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Begin at the beginning, and go on till you come to the end. Then, .....

Lewis Carroll, Alice’s Adventures in Wonderland
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Problem

Problem

Motivation: In credit risk, in mathematical finance, one works with random times
which represent the default times. Many studies are based on the intensity process:
starting with a reference filtration F, the intensity process of τ is the F predictable
increasing process Λ (the dual predictable projection of 11τ•t) such that

11τ•t − Λt^τ

is a G-martingale, where Gt = ∩ε>0Ft+ε ∨ σ(τ ∧ (t + ε)).

Then, the problem is : given Λ, construct a random time τ which admits Λ as
intensity.
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Problem

The classical construction is: extend the probability space (Ω,F,P) so that there
exists a random variable Θ, with exponential law, independent of F1 and define

τ := inf{t : Λt ≥ Θ}

Then,
P(τ > θ|Ft) = P(Λθ < Θ|Ft) = e¡Λθ , θ ≤ t

and, in particular
P(τ > t|Ft) = e¡Λt

Moreover 11τ•t − Λt^τ is a G martingale

Moreover, under this construction, one can show that any F martingale is a G
martingale: this is the so-called immersion hypothesis.
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Problem

Our goal is to provide other constructions. One starts with noting that, in general,

Zt = P(τ > t|Ft)

is a supermartingale (called the Azéma supermartingale) with multiplicative
decomposition Zt = NtDt, where N is a local martingale and D a decreasing
predictable process. In this talk, we assume that Z does not vanishes and D

is continuous so that Dt = e¡Λt for some continuous increasing process Λ. In
that case, the continuous process Λ is the intensity of τ .
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Problem

Problem (?): let (Ω,F,P) be a filtered probability space, Λ an increasing
predictable process, N a non-negative local martingale such that, for t > 0,

0 < Zt := Nte
¡Λt ≤ 1

Construct, on the canonical extended space (Ω× [0,∞]), the canonical map τ

(such that τ(ω, t) = t) and a probability Q such that

1. restriction condition Q|F∞ = P|F∞
2. projection condition Q[τ > t|Ft] = Nte

¡Λt

We shall note P(X) := EP(X). We assume that Z0 = 1.
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Problem

Related work

Nikeghbali, A. and Yor, M. (2006) Doob’s maximal identity, multiplicative
decompositions and enlargements of filtrations, Illinois Journal of Mathematics, 50,
791-814.

In that paper, given a supermartingale of the form Zt = Nt

sups≤t Ns
where N is a

continuous local F-martingale which goes to 0 at infinity, the authors show that
P(g > t|Ft) = Zt, where g = sup{t : Zt = 1}.
Open problem in our setting: characterize Z so that τ can be constructed on Ω
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Problem

Particular case: Z = e¡Λ.

In that case a solution is Q = QC where, for A ∈ F1:

QC(A ∩ {s < τ ≤ t}) = P
(

11A

∫ t

s

e¡ΛudΛu

)

so that (as in the classical Cox process model)

QC(τ > θ|Ft) = e¡Λθ , for t ≥ θ
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Problem

Outline of the talk

• Increasing families of martingales

• Semi-martingale decompositions

• Predictable Representation Theorem

• Exemple
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Problem

The link between the supermartingale Z and the conditional law Q(τ ∈ du|Ft) for
u ≤ t is: Let Mu

t = Q(τ ≤ u|Ft), then M is increasing w.r.t. u and

Mu
u = 1− Zu

Mu
t ≤ M t

t = 1− Zt

Note that, for t < u, Mu
t = E(1− Zu|Ft).

Solving the problem (?) is equivalent to find a family Mu. The solution of problem
(?) is not unique.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 11



Problem

Given an iMZ , let duMu
1 be the random measure on (0,∞) associated with the

increasing map u → Mu
1. The following probability measure Q is a solution of the

problem (?)

