(—(t — s)A) we rediscover OU processes

dX(t) = —AX(t) + dB(t).
Generalizations of this: CARMA
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A few examples

Gaussian processes In R and with 0 = 1 we reobtain the results of Alos,
Mazet and Nualart(2001).

Turbulence g(t,s) = (t —s)” " Lexp(—A(t — s)) for v > 1/2 and A > 0.

fBM Choose o = Q/2 where Q is a nonnegative, selfadjoint, trace-class
operator and

g(t,s) = CH(t*S)H71/2+cH <; B H) /t(us)H3/2(1(s/u)l/zH)du.

Then X is a Hilbert-valued fBM with covariance operator Q.
OU process For g(t,s) = exp(—(t — s)A) we rediscover OU processes

dX(t) = —AX(t) + dB(t).

Generalizations of this: CARMA
S(P)DE X is the mild solution of dX; = AX; 4+ o(X(t))dB(t), i.e.

t
X(t) = /O g(t — 5)o(X(s))dB(s).
T Y



|dea behind this integral |
First consider Hy = H, = H = R.
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Idea behind this integral |
First consider Hy = H, = H = R. The idea is

[ veaxe) = vioxw - / 9 ()X (s)as.
0

For the first term a basic rule of Malliavin calculus yields

Y(£)X(t) = /O Y (D)e(t, 5)o()0B(s) + / DY (D)g(t, s)o(s)ds.

0
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Idea behind this integral |
First consider H; = Ho = H = R. The idea is

t t dY
/O Y(s)dX(s) = Y(£)X(t) — /O L ()X(s)ds:

For the first term a basic rule of Malliavin calculus yields

Y(£)X(t) = /O Y (D)e(t, 5)o()0B(s) + / DY (D)g(t, s)o(s)ds.

0

Similarly for the second term (and a stochastic Fubini)

‘ay
/O T ()X(s)ds

_ /0 t ( / t %(s)g(s, u)ds) o (1)5B(u)

+ /0 t < / t Du(?s/(s)> &(s, u)ds>a(u)du.
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|dea behind this integral Il

So, putting this together and deterministic IbP yield

(Y (t,s) / m u)g(u, s)du) (5)6B(s)
/0 (Y(s)g s s)+/ Y(u)g(du,s))a(s)(ss(s)_

S
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|dea behind this integral Il

So, putting this together and deterministic IbP yield
[ (vetes - [ wetwspu)o(s)i806)
_ /O t (Y(s)g(s,s) + / t Y(u)g(du,s)>0(5)58(s).

From this we read off the following kernel

Ko(Y)(t,s) = Y(s)g(s, ) + / "y (w)e(du, s),
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|dea behind this integral Il

So, putting this together and deterministic IbP yield

[ (vetes - [ wetwspu)o(s)i806)
_ /0 t (Y(s)g(s,s)—i— / t v(u)g(du,s)>a(s)53(s).

From this we read off the following kernel

Ke(Y)(t,s) = Y(s)g(s,s) +/ Y(u)g(du,s),

and can define the stochastic integral as

/ Y (s)dX(s) = / Ko (Y)(, 5)o(s)5B(s) + / D, (Kg(Y)(t,5))o(s)ds.
0 0

t
0
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|dea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
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Idea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
This yields to integration wrt vector measures in the kernel and

/0 Y(s)dX(s) = /0 Ko(Y)(t, 5)o(s)3B(s) + tra /0 Dy (Kg(Y)(t, 5))o(s)ds.
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Idea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
This yields to integration wrt vector measures in the kernel and

/0 Y(s)dX(s) = /0 Ko(Y)(t, 5)o(s)3B(s) + tra /0 Dy (Kg(Y)(t, 5))o(s)ds.

In some cases we need to or can rewrite the kernel /Cg.

Ke(Y)(t,s) = Y(s)g(t,s)+ /st (Y(u) = Y(s))g(du,s)
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Idea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
This yields to integration wrt vector measures in the kernel and

/0 Y(s)dX(s) = /0 Ko(Y)(t, 5)o(s)3B(s) + tra /0 Dy (Kg(Y)(t, 5))o(s)ds.

