Integration theory for infinite dimensional volatility modulated Volterra processes

André Suess

Universitat de Barcelona

Barcelona, 03. October 2012

This is a joint work with Fred Espen Benth which was done on a *estancia breve* at the University of Oslo.

Contents

- Motivation: Ambit fields
- 2 Definition of the integral
- Calculus for the stochastic integral
- 4 An SPDE connection
- 5 Further Research

Contents

- Motivation: Ambit fields
- 2 Definition of the integral
- 3 Calculus for the stochastic integral
- 4 An SPDE connection
- 5 Further Research

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of an **ambit field** given by

$$X(t,x) = c + \int_{A_t(x)} g(t,s;x,y) \sigma(s,y) L(\mathrm{d} s,\mathrm{d} y) + \int_{B_t(x)} h(t,s;x,y) \alpha(s,y) \mathrm{d} (s,y),$$

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of an **ambit field** given by

$$X(t,x) = c + \int_{A_t(x)} g(t,s;x,y) \sigma(s,y) L(\mathrm{d} s,\mathrm{d} y) + \int_{B_t(x)} h(t,s;x,y) \alpha(s,y) \mathrm{d} (s,y),$$

a curve in space-time $\tau(\theta) = (t(\theta), x(\theta))$,

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of an **ambit field** given by

$$X(t,x) = c + \int_{A_t(x)} g(t,s;x,y) \sigma(s,y) L(\mathrm{d} s,\mathrm{d} y) + \int_{B_t(x)} h(t,s;x,y) \alpha(s,y) \mathrm{d} (s,y),$$

a curve in space-time $\tau(\theta)=(t(\theta),x(\theta))$, and a path through the field

$$X(\theta) := X(t(\theta), x(\theta)).$$

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of an **ambit field** given by

$$X(t,x) = c + \int_{A_t(x)} g(t,s;x,y) \sigma(s,y) L(\mathrm{d} s,\mathrm{d} y) + \int_{B_t(x)} h(t,s;x,y) \alpha(s,y) \mathrm{d} (s,y),$$

a curve in space-time $\tau(\theta)=(t(\theta),x(\theta))$, and a path through the field

$$X(\theta) := X(t(\theta), x(\theta)).$$

Our aim: derive a stochastic calculus with respect to these objects.

Ambit processes are a class of stochastic processes introduced by Barndorff-Nielsen and Schmiegel (2005). They consist of an **ambit field** given by

$$X(t,x) = c + \int_{A_t(x)} g(t,s;x,y) \sigma(s,y) L(\mathrm{d} s,\mathrm{d} y) + \int_{B_t(x)} h(t,s;x,y) \alpha(s,y) \mathrm{d} (s,y),$$

a curve in space-time $\tau(\theta)=(t(\theta),x(\theta))$, and a path through the field

$$X(\theta) := X(t(\theta), x(\theta)).$$

Our aim: derive a stochastic calculus with respect to these objects. Today's question is: Given a random field Y, what is

$$Z(t,x) = \int_0^t \int_{\mathbb{R}^d} Y(t,s;x,y) X(\mathrm{d} s,\mathrm{d} y)?$$

Contents

- Motivation: Ambit fields
- Definition of the integral
- Calculus for the stochastic integral
- 4 An SPDE connection
- Further Research

The Situation

We have a random field

$$X(t,x) = \int_0^t \int_{\mathbb{R}^d} g(t,s,x,y) \sigma(s,y) W(\mathrm{d} s,\mathrm{d} y),$$

The Situation

We have a random field

$$X(t) = \int_0^t g(t, s) \sigma(s) dB(s)$$

where

 $g\dots$ deterministic function, $g:H_1\to H_1$ $\sigma\dots$ predictable random function, $\sigma:\mathcal{H}\to H_1$ $W\dots$ cylindrical Wiener process on $\mathcal{H}.$

The Situation

We have a random field

$$X(t) = \int_0^t g(t, s) \sigma(s) dB(s)$$

where

 $g \dots$ deterministic function, $g : H_1 \rightarrow H_1$

 $\sigma\dots$ predictable random function, $\sigma:\mathcal{H}\to H_1$

W . . . cylindrical Wiener process on \mathcal{H} .

Furthermore, we are given stochastic process $(Y(t))_{t\in[0,T]}$ from H_1 to H_2 . Then our integral looks like

$$Z(t) = \int_0^t Y(s) dX(s).$$

Gaussian processes In $\mathbb R$ and with $\sigma\equiv 1$ we reobtain the results of Alòs, Mazet and Nualart(2001).

Gaussian processes In $\mathbb R$ and with $\sigma\equiv 1$ we reobtain the results of Alòs, Mazet and Nualart(2001).

Turbulence $g(t,s)=(t-s)^{\nu-1}\exp(-\lambda(t-s))$ for $\nu>1/2$ and $\lambda>0$.

Gaussian processes In $\mathbb R$ and with $\sigma\equiv 1$ we reobtain the results of Alòs, Mazet and Nualart(2001).