Q(F ) := P

(∫

[0,1]

F (u, ·)(M0
1δ0(du) + duMu

1 + (1−M1
1 )δ1(du)

)
)

The two properties for Q:

• Restriction condition: For B ∈ F1,

Q(B) = P

(
IB

∫

[0,1]

(M0
1δ0(du) + duMu

1 + (1−M1
1 )δ1(du))

)
= P[B]

• Projection condition: For 0 ≤ t < ∞, A ∈ Ft,

Q[A ∩ {τ ≤ t}] = P[IAM t
1] = P[IAM t

t ] = Q[IA(1− Zt)]

are satisfied.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 12



Family iMZ

Family iMZ

An increasing family of positive martingales bounded by 1− Z (in short
iMZ) is a family of processes (Mu : 0 < u < ∞) satisfying the following conditions:

1. Each Mu is a càdlàg P-F martingale on [u,∞].

2. For any u, the martingale Mu is positive and closed by Mu
1 = limt!1 Mu

t .

3. For each fixed t, 0 < t ≤ ∞, u ∈ [0, t] → Mu
t is a right continuous

increasing map.

4. Mu
u = 1− Zu and Mu

t ≤ M t
t = 1− Zt for u ≤ t ≤ ∞.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 13



Constructions of iMZ

Constructions of iMZ

Hypothesis (z) For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt¡ < 1.

The simplest iMZ

Under conditions (z), the family

Mu
t := (1− Zt) exp

(
−

∫ t

u

Zs

1− Zs
dΛs

)
0 < u < ∞, u ≤ t ≤ ∞,

defines an iMZ , called basic solution. We note that

dMu
t = −Mu

t¡
e¡Λt

1− Zt¡
dNt, 0 < u ≤ t < ∞.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 14



Constructions of iMZ

Let us recall that, to construct an iMZ , we should respect four constraints :

i. Mu
u = (1− Zu)

ii. 0 ≤ Mu

iii. Mu ≤ 1− Z

iv. Mu ≤ Mv for u < v

These constraints are particularly "easy" to handle if Mu are solutions of a SDE:
The constraint i indicates the initial condition;
the constraint ii means that we must take an exponential SDE;
the constraint iv is a comparison theorem for one dimensional SDE,
the constraint iii can be handled by local time as described in the following result :

Let m be a (P,F)-local martingale such that mu ≤ 1− Zu. Then,
mt ≤ (1− Zt) on t ∈ [u,∞) if and only if the local time at zero of
m− (1− Z) on [u,∞) is identically null.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 15



Constructions of iMZ

Other solutions when 1− Z > 0

Hypothesis (zz ):

1. For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt¡ < 1.

2. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 ≤ u < ∞, we consider the equation

(♥u)





dXt = Xt

(
− e¡Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t < ∞

Xu = x

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 16



Constructions of iMZ

Hypothesis (zz ):

1. For all 0 < t < ∞, 0 ≤ Zt < 1, 0 ≤ Zt¡ < 1 (strictly smaller than 1).

2. All P-F martingales are continuous.

Assume (zz). Let Y be a (P,F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 ≤ u < ∞, we consider the equation

(♥u)





dXt = Xt

(
− e¡Λt

1− Zt
dNt + f(Xt − (1− Zt))dYt

)
, u ≤ t < ∞

Xu = x

Let Mu be the solution on [u,∞) of the equation (♥u) with initial condition
Mu

u = 1− Zu. Then, (Mu, u ≤ t < ∞) defines an iMZ .