In some cases we need to or can rewrite the kernel /Cg.
t
Ko¥)(t:5) = Ve(t:s) + [ (¥(0) = Y(5))gldu.)
S

— Y(s)g(s,s) + / Y (u)g(du, s)
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Idea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
This yields to integration wrt vector measures in the kernel and

/0 Y(s)dX(s) = /0 Ko(Y)(t, 5)o(s)3B(s) + tra /0 Dy (Kg(Y)(t, 5))o(s)ds.
In some cases we need to or can rewrite the kernel /Cg.
Ko¥)(t:5) = Ve(t:s) + [ (¥(0) = Y(5))gldu.)
~ Y(e(s.5) + | V(wlg(du.s)

— Y(s)g(ts)+ / (Y () - Y(s))%(u, 5)du
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Idea behind this integral IlI

Now consider separable Hilbert spaces H;, Hy, H. Here we expand every
term with respect to CONSs, use the results above and sum up again.
This yields to integration wrt vector measures in the kernel and

/ (s)dX(s) / Ko(Y)(t, 5)o(s)3B(s) + tra /0 D, Ky (Y)(2.5))(s)ds.
In some cases we need to or can rewrite the kernel /Cg.
KalV)(e:5) = V(oJae:s) + [ (Y(6) = V(s))g(dus)
=Y(s)g(s,s)+ /st Y(u)g(du,s)
= Y(s)g(es)+ [ (V) — V(5) E (5)
— Y(s)g(t—5)+ /0 (Yt ) - Y(5))g(du)
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Formal Definition

Definition
Fix some t € [0, T]. We say that a stochastic process (Y(s))sc[o,s belongs

to the domain of the stochastic integral with respect to X if

Q the process (Y(u) — Y(s))ue(s,q is integrable with respect to g(du, s)
almost surely,
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Formal Definition

Definition
Fix some t € [0, T]. We say that a stochastic process (Y(s))sc[o,s belongs

to the domain of the stochastic integral with respect to X if

@ the process (Y(u) — Y(s))ue(s,q is integrable with respect to g(du, s)
almost surely,

Q Kg(Y)(t,s)a(s)1[o,q(s) is in the domain of the Hilbert-valued
divergence operator 6B for all s € [0, t], and
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Formal Definition

Definition

Fix some t € [0, T]. We say that a stochastic process (Y(s))sc[o,s belongs
to the domain of the stochastic integral with respect to X if

@ the process (Y(u) — Y(s))ue(s,q is integrable with respect to g(du, s)
almost surely,

Q Kg(Y)(t,s)a(s)1[o,q(s) is in the domain of the Hilbert-valued
divergence operator 6B for all s € [0, t], and

Q Kg(Y)(t,s) is Malliavin differentiable for all s € [0, t] and the

Hilbert-valued stochastic process s — try Ds(Kg(Y)(t,s))o(s) is
Bochner integrable on [0, t] almost surely.
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Formal Definition

Definition

Fix some t € [0, T]. We say that a stochastic process (Y(s))sc[o,s belongs
to the domain of the stochastic integral with respect to X if

@ the process (Y(u) — Y(s))ue(s,q is integrable with respect to g(du, s)
almost surely,

Q Kg(Y)(t,s)a(s)1[o,q(s) is in the domain of the Hilbert-valued
divergence operator 6B for all s € [0, t], and
Q Kg(Y)(t,s) is Malliavin differentiable for all s € [0, t] and the

Hilbert-valued stochastic process s — try Ds(Kg(Y)(t,s))o(s) is
Bochner integrable on [0, t] almost surely.

We denote this by Y € ZX(0, t).
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Basic calculus rules |
Linearity If Y, Z € 7X(0,t) and a, b € R then

/O (aY(s) + bZ(s))dX(s) = a /0 Y(s)dX(s) + b /O Z(s)dX(s).
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Basic calculus rules |
Linearity If Y, Z € 7X(0,t) and a, b € R then

/O (aY(s) + bZ(s))dX(s) = a /0 Y(s)dX(s) + b /O Z(s)dX(s).