Turbulence $g(t,s) = (t-s)^{\nu-1} \exp(-\lambda(t-s))$ for $\nu > 1/2$ and $\lambda > 0$.

fBM Choose $\sigma=Q^{1/2}$ where Q is a nonnegative, selfadjoint, trace-class operator and

$$g(t,s) = c_H(t-s)^{H-1/2} + c_H\left(\frac{1}{2} - H\right) \int_s^t (u-s)^{H-3/2} \left(1 - (s/u)^{1/2 - H}\right) du.$$

Then X is a Hilbert-valued fBM with covariance operator Q.

Gaussian processes In $\mathbb R$ and with $\sigma\equiv 1$ we reobtain the results of Alòs, Mazet and Nualart(2001).

Turbulence $g(t,s)=(t-s)^{\nu-1}\exp(-\lambda(t-s))$ for $\nu>1/2$ and $\lambda>0$. fBM Choose $\sigma=Q^{1/2}$ where Q is a nonnegative, selfadjoint, trace-class

operator and $\sigma(t,s) = c_{1}(t-s)^{H-1/2} + c_{1}(\frac{1}{t}-H) \int_{0}^{t} (u-s)^{H-3/2} (1-(s/u)^{1/2-H}) du$

$$g(t,s) = c_H(t-s)^{H-1/2} + c_H\left(\frac{1}{2} - H\right) \int_s^t (u-s)^{H-3/2} \left(1 - (s/u)^{1/2 - H}\right) du.$$

Then X is a Hilbert-valued fBM with covariance operator Q.

OU process For $g(t,s) = \exp(-(t-s)A)$ we rediscover OU processes

$$\mathrm{d}X(t) = -AX(t) + \mathrm{d}B(t).$$

Generalizations of this: CARMA

Gaussian processes In $\mathbb R$ and with $\sigma\equiv 1$ we reobtain the results of Alòs, Mazet and Nualart(2001).

Turbulence $g(t,s)=(t-s)^{\nu-1}\exp(-\lambda(t-s))$ for $\nu>1/2$ and $\lambda>0$.

fBM Choose $\sigma = Q^{1/2}$ where Q is a nonnegative, selfadjoint, trace-class operator and

$$g(t,s) = c_H(t-s)^{H-1/2} + c_H\left(\frac{1}{2} - H\right) \int_s^t (u-s)^{H-3/2} \left(1 - (s/u)^{1/2 - H}\right) du.$$

Then X is a Hilbert-valued fBM with covariance operator Q.

OU process For $g(t,s) = \exp(-(t-s)A)$ we rediscover OU processes

$$\mathrm{d}X(t) = -AX(t) + \mathrm{d}B(t).$$

Generalizations of this: CARMA

S(P)DE X is the mild solution of $dX_t = AX_t + \sigma(X(t))dB(t)$, i.e.

$$X(t) = \int_0^t g(t-s)\sigma(X(s))dB(s).$$

First consider $H_1=H_2=\mathcal{H}=\mathbb{R}.$

First consider $H_1=H_2=\mathcal{H}=\mathbb{R}$. The idea is

$$\int_0^t Y(s) \mathrm{d}X(s) = Y(t)X(t) - \int_0^t \frac{\mathrm{d}Y}{\mathrm{d}s}(s)X(s)\mathrm{d}s.$$

First consider $H_1=H_2=\mathcal{H}=\mathbb{R}$. The idea is

$$\int_0^t Y(s) \mathrm{d}X(s) = Y(t)X(t) - \int_0^t \frac{\mathrm{d}Y}{\mathrm{d}s}(s)X(s)\mathrm{d}s.$$

For the first term a basic rule of Malliavin calculus yields

$$Y(t)X(t) = \int_0^t Y(t)g(t,s)\sigma(s)\delta B(s) + \int_0^t D_s Y(t)g(t,s)\sigma(s)\mathrm{d}s.$$

First consider $H_1=H_2=\mathcal{H}=\mathbb{R}$. The idea is

$$\int_0^t Y(s) \mathrm{d}X(s) = Y(t)X(t) - \int_0^t \frac{\mathrm{d}Y}{\mathrm{d}s}(s)X(s)\mathrm{d}s.$$

For the first term a basic rule of Malliavin calculus yields

$$Y(t)X(t) = \int_0^t Y(t)g(t,s)\sigma(s)\delta B(s) + \int_0^t D_s Y(t)g(t,s)\sigma(s)\mathrm{d}s.$$

Similarly for the second term (and a stochastic Fubini)

$$\begin{split} & \int_0^t \frac{\mathrm{d}Y}{\mathrm{d}s}(s)X(s)\mathrm{d}s \\ & = \int_0^t \bigg(\int_u^t \frac{\mathrm{d}Y}{\mathrm{d}s}(s)g(s,u)\mathrm{d}s\bigg)\sigma(u)\delta B(u) \\ & + \int_0^t \bigg(\int_u^t D_u \bigg(\frac{\mathrm{d}Y}{\mathrm{d}s}(s)\bigg)g(s,u)\mathrm{d}s\bigg)\sigma(u)\mathrm{d}u. \end{split}$$

So, putting this together and deterministic IbP yield

$$\begin{split} &\int_0^t \left(Y(t)g(t,s) - \int_s^t \frac{\mathrm{d}Y}{\mathrm{d}u}(u)g(u,s)\mathrm{d}u \right) \sigma(s)\delta B(s) \\ &= \int_0^t \left(Y(s)g(s,s) + \int_s^t Y(u)g(\mathrm{d}u,s) \right) \sigma(s)\delta B(s). \end{split}$$