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 17



Constructions of iMZ

Proof

• Inequality Mu ≤ 1−Z on [u,∞) is satisfied if the local time of ∆ = Mu− (1−Z)
at zero is null. This is the consequence of the following estimation:

d〈∆〉t = ∆2
t

(
e¡Λt

1− Zt

)2

d〈N〉t + M2
t f2(∆t)d〈Y 〉t − 2∆t

e¡Λt

1− Zt
Mtf(∆t)d〈N, Y 〉t

≤ 2∆2
t

(
e¡Λt

1− Zt

)2

d〈N〉t + 2M2
t f2(∆t)d〈Y 〉t

≤ 2∆2
t

(
e¡Λt

1− Zt

)2

d〈N〉t + 2M2
t K2∆2

t d〈Y 〉t

From this, we can write
∫ t

0

If0<∆s<εg
1

∆2
s

d〈∆〉s < ∞, 0 < ε, 0 < t < ∞

and get the result according to Revuz-Yor.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 18



Constructions of iMZ

• Inequality Mu ≤ Mv on [v,∞) when u < v. The comparison theorem holds for
SDE(♥). We note also that Mu and Mv satisfy the same SDE(♥) on [v,∞). So,
since Mu

v ≤ (1− Zv) = Mv
v , Mu

t ≤ Mv
t for all t ∈ [v,∞).

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 19



Constructions of iMZ

A specific case is when N = 1, so that Zt = e¡Λt is decreasing. The basic solution
is the standard one, but for a general solution (for example f(x) = x), we obtain a
non standard construction. The random time τ is then a pseudo-stopping time,
and for any bounded F martingale

E(mτ ) = m0

(note that, in general, τ is NOT a stopping time)

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 20



Constructions of iMZ

Case when 1− Z can reach zero

We introduce Z = {s : 1− Zs = 0} and, for t ∈ (0,∞), the random time

gt := sup{0 ≤ s ≤ t : s ∈ Z}

Hypothesis(Z) The set Z is not empty and is closed.
The measure dΛ has a decomposition dΛs = dVs + dAs where V, A are continuous
increasing processes such that dV charges only Z while dA charges its
complementary Zc.

Let, for 0 < u ≤ t ≤ ∞

Mu
t = (1− Zu)−

∫ t

u

Ifgs•ug exp
(
−

∫ s

u

Zv

1− Zv
dAv

)
e¡ΛsdNs

The family (Mu : 0 ≤ u < ∞) defines an iMZ .

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 21



Constructions of iMZ

Proof indication

We introduce

Mu
t = Ifgt•ug exp

(
−

∫ t

u

Zs

1− Zs
dAs

)
(1− Zt), 0 < u < ∞, u ≤ t ≤ ∞.

(Balayage Formula.) Let Y be a continuous semi-martingale and define

gt = sup{s ≤ t : Ys = 0},

with the convention sup{∅} = 0. Then

hgt
Yt = h0Y0 +

∫ t

0
hgs

dYs

for every predictable, locally bounded process h.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 22



Constructions of iMZ

We need only to prove that each Mu satisfies the above equation, and therefore,
that Mu is a local P-F martingale. Let

Eu
t = exp

(
−

∫ t

u

Zs

1− Zs
dAs

)

Then,
d (Eu

t (1− Zt)) = Eu
t

(−e¡ΛtdNt + ZtdVt

)

We apply the balayage formula and we obtain

Mu
t = Ifgt•ugEu

t (1− Zt)

= Ifgt•ug(1− Zu) +
∫ t

u

Ifgs•ugEu
s

(−e¡ΛsdNs + ZsdVs

)

= (1− Zu)−
∫ t

u

Ifgs•ugEu
s e¡ΛsdNs

Mu
t = Q(τ <ruc2ll 2 0 TD[(¤)]TJ/F13 4D[(g)]TJ/b13 4D[(g)]Ta6.18 -1.49F10 6.97- Tf 8.94 08-228.77 l (15c TD 71,)-1S B17 9.96 



Constructions of iMZ

Semimartingale decomposition formula for the models constructed with
SDE(♥), in the case 1− Z > 0