Local operator The stochastic integral with respect to X is a local
operator.
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Basic calculus rules |

Linearity If Y, Z € 7X(0,t) and a, b € R then

/O (aY(s) + bZ(s))dX(s) = a /0 Y(s)dX(s) + b /O Z(s)dX(s).

Local operator The stochastic integral with respect to X is a local
operator.

Integrating Identity Let Y = id, then

/Oth(s) = /Otid dX(s) = /Otg(t, s)o(s)dB(s) = X(t).
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Basic calculus rules |

Linearity If Y, Z € Z%(0, t) and a, b € R then

t

/O (aY(s) + bZ(s))dX(s) = a /0 Y(s)dX(s) + b /O Z(s)dX(s).

Local operator The stochastic integral with respect to X is a local
operator.

Integrating Identity Let Y = id, then
t t t
/ dX(s) = / id dX(s) = / g(t, 5)o(s)dB(s) = X(t).
0 0 0

Indicator integrands Choosing an indicator function in time gives us the
increment of the integrator, i.e.

/ 1 (s)AX(s) = / 1 (s)id dX(s) = X(v) — X(u).
0 0
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Basic calculus rules 11

Bounded linear operators Let Z be a random linear operator which is
almost surely bounded (no special measurabilty conditions) such that
s+ ZY(s) € IX(0,t). Then

/f ZY (s)dX(s) = Z/t Y(s)dX(s) almost surely.
0 0
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Basic calculus rules 11

Bounded linear operators Let Z be a random linear operator which is
almost surely bounded (no special measurabilty conditions) such that
s+ ZY(s) € IX(0,t). Then

/f ZY (s)dX(s) = Z/t Y(s)dX(s) almost surely.
0 0

Projection | Let (ex)ken be a CONS of Hj. Then

Ke(Y)(t;5)(ex) = Kg(e) (Y)(t:5),

where g(ex) is defined by g(t,s)ex.
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Basic calculus rules 11

Bounded linear operators Let Z be a random linear operator which is

almost surely bounded (no special measurabilty conditions) such that
s+ ZY(s) € TX(0, t). Then

/t ZY (s)dX(s) = Z/t Y(s)dX(s) almost surely.
0 0

Projection | Let (ex)ken be a CONS of Hj. Then

Ke(Y)(t;5)(ex) = Kg(e) (Y)(t:5),

where g(ek) is defined by g(t,s)ex.
Projection Il Let (ex)ken be a CONS of H; and let X* := (X, et). Then

/Ot s)axk(s /;cgew ts)5B()+trH/tD]Cgek( \(t.5)ds.
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Basic calculus rules Il
Shift of domain For 0 < u < v < tand Y € ZX(0,u) N ZX(0, v)

/O Y ()11 (5)AX(5) = /0 Y (s)dX(s) — /0 Y (s)dX(s).
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Basic calculus rules Il
Shift of domain For 0 < u < v < tand Y € ZX(0,u) N ZX(0, v)

/O Y ()11 (5)AX(5) = /0 Y (s)dX(s) — /O Y (s)dX(s).

Integrability over time For 0 < t < T and Y € Z%(0, t) we have
Y14 € Z%(0, T) and

T t
/ 10.4(5) Y (5)dX(s) = / Y (s)dX(s).
0

0
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Basic calculus rules 11

Shift of domain For 0 < u < v < tand Y € ZX(0,u) N ZX(0, v)
t v u
/ Y ()11 (5)AX(5) = / Y (s)dX(s) — / Y (s)dX(s).
0 0 0

Integrability over time For 0 < t < T and Y € Z%(0, t) we have
Y14 € Z%(0, T) and

T t
/ 10.4(5) Y (5)dX(s) = / Y (s)dX(s).
0

0

Simple processes Let Y be a simple process, i.e. Y = ZJ”__ll Zjl(tj,

= til]*
Then Y € 7X(0, t) and
t n—1
JRCECE ST
j=1
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Semimartingale condition

Proposition

Let t > 0 and assume that g(s,s) is well-defined for all 0 < s < t.
Furthermore, assume that there is a bi—measurable function