So, putting this together and deterministic IbP yield

$$\begin{split} &\int_0^t \left(Y(t)g(t,s) - \int_s^t \frac{\mathrm{d}Y}{\mathrm{d}u}(u)g(u,s)\mathrm{d}u \right) \sigma(s)\delta B(s) \\ &= \int_0^t \left(Y(s)g(s,s) + \int_s^t Y(u)g(\mathrm{d}u,s) \right) \sigma(s)\delta B(s). \end{split}$$

From this we read off the following kernel

$$\mathcal{K}_g(Y)(t,s) = Y(s)g(s,s) + \int_s^t Y(u)g(du,s),$$

So, putting this together and deterministic IbP yield

$$\begin{split} &\int_0^t \left(Y(t)g(t,s) - \int_s^t \frac{\mathrm{d}Y}{\mathrm{d}u}(u)g(u,s)\mathrm{d}u \right) \sigma(s)\delta B(s) \\ &= \int_0^t \left(Y(s)g(s,s) + \int_s^t Y(u)g(\mathrm{d}u,s) \right) \sigma(s)\delta B(s). \end{split}$$

From this we read off the following kernel

$$\mathcal{K}_g(Y)(t,s) = Y(s)g(s,s) + \int_s^t Y(u)g(du,s),$$

and can define the stochastic integral as

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s)\big) \sigma(s) \mathrm{d}s.$$

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again.

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again. This yields to integration wrt vector measures in the kernel and

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s)\big) \sigma(s) \mathrm{d}s.$$

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again. This yields to integration wrt vector measures in the kernel and

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s) \big) \sigma(s) \mathrm{d}s.$$

In some cases we need to or can rewrite the kernel $\mathcal{K}_{g}.$

$$\mathcal{K}_g(Y)(t,s) = Y(s)g(t,s) + \int_s^t (Y(u) - Y(s))g(du,s)$$

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again. This yields to integration wrt vector measures in the kernel and

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s) \big) \sigma(s) \mathrm{d}s.$$

In some cases we need to or can rewrite the kernel $\mathcal{K}_{g}.$

$$\mathcal{K}_{g}(Y)(t,s) = Y(s)g(t,s) + \int_{s}^{t} (Y(u) - Y(s))g(du,s)$$
$$= Y(s)g(s,s) + \int_{s}^{t} Y(u)g(du,s)$$

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again. This yields to integration wrt vector measures in the kernel and

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s) \big) \sigma(s) \mathrm{d}s.$$

In some cases we need to or can rewrite the kernel \mathcal{K}_g .

$$\mathcal{K}_{g}(Y)(t,s) = Y(s)g(t,s) + \int_{s}^{t} (Y(u) - Y(s))g(du,s)$$

$$= Y(s)g(s,s) + \int_{s}^{t} Y(u)g(du,s)$$

$$= Y(s)g(t,s) + \int_{s}^{t} (Y(u) - Y(s))\frac{\partial g}{\partial u}(u,s)du$$

Now consider separable Hilbert spaces H_1, H_2, \mathcal{H} . Here we expand every term with respect to CONSs, use the results above and sum up again. This yields to integration wrt vector measures in the kernel and

$$\int_0^t Y(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(Y)(t,s) \sigma(s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \big(\mathcal{K}_g(Y)(t,s)\big) \sigma(s) \mathrm{d}s.$$

In some cases we need to or can rewrite the kernel \mathcal{K}_g .

$$\mathcal{K}_{g}(Y)(t,s) = Y(s)g(t,s) + \int_{s}^{t} (Y(u) - Y(s))g(du,s)$$

$$= Y(s)g(s,s) + \int_{s}^{t} Y(u)g(du,s)$$

$$= Y(s)g(t,s) + \int_{s}^{t} (Y(u) - Y(s))\frac{\partial g}{\partial u}(u,s)du$$

$$= Y(s)g(t-s) + \int_{0}^{t-s} (Y(u+s) - Y(s))g(du)$$

Definition

Fix some $t \in [0, T]$. We say that a stochastic process $(Y(s))_{s \in [0,t]}$ belongs to the domain of the stochastic integral with respect to X if

• the process $(Y(u) - Y(s))_{u \in (s,t]}$ is integrable with respect to g(du,s) almost surely,

Definition

Fix some $t \in [0, T]$. We say that a stochastic process $(Y(s))_{s \in [0,t]}$ belongs to the domain of the stochastic integral with respect to X if

- the process $(Y(u) Y(s))_{u \in (s,t]}$ is integrable with respect to g(du,s) almost surely,
- ② $\mathcal{K}_g(Y)(t,s)\sigma(s)1_{[0,t]}(s)$ is in the domain of the Hilbert-valued divergence operator δB for all $s \in [0,t]$, and

Definition

Fix some $t \in [0, T]$. We say that a stochastic process $(Y(s))_{s \in [0, t]}$ belongs to the domain of the stochastic integral with respect to X if

- the process $(Y(u) Y(s))_{u \in (s,t]}$ is integrable with respect to g(du,s) almost surely,
- ② $\mathcal{K}_g(Y)(t,s)\sigma(s)1_{[0,t]}(s)$ is in the domain of the Hilbert-valued divergence operator δB for all $s \in [0,t]$, and
- ③ $\mathcal{K}_g(Y)(t,s)$ is Malliavin differentiable for all $s \in [0,t]$ and the Hilbert-valued stochastic process $s \mapsto \operatorname{tr}_{\mathcal{H}} D_s(\mathcal{K}_g(Y)(t,s))\sigma(s)$ is Bochner integrable on [0,t] almost surely.