We suppose Hy(zz), Z1 = 0 and that the map u → Mu
t is continuous on [0, t],

where Mu is solution of the generating equation (♥): 0 ≤ u < ∞,

(♥u)





dMt = Mt

(
− e−Λt

1¡Zt
dNt + f(Mt − (1− Zt))dYt

)
, u ≤ t < ∞

Mu = 1− Zu

Let X be a P-F local martingale. Then the process

X̃t = Xt −
∫ t

0

11fs•τg
e¡Λs

Zs
d〈N,X〉s +

∫ t

0

11fτ<sg
e¡Λs

1− Zs
d〈N, X〉s

−
∫ t

0

11fτ<sg(f(Mτ
s − (1− Zs)) + Mτ

s f 0(Mτ
s − (1− Zs)))d〈Y, X〉s

is a Q-G-local martingale.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 24



Constructions of iMZ

Semimartingale decomposition formula in the case of eventual 1− Z = 0

We suppose Hy(Z). We consider the iMZ constructed above and its associated
probability measure Q on [0,∞]× Ω. Let g = limt!1gt.

Let X be a (P,F)-local martingale. Then

Xt −
∫ t

0

11fs•g_τg
e¡Λs

Zs¡
d〈N,X〉s +

∫ t

0

11fg_τ<sg
e¡Λs d〈N,X〉s

1− Zs¡
, 0 ≤ t < ∞,

is a (Q,G)-local martingale.

Mu
t = Q(τ < u|Ft), Zt = 1−Mt

t = Nte−Λt 25



Predictable Representation Property

Predictable Representation Property

Assume z z and that

1. there exists an (P,F)-martingale m which admits the (P,F)-Predictable
Representation Property

2. The martingales N and Y are orthogonal

Let m̃ be the (P,G)-martingale part of the (P,G)-semimartingale m.
Then, (m̃,M) enjoys the (Q,G)-Predictable Representation Property where
Mt = 11τ•t − Λt^τ .
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Example

Example

Let ϕ is the standard Gaussian density and Φ the Gaussian cumulative function, F
generated by a Brownian motion B.

Let X =
∫ 1
0

f(s)dBs where f is a deterministic, square-integrable function and
Y = ψ(X) where ψ is a positive and strictly increasing function. Then,

P(Y ≤ u|Ft) = P
( ∫ 1

t

f(s)dBs ≤ ψ¡1(u)−mt|Ft

)

where mt =
∫ t

0
f(s)dBs is Ft-measurable. It follows that

Mu
t := P(Y ≤ u|Ft) = Φ

(ψ¡1(u)−mt

σ(t)

)

The family Mu
t is then a family of iMZ martingales which satisfies

dMu
t = −ϕ

(
Φ¡1(Mu

t )
) f(t)

σ(t)
dBt
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Example

The multiplicative decomposition of Zt = Nt exp
(
− ∫ t

0
λsds

)
where

dNt = Nt
ϕ(Yt)

σ(t)Φ(Yt)
dmt, λt =

h0(t) ϕ(Yt)
σ(t)Φ(Yt)

Yt =
mt − ψ¡1(t)

σ(t)

The basic martingale satisfies

dMu
t = −Mu

t

f(t)ϕ(Yt)
σ(t)Φ(−Yt)

dBt.
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Example

Jeanblanc, M. and Song, S. (2010)
Explicit Model of Default Time with given Survival Probability. Stochastic
Processes and their Applications
Default times with given survival probability and their F-martingale decomposition
formula. Stochastic Processes and their Applications

Li, L. and Rutkowski, M. (2010) Constructing Random Times Through
Multiplicative Systems, Preprint.

In that paper, the authors give a solution to the problem (?), based on Meyer,
P.A. (1967): On the multiplicative decomposition of positive supermartingales.
In: Markov Processes and Potential Theory, J. Chover, ed., J. Wiley, New York, pp.
103–116.
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Example

Begin at the beginning, and go on till you come to the end. Then, stop.

Lewis Carroll, Alice’s Adventures in Wonderland
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Example

Thank you for your attention
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