¢ : [0, T] — L(Hi, H1) such that g(t,s) = g(s,s) + [ ¢(v,s)dv, for all
0 < s < t, where this integral is defined in the sense of Bochner and

t t u
/0 (s, )2 ds < 00 and /0 /0 16, )12 4y duids < 0.

v
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Semimartingale condition

Proposition

Let t > 0 and assume that g(s,s) is well-defined for all 0 < s < t.
Furthermore, assume that there is a bi—measurable function

¢ : [0, T] — L(Hi, H1) such that g(t,s) = g(s,s) + [ ¢(v,s)dv, for all
0 < s < t, where this integral is defined in the sense of Bochner and

t t u
/O (s, )2 ds < 00 and /0 /0 16, )12 4y duids < 0.

Suppose furthermore that o is locally bounded almost surely.

v
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Semimartingale condition

Proposition

Let t > 0 and assume that g(s,s) is well-defined for all 0 < s < t.
Furthermore, assume that there is a bi—measurable function

¢ : [0, T] — L(Hi, H1) such that g(t,s) = g(s,s) + [ ¢(v,s)dv, for all
0 < s <'t, where this integral is defined in the sense of Bochner and

t t u
/0 (s, )2 ds < 00 and /0 /O 16, )12 4y duids < 0.

Suppose furthermore that o is locally bounded almost surely. Then X is a
semimartingale with decomposition

X(¢) = /0 g(s,5)o(s)dB(s) + /0 /0 " o(s, u)o(u)dB(u)ds.

v
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Semimartingale condition

Proposition

Let t > 0 and assume that g(s,s) is well-defined for all 0 < s < t.
Furthermore, assume that there is a bi—measurable function

¢ : [0, T] — L(Hi, H1) such that g(t,s) = g(s,s) + [ ¢(v,s)dv, for all
0 < s <'t, where this integral is defined in the sense of Bochner and

t t u
/0 (s, )2 ds < 00 and /0 /O 16, )12 4y duids < 0.

Suppose furthermore that o is locally bounded almost surely. Then X is a
semimartingale with decomposition

X(¢) = /0 g(s,5)o(s)dB(s) + /0 /0 " o(s, u)o(u)dB(u)ds.

Furthermore, [y YdX(s) =Y - X.

v
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Deterministic integrands and OU processes

Fix t > 0 and let s +— h(t,s) be a deterministic function, such that
u v h(t,u) — h(t,s) is g(du, s)-integrable on [s, t]. Then,

/  h(t, 5)AX(s) = / Ky (h)(2, 5)o(s)AB(S).
0 0
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Deterministic integrands and OU processes

Fix t > 0 and let s +— h(t,s) be a deterministic function, such that
u v h(t,u) — h(t,s) is g(du, s)-integrable on [s, t]. Then,

t t
/ h(t, s)dX(s) = / Ko (h)(t, 5)(s)dB(s).
0 0
We use this to investigate solutions to the SDE
dY(t) = —AY(t)dt + dX(t).

Its solution is given by
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Deterministic integrands and OU processes

Fix t > 0 and let s +— h(t,s) be a deterministic function, such that
u v h(t,u) — h(t,s) is g(du, s)-integrable on [s, t]. Then,

t t
/ h(t, 5)dX(s) = / Ko (h)(t, 5)(s)dB(s).
0 0
We use this to investigate solutions to the SDE
dY(t) = —AY(t)dt + dX(t).

Its solution is given by

Y(t) = /0 te_(t_S)AdX(s),

where e~ is the Cp-semigroup generated by —A, where we assume that

u— e (U=9)A to be g(du, s)-integrable.
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Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form
(assume 0 = 1)

Y(t) = /0  h(s)dX(s) = /0 Ky (h)(2,)AB(S).
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Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form
(assume 0 = 1)

Y(t) = /0  h(s)dX(s) = /0 Ky (h)(2,)AB(S).