Definition

Fix some $t \in [0, T]$. We say that a stochastic process $(Y(s))_{s \in [0,t]}$ belongs to the domain of the stochastic integral with respect to X if

- the process $(Y(u) Y(s))_{u \in (s,t]}$ is integrable with respect to g(du,s) almost surely,
- ② $\mathcal{K}_g(Y)(t,s)\sigma(s)1_{[0,t]}(s)$ is in the domain of the Hilbert-valued divergence operator δB for all $s \in [0,t]$, and
- ③ $\mathcal{K}_g(Y)(t,s)$ is Malliavin differentiable for all $s \in [0,t]$ and the Hilbert-valued stochastic process $s \mapsto \operatorname{tr}_{\mathcal{H}} D_s(\mathcal{K}_g(Y)(t,s))\sigma(s)$ is Bochner integrable on [0,t] almost surely.

We denote this by $Y \in \mathcal{I}^X(0, t)$.

Contents

- Motivation: Ambit fields
- 2 Definition of the integral
- 3 Calculus for the stochastic integral
- 4 An SPDE connection
- 5 Further Research

Linearity If $Y, Z \in \mathcal{I}^X(0, t)$ and $a, b \in \mathbb{R}$ then

$$\int_0^t (aY(s)+bZ(s))\mathrm{d}X(s)=a\int_0^t Y(s)\mathrm{d}X(s)+b\int_0^t Z(s)\mathrm{d}X(s).$$

Linearity If $Y, Z \in \mathcal{I}^X(0, t)$ and $a, b \in \mathbb{R}$ then

$$\int_0^t (aY(s)+bZ(s))dX(s)=a\int_0^t Y(s)dX(s)+b\int_0^t Z(s)dX(s).$$

Local operator The stochastic integral with respect to X is a local operator.

Linearity If $Y, Z \in \mathcal{I}^X(0, t)$ and $a, b \in \mathbb{R}$ then

$$\int_0^t (aY(s)+bZ(s))\mathrm{d}X(s)=a\int_0^t Y(s)\mathrm{d}X(s)+b\int_0^t Z(s)\mathrm{d}X(s).$$

Local operator The stochastic integral with respect to X is a local operator.

Integrating Identity Let $Y \equiv id$, then

$$\int_0^t \mathrm{d}X(s) = \int_0^t \mathrm{id}\,\mathrm{d}X(s) = \int_0^t g(t,s)\sigma(s)\mathrm{d}B(s) = X(t).$$

Linearity If $Y, Z \in \mathcal{I}^X(0, t)$ and $a, b \in \mathbb{R}$ then

$$\int_0^t (aY(s)+bZ(s))\mathrm{d}X(s)=a\int_0^t Y(s)\mathrm{d}X(s)+b\int_0^t Z(s)\mathrm{d}X(s).$$

Local operator The stochastic integral with respect to X is a local operator.

Integrating Identity Let $Y \equiv id$, then

$$\int_0^t \mathrm{d}X(s) = \int_0^t \mathrm{id}\,\mathrm{d}X(s) = \int_0^t g(t,s)\sigma(s)\mathrm{d}B(s) = X(t).$$

Indicator integrands Choosing an indicator function in time gives us the increment of the integrator, i.e.

$$\int_0^t 1_{[u,v]}(s) \mathrm{d}X(s) = \int_0^t 1_{[u,v]}(s) \, \mathrm{id} \, \mathrm{d}X(s) = X(v) - X(u).$$

Bounded linear operators Let Z be a random linear operator which is almost surely bounded (no special measurabilty conditions) such that $s \mapsto ZY(s) \in \mathcal{I}^X(0,t)$. Then

$$\int_0^t ZY(s) \mathrm{d}X(s) = Z \int_0^t Y(s) \mathrm{d}X(s) \quad \text{almost surely}.$$

Bounded linear operators Let Z be a random linear operator which is almost surely bounded (no special measurabilty conditions) such that $s\mapsto ZY(s)\in\mathcal{I}^X(0,t)$. Then

$$\int_0^t ZY(s) \mathrm{d}X(s) = Z \int_0^t Y(s) \mathrm{d}X(s) \quad \text{almost surely}.$$

Projection I Let $(e_k)_{k\in\mathbb{N}}$ be a CONS of H_1 . Then

$$\mathcal{K}_g(Y)(t,s)(e_k) = \mathcal{K}_{g(e_k)}(Y)(t,s),$$

where $g(e_k)$ is defined by $g(t, s)e_k$.

Bounded linear operators Let Z be a random linear operator which is almost surely bounded (no special measurabilty conditions) such that $s\mapsto ZY(s)\in\mathcal{I}^X(0,t)$. Then

$$\int_0^t ZY(s)\mathrm{d}X(s) = Z\int_0^t Y(s)\mathrm{d}X(s)$$
 almost surely.

Projection I Let $(e_k)_{k\in\mathbb{N}}$ be a CONS of H_1 . Then

$$\mathcal{K}_g(Y)(t,s)(e_k) = \mathcal{K}_{g(e_k)}(Y)(t,s),$$

where $g(e_k)$ is defined by $g(t, s)e_k$.

Projection II Let $(e_k)_{k\in\mathbb{N}}$ be a CONS of H_1 and let $X^k:=\langle X,e_k\rangle$. Then

$$\int_0^t Y(s) \mathrm{d} X^k(s) = \int_0^t \mathcal{K}_{\langle g, e_k \rangle}(Y)(t, s) \delta B(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t D_s \mathcal{K}_{\langle g, e_k \rangle}(Y)(t, s) \mathrm{d} s.$$

Shift of domain For $0 \le u < v \le t$ and $Y \in \mathcal{I}^X(0, u) \cap \mathcal{I}^X(0, v)$

$$\int_0^t Y(s) \mathbf{1}_{[u,v]}(s) \mathrm{d}X(s) = \int_0^v Y(s) \mathrm{d}X(s) - \int_0^u Y(s) \mathrm{d}X(s).$$

Shift of domain For $0 \le u < v \le t$ and $Y \in \mathcal{I}^X(0, u) \cap \mathcal{I}^X(0, v)$

$$\int_0^t Y(s) \mathbf{1}_{[u,v]}(s) \mathrm{d}X(s) = \int_0^v Y(s) \mathrm{d}X(s) - \int_0^u Y(s) \mathrm{d}X(s).$$

Integrability over time For 0 < t < T and $Y \in \mathcal{I}^X(0,t)$ we have $Y1_{[0,t]} \in \mathcal{I}^X(0,T)$ and

$$\int_0^T \mathbf{1}_{[0,t]}(s)Y(s)\mathrm{d}X(s) = \int_0^t Y(s)\mathrm{d}X(s).$$

Shift of domain For $0 \le u < v \le t$ and $Y \in \mathcal{I}^X(0, u) \cap \mathcal{I}^X(0, v)$

$$\int_0^t Y(s) \mathbf{1}_{[u,v]}(s) \mathrm{d}X(s) = \int_0^v Y(s) \mathrm{d}X(s) - \int_0^u Y(s) \mathrm{d}X(s).$$

Integrability over time For 0 < t < T and $Y \in \mathcal{I}^X(0,t)$ we have $Y1_{[0,t]} \in \mathcal{I}^X(0,T)$ and

$$\int_0^T 1_{[0,t]}(s)Y(s)\mathrm{d}X(s) = \int_0^t Y(s)\mathrm{d}X(s).$$

Simple processes Let Y be a simple process, i.e. $Y = \sum_{j=1}^{n-1} Z_j 1_{(t_j,t_{j+1}]}$. Then $Y \in \mathcal{I}^X(0,t)$ and

$$\int_0^t Y(s) dX(s) = \sum_{j=1}^{n-1} Z_j (X_{t_{j+1}} - X_{t_j}).$$

Proposition

Let t>0 and assume that g(s,s) is well-defined for all $0\leq s\leq t$. Furthermore, assume that there is a bi-measurable function $\phi:[0,T]\to L(H_1,H_1)$ such that $g(t,s)=g(s,s)+\int_s^t\phi(v,s)\mathrm{d}v$, for all $0\leq s\leq t$, where this integral is defined in the sense of Bochner and

$$\int_0^t \|g(s,s)\|_{L(H_1,H_1)}^2 \mathrm{d} s < \infty \quad \text{and} \quad \int_0^t \int_0^u \|\phi(u,s)\|_{L(H_1,H_1)}^2 \mathrm{d} u \mathrm{d} s < \infty.$$

Proposition

Let t>0 and assume that g(s,s) is well-defined for all $0 \le s \le t$. Furthermore, assume that there is a bi-measurable function $\phi:[0,T]\to L(H_1,H_1)$ such that $g(t,s)=g(s,s)+\int_s^t\phi(v,s)\mathrm{d}v$, for all $0\le s\le t$, where this integral is defined in the sense of Bochner and

$$\int_0^t \|g(s,s)\|_{L(H_1,H_1)}^2 \mathrm{d} s < \infty \quad \text{and} \quad \int_0^t \int_0^u \|\phi(u,s)\|_{L(H_1,H_1)}^2 \mathrm{d} u \mathrm{d} s < \infty.$$

Suppose furthermore that σ is locally bounded almost surely.

Proposition

Let t>0 and assume that g(s,s) is well-defined for all $0 \le s \le t$. Furthermore, assume that there is a bi-measurable function $\phi:[0,T]\to L(H_1,H_1)$ such that $g(t,s)=g(s,s)+\int_s^t\phi(v,s)\mathrm{d}v$, for all $0\le s\le t$, where this integral is defined in the sense of Bochner and

$$\int_0^t \|g(s,s)\|_{L(H_1,H_1)}^2 \mathrm{d} s < \infty \quad \text{and} \quad \int_0^t \int_0^u \|\phi(u,s)\|_{L(H_1,H_1)}^2 \mathrm{d} u \mathrm{d} s < \infty.$$

Suppose furthermore that σ is locally bounded almost surely. Then X is a semimartingale with decomposition

$$X(t) = \int_0^t g(s,s)\sigma(s)dB(s) + \int_0^t \int_0^s \phi(s,u)\sigma(u)dB(u)ds.$$