Then we get that fot Y (s)dX(s) is an element in the second Wiener chaos
(plus a zeroth chaos correction term) involving sums of iterated Wiener
integral with integrand of the type Ky (e,)(Kg(e)(+))-
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Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form
(assume 0 = 1)

Y(t) = /0  h(s)dX(s) = /0 Ky (h)(2,)AB(S).

Then we get that fot Y (s)dX(s) is an element in the second Wiener chaos
(plus a zeroth chaos correction term) involving sums of iterated Wiener
integral with integrand of the type Ky (e,)(Kg(e)(+))-

With this one can write down a formula for

/ot X*(s)dX(s)

and the 1t6 formula will give a connection with

;< (1), X(t / / (t,v)dB(v), g(t,s)dB(s))H, / lg(t,s)|*ds.
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An 1to6 formula

Theorem

Let F : H, — Hs be twice Fréchet differentiable. Furthermore assume that
g satisfies the semimartingle condition. Assume that Y and o are twice

Malliavin differentiable, Y (s)g(s,s)o(s) € L?P(H, Hy) for some p > 4 and
S ag
Y(S)E(S, u)o(u)dB(u) + triy Ds(Y(s))g(s, s)o(s)
0

+ try /05 Du(Y(s))g—i(s, u)o(u)du € LY (Hs,).

Then F'(Z)Y € TX(0,t) for all t € [0, T] and

F(Z) = F(0) + /0 F/(Z(s)) Y (5)dX(s)

— gt || F(Z)(Y(5)e(s:5)0(s)) (Y (). )o(s) s

v
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Corollaries of the Itd6 formula

Corollary

Under the conditions of the last theorem F'(X) € T%(0,t) for all
t €0, T] and

F(X) = F(0)+ /0 FI(X)AX(s) 5 tr /0 F(X:) (g(s, 5)(5)) (g(5, 5)or(s))ds.

v
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Corollaries of the Itd6 formula

Corollary

Under the conditions of the last theorem F'(X) € T%(0,t) for all
t €0, T] and

F(X) = F(0)+ /0 FI(X)AX(s) 5 tr /O (%) (e(55)0(5)) (&5, S)o(s)) ds.

v

Note that this yields the same result as in Alos, Mazet and Nualart (2001).
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Corollaries of the Itd6 formula

Corollary

Under the conditions of the last theorem F'(X) € T%(0,t) for all
t €0, T] and

F(X) = F(0)+ /0 FI(X)AX(s) 5 tr /O (%) (e(55)0(5)) (&5, S)o(s)) ds.

v

Note that this yields the same result as in Alos, Mazet and Nualart (2001).
Corollary
Suppose the same conditions and Hy = R and F(x) = x?. Then

t

%(Z(t))2 - /0 " 2(5)dZ(s) + tra /0 (D.2(s)) Y(5)g(s, s)o(s)ds

1 t
=5 | IOt 1) rermycs

v
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How do SPDE enter?

Consider SDEs in infinite dimensions
dX(t) = AX(t) + o(t)dB(t) + b(t)dt

and its corresponding mild solutions

X(t) = /0 " g(t 5)o(s)dB(s) + / " a(t,$)b(s)ds.

0
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How do SPDE enter?

Consider SDEs in infinite dimensions
dX(t) = AX(t) + o(t)dB(t) + b(t)dt
and its corresponding mild solutions
t t
X(t) = / g(t,s)o(s)dB(s) +/ g(t,s)b(s)ds.
0 0

Then g is a Cp-semigoup of linear operators generated by A and its
(singular) fundamental solution A, i.e.

gt 5)f = /D A(t.5,-y)F(y)dy,

if the Hilbert space is L2(D).
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How do SPDE enter?

Consider SDEs in infinite dimensions
dX(t) = AX(t) + o(t)dB(t) + b(t)dt

and its corresponding mild solutions

X(t):/o g(t,s)a(s)dB(s)+/o g(t,s)b(s)ds.