Proposition

Let t>0 and assume that g(s,s) is well-defined for all $0 \le s \le t$. Furthermore, assume that there is a bi-measurable function $\phi:[0,T]\to L(H_1,H_1)$ such that $g(t,s)=g(s,s)+\int_s^t\phi(v,s)\mathrm{d}v$, for all $0\le s\le t$, where this integral is defined in the sense of Bochner and

$$\int_0^t \|g(s,s)\|_{L(H_1,H_1)}^2 \mathrm{d} s < \infty \quad \text{and} \quad \int_0^t \int_0^u \|\phi(u,s)\|_{L(H_1,H_1)}^2 \mathrm{d} u \mathrm{d} s < \infty.$$

Suppose furthermore that σ is locally bounded almost surely. Then X is a semimartingale with decomposition

$$X(t) = \int_0^t g(s,s)\sigma(s)dB(s) + \int_0^t \int_0^s \phi(s,u)\sigma(u)dB(u)ds.$$

Furthermore, $\int_0^t Y dX(s) = Y \cdot X$.

Deterministic integrands and OU processes

Fix t>0 and let $s\mapsto h(t,s)$ be a deterministic function, such that $u\mapsto h(t,u)-h(t,s)$ is $g(\mathrm{d} u,s)$ -integrable on [s,t]. Then,

$$\int_0^t h(t,s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \sigma(s) \mathrm{d}B(s).$$

Deterministic integrands and OU processes

Fix t>0 and let $s\mapsto h(t,s)$ be a deterministic function, such that $u\mapsto h(t,u)-h(t,s)$ is $g(\mathrm{d} u,s)$ -integrable on [s,t]. Then,

$$\int_0^t h(t,s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \sigma(s) \mathrm{d}B(s).$$

We use this to investigate solutions to the SDE

$$dY(t) = -AY(t)dt + dX(t).$$

Its solution is given by

Deterministic integrands and OU processes

Fix t>0 and let $s\mapsto h(t,s)$ be a deterministic function, such that $u\mapsto h(t,u)-h(t,s)$ is $g(\mathrm{d} u,s)$ -integrable on [s,t]. Then,

$$\int_0^t h(t,s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \sigma(s) \mathrm{d}B(s).$$

We use this to investigate solutions to the SDE

$$dY(t) = -AY(t)dt + dX(t).$$

Its solution is given by

$$Y(t) = \int_0^t e^{-(t-s)A} dX(s),$$

where e^{-tA} is the C_0 -semigroup generated by -A, where we assume that $u \mapsto e^{-(u-s)A}$ to be g(du, s)-integrable.

Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form (assume $\sigma \equiv 1$)

$$Y(t) = \int_0^t h(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \mathrm{d}B(s).$$

Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form (assume $\sigma \equiv 1$)

$$Y(t) = \int_0^t h(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \mathrm{d}B(s).$$

Then we get that $\int_0^t Y(s) \mathrm{d}X(s)$ is an element in the second Wiener chaos (plus a zeroth chaos correction term) involving sums of iterated Wiener integral with integrand of the type $\mathcal{K}_{g(e_k)}(\mathcal{K}_{g(e_l)}(\cdot))$.

Volterra processes as integrands

Now we turn to the problem what happens if the integrand is of the form (assume $\sigma \equiv 1$)

$$Y(t) = \int_0^t h(s) \mathrm{d}X(s) = \int_0^t \mathcal{K}_g(h)(t,s) \mathrm{d}B(s).$$

Then we get that $\int_0^t Y(s) dX(s)$ is an element in the second Wiener chaos (plus a zeroth chaos correction term) involving sums of iterated Wiener integral with integrand of the type $\mathcal{K}_{g(e_i)}(\mathcal{K}_{g(e_i)}(\cdot))$. With this one can write down a formula for

$$\int_0^t X^*(s) \mathrm{d} X(s),$$

and the Itô formula will give a connection with

$$\frac{1}{2}\langle X(t),X(t)\rangle_{H_1}=\int_0^t\int_0^s\langle g(t,v)\mathrm{d}B(v),g(t,s)\mathrm{d}B(s)\rangle_{H_1}+\int_0^t\|g(t,s)\|^2\mathrm{d}s.$$

An Itô formula

Theorem

Let $F: H_2 \to H_3$ be twice Fréchet differentiable. Furthermore assume that g satisfies the semimartingle condition. Assume that Y and σ are twice Malliavin differentiable, $Y(s)g(s,s)\sigma(s) \in \mathbb{L}^{2,p}(\mathcal{H},H_2)$ for some p>4 and

$$\int_{0}^{s} Y(s) \frac{\partial g}{\partial s}(s, u) \sigma(u) \delta B(u) + \operatorname{tr}_{\mathcal{H}} D_{s}(Y(s)) g(s, s) \sigma(s)$$

$$+ \operatorname{tr}_{\mathcal{H}} \int_{0}^{s} D_{u}(Y(s)) \frac{\partial g}{\partial s}(s, u) \sigma(u) du \in \mathbb{L}^{1,4}(H_{2}).$$

Then $F'(Z)Y \in \mathcal{I}^X(0,t)$ for all $t \in [0,T]$ and

$$F(Z_t) = F(0) + \int_0^t F'(Z(s))Y(s)dX(s)$$
$$-\frac{1}{2}\operatorname{tr}_{\mathcal{H}} \int_0^t F''(Z_s)\big(Y(s)g(s,s)\sigma(s)\big)\big(Y(s)g(s,s)\sigma(s)\big)ds$$

Corollaries of the Itô formula

Corollary

Under the conditions of the last theorem $F'(X) \in \mathcal{I}^X(0,t)$ for all $t \in [0,T]$ and

$$F(X_t) = F(0) + \int_0^t F'(X_s) \mathrm{d}X(s) - \frac{1}{2} \operatorname{tr}_{\mathcal{H}} \int_0^t F''(X_s) \big(g(s,s) \sigma(s) \big) \big(g(s,s) \sigma(s) \big) \mathrm{d}s.$$

Corollaries of the Itô formula

Corollary

Under the conditions of the last theorem $F'(X) \in \mathcal{I}^X(0,t)$ for all $t \in [0,T]$ and

$$F(X_t) = F(0) + \int_0^t F'(X_s) \mathrm{d}X(s) - \frac{1}{2} \operatorname{tr}_{\mathcal{H}} \int_0^t F''(X_s) \big(g(s,s) \sigma(s) \big) \big(g(s,s) \sigma(s) \big) \mathrm{d}s.$$

Note that this yields the same result as in Alòs, Mazet and Nualart (2001).

Corollaries of the Itô formula

Corollary

Under the conditions of the last theorem $F'(X) \in \mathcal{I}^X(0,t)$ for all $t \in [0,T]$ and

$$F(X_t) = F(0) + \int_0^t F'(X_s) \mathrm{d}X(s) - \frac{1}{2} \operatorname{tr}_{\mathcal{H}} \int_0^t F''(X_s) \big(g(s,s) \sigma(s) \big) \big(g(s,s) \sigma(s) \big) \mathrm{d}s.$$

Note that this yields the same result as in Alòs, Mazet and Nualart (2001).

Corollary

Suppose the same conditions and $H_2 = \mathbb{R}$ and $F(x) = x^2$. Then

$$\begin{split} \frac{1}{2}(Z(t))^2 &= \int_0^t Z(s) \mathrm{d}Z(s) + \mathrm{tr}_{\mathcal{H}} \int_0^t \left(D_s Z(s) \right) Y(s) g(s,s) \sigma(s) \mathrm{d}s \\ &- \frac{1}{2} \int_0^t \| Y(s) g(s,s) \sigma(s) \|_{L_2(\mathcal{H},H_1)}^2 \mathrm{d}s \end{split}$$

Contents

- Motivation: Ambit fields
- Definition of the integral
- Calculus for the stochastic integral
- 4 An SPDE connection
- 5 Further Research

How do SPDE enter?

Consider SDEs in infinite dimensions

$$dX(t) = AX(t) + \sigma(t)dB(t) + b(t)dt$$

and its corresponding mild solutions

$$X(t) = \int_0^t g(t,s)\sigma(s)dB(s) + \int_0^t g(t,s)b(s)ds.$$

How do SPDE enter?

Consider SDEs in infinite dimensions

$$dX(t) = AX(t) + \sigma(t)dB(t) + b(t)dt$$

and its corresponding mild solutions

$$X(t) = \int_0^t g(t,s)\sigma(s)\mathrm{d}B(s) + \int_0^t g(t,s)b(s)\mathrm{d}s.$$

Then g is a C_0 -semigoup of linear operators generated by A and its (singular) fundamental solution Λ , i.e.

$$g(t,s)f = \int_D \Lambda(t,s,\cdot,y)f(y)dy,$$

if the Hilbert space is $L^2(D)$.

How do SPDE enter?

Consider SDEs in infinite dimensions

$$dX(t) = AX(t) + \sigma(t)dB(t) + b(t)dt$$

and its corresponding mild solutions

$$X(t) = \int_0^t g(t,s)\sigma(s)\mathrm{d}B(s) + \int_0^t g(t,s)b(s)\mathrm{d}s.$$

Then g is a C_0 -semigoup of linear operators generated by A and its (singular) fundamental solution Λ , i.e.

$$g(t,s)f = \int_D \Lambda(t,s,\cdot,y)f(y)dy,$$

if the Hilbert space is $L^2(D)$. Then we want to now about the conditions on h under which the operator $\mathcal{K}_g(h)(t,s)$ is well-defined for a large class of σ (or the other way round).

$$c^{-1}\mathcal{K}_g(h)(t,s)$$

$$c^{-1}\mathcal{K}_g(h)(t,s) = h(s)\frac{\sigma_{t-s}^3}{t-s} + \int_0^{t-s} \left(h(v+s) - h(s)\right) \frac{\sigma_{\mathrm{d}v}^3}{\mathrm{d}v}$$

$$c^{-1}\mathcal{K}_{g}(h)(t,s) = h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\sigma_{dv}^{3}}{dv}$$
$$= h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\mathrm{d}}{\mathrm{d}v} \frac{\sigma_{v}^{3}}{v} \mathrm{d}v$$

$$c^{-1}\mathcal{K}_{g}(h)(t,s) = h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\sigma_{dv}^{3}}{dv}$$

$$= h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\mathrm{d}}{\mathrm{d}v} \frac{\sigma_{v}^{3}}{v} \mathrm{d}v$$

$$= h(t)\frac{\sigma_{t-s}^{3}}{t-s} - \int_{0}^{t-s} h'(v)\frac{\sigma_{v}^{3}}{v} \mathrm{d}v.$$