Then g is a Cp-semigoup of linear operators generated by A and its
(singular) fundamental solution A, i.e.

gt 5)f = /D A(t.5,-y)F(y)dy,

if the Hilbert space is L2(D). Then we want to now about the conditions
on h under which the operator Kg(h)(t,s) is well-defined for a large class
of o (or the other way round).
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An example using the wave kernel
For d = 3 the fundamental solution of the wave equation is given by

g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

Mg (h)(t,s)
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An example using the wave kernel

For d = 3 the fundamental solution of the wave equation is given by
g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

0.3 t—s o3
U (h)(e,5) = ) TEE + [ (b 9) — () G
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An example using the wave kernel

For d = 3 the fundamental solution of the wave equation is given by
g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

0.3 t—s 0.3
c g (h)(t,s) = h(s) == + /0 (h(v + s) — h(s)) =4«

t—s dv
0.3 t—s d 0.3
=h t=s h — h(s))——¥
(S)t—s+/0 (h(v +5s) (s))dvvdv
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An example using the wave kernel

For d = 3 the fundamental solution of the wave equation is given by
g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

0.3 t—s 0.3
i (h)(t 5) = h( )t — —|—/0 (h(v + 5) — h(s))ﬂ

3
Ot_s

t—s 0.3
t—s+/0 (h(v-l—s)—h(s))dd Tvdv
U t—s 0.3
= h(r) 725 —/O W (v) v,

h(s)
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An example using the wave kernel

For d = 3 the fundamental solution of the wave equation is given by
g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

0.3 t—s 0.3
c g (h)(t,5) = h(s) = +/0 (h(v+s) — h(s))ﬁ

t_
0.37 t—s d 0.3
Ut s = 03
t — h —Zdv.
—no7=E - [ H W T

Now ¢ grows as v9~1, so this operator makes sense if h € C1((0,t — s])
and K has a singularity at zero of less than v—2.
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An example using the wave kernel

For d = 3 the fundamental solution of the wave equation is given by
g(t,s) = co}_,/(t —s). The question is: what is Kg(h)?

0.3 t—s 0.3
U (h)(e,5) = ) TEE + [ (b 9) — () G

t—s

ne = [ hs) L7V
“HOTEE+ [ (v 9) = hs)) f aw
= h(t)— — h(v)—2d

7=~ [ Hw %

Now ¢ grows as v9~1, so this operator makes sense if h € C1((0,t — s])
and K has a singularity at zero of less than v—2. This also works for larger
d, then h has to be smoother but the highest derivative can be more

singular at zero.
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Further Research

Random-field approach How about the random-field integration approach
a la Walsh and Dalang? In this case the operator changes to

ICg(f)(t,s,y):/ f(s,z)g(t,s;dz,y)—i—/S (f(u,z)—f(s,z))g(du, s;dz, y).

R

Also anticipating integration a la Walsh and Dalang is necessary.
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Further Research

Random-field approach How about the random-field integration approach
a la Walsh and Dalang? In this case the operator changes to

Ke(F)(t.5,y) = / (s, 2)g(t, 5: dz, y)+ / (F(u,2)~F(s.2))g(du, 5 dz, y).

R
Also anticipating integration a la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy
bases, (summands in expansion are no longer independent) or to
rough noises
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Further Research

Random-field approach How about the random-field integration approach
a la Walsh and Dalang? In this case the operator changes to

t
Ka(Nlts.) = [ (5.2t szt [ (0.2)~1(5,2)adussidz.).
RY s
Also anticipating integration a la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy
bases, (summands in expansion are no longer independent) or to
rough noises

Stochastic Calculus for X(0) = X(t(6), x(0))
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Also anticipating integration a la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy

bases, (summands in expansion are no longer independent) or to
rough noises

Stochastic Calculus for X(0) = X(t(6), x(0))

More examples and links to SPDEs and ambit processes
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Further Research

Random-field approach How about the random-field integration approach
a la Walsh and Dalang? In this case the operator changes to

t
Ka(Nlts.) = [ (5.2t szt [ (0.2)~1(5,2)adussidz.).
RY s
Also anticipating integration a la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy
bases, (summands in expansion are no longer independent) or to
rough noises

Stochastic Calculus for X(0) = X(t(6), x(0))
More examples and links to SPDEs and ambit processes

any more ideas?
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Thank you very much for your attention!
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