For d=3 the fundamental solution of the wave equation is given by $g(t,s)=c\sigma_{t-s}^3/(t-s)$. The question is: what is $\mathcal{K}_g(h)$?

$$c^{-1}\mathcal{K}_{g}(h)(t,s) = h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\sigma_{dv}^{3}}{dv}$$

$$= h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\mathrm{d}}{\mathrm{d}v} \frac{\sigma_{v}^{3}}{v} \mathrm{d}v$$

$$= h(t)\frac{\sigma_{t-s}^{3}}{t-s} - \int_{0}^{t-s} h'(v)\frac{\sigma_{v}^{3}}{v} \mathrm{d}v.$$

Now σ_v^d grows as v^{d-1} , so this operator makes sense if $h \in \mathcal{C}^1((0, t-s])$ and h' has a singularity at zero of less than v^{-2} .

For d=3 the fundamental solution of the wave equation is given by $g(t,s)=c\sigma_{t-s}^3/(t-s)$. The question is: what is $\mathcal{K}_g(h)$?

$$c^{-1}\mathcal{K}_{g}(h)(t,s) = h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\sigma_{dv}^{3}}{dv}$$

$$= h(s)\frac{\sigma_{t-s}^{3}}{t-s} + \int_{0}^{t-s} \left(h(v+s) - h(s)\right) \frac{\mathrm{d}}{\mathrm{d}v} \frac{\sigma_{v}^{3}}{v} \mathrm{d}v$$

$$= h(t)\frac{\sigma_{t-s}^{3}}{t-s} - \int_{0}^{t-s} h'(v)\frac{\sigma_{v}^{3}}{v} \mathrm{d}v.$$

Now σ_v^d grows as v^{d-1} , so this operator makes sense if $h \in \mathcal{C}^1((0,t-s])$ and h' has a singularity at zero of less than v^{-2} . This also works for larger d, then h has to be smoother but the highest derivative can be more singular at zero.

Contents

- Motivation: Ambit fields
- 2 Definition of the integral
- 3 Calculus for the stochastic integral
- 4 An SPDE connection
- 5 Further Research

Random-field approach How about the random-field integration approach à la Walsh and Dalang? In this case the operator changes to

$$\mathcal{K}_g(f)(t,s,y) = \int_{\mathbb{R}^d} f(s,z)g(t,s;\mathrm{d}z,y) + \int_s^t \big(f(u,z) - f(s,z)\big)g(\mathrm{d}u,s;\mathrm{d}z,y).$$

Also anticipating integration à la Walsh and Dalang is necessary.

Random-field approach How about the random-field integration approach à la Walsh and Dalang? In this case the operator changes to

$$\mathcal{K}_g(f)(t,s,y) = \int_{\mathbb{R}^d} f(s,z)g(t,s;\mathrm{d}z,y) + \int_s^t \big(f(u,z) - f(s,z)\big)g(\mathrm{d}u,s;\mathrm{d}z,y).$$

Also anticipating integration à la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy bases, (summands in expansion are no longer independent) or to rough noises

Random-field approach How about the random-field integration approach à la Walsh and Dalang? In this case the operator changes to

$$\mathcal{K}_g(f)(t,s,y) = \int_{\mathbb{R}^d} f(s,z)g(t,s;\mathrm{d}z,y) + \int_s^t \big(f(u,z) - f(s,z)\big)g(\mathrm{d}u,s;\mathrm{d}z,y).$$

Also anticipating integration à la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy bases, (summands in expansion are no longer independent) or to rough noises

Stochastic Calculus for $X(\theta) = X(t(\theta), x(\theta))$

Random-field approach How about the random-field integration approach à la Walsh and Dalang? In this case the operator changes to

$$\mathcal{K}_g(f)(t,s,y) = \int_{\mathbb{R}^d} f(s,z)g(t,s;\mathrm{d}z,y) + \int_s^t \big(f(u,z) - f(s,z)\big)g(\mathrm{d}u,s;\mathrm{d}z,y).$$

Also anticipating integration à la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy bases, (summands in expansion are no longer independent) or to rough noises

Stochastic Calculus for $X(\theta) = X(t(\theta), x(\theta))$

More examples and links to SPDEs and ambit processes

Random-field approach How about the random-field integration approach à la Walsh and Dalang? In this case the operator changes to

$$\mathcal{K}_g(f)(t,s,y) = \int_{\mathbb{R}^d} f(s,z)g(t,s;\mathrm{d}z,y) + \int_s^t \big(f(u,z) - f(s,z)\big)g(\mathrm{d}u,s;\mathrm{d}z,y).$$

Also anticipating integration à la Walsh and Dalang is necessary.

Different Noises such as Lévy-type processes in space, so-called Lévy bases, (summands in expansion are no longer independent) or to rough noises

Stochastic Calculus for $X(\theta) = X(t(\theta), x(\theta))$

More examples and links to SPDEs and ambit processes any more ideas?

Thank you very much for your attention!