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Begin at the beginning, and go on till you come to the end. Then, .....

Lewis Carroll, Alice’s Adventures in Wonderland
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Problem

Problem

Motivation: In credit risk, in mathematical finance, one works with random times
which represent the default times. Many studies are based on the intensity process:
starting with a reference filtration I, the intensity process of 7 is the F predictable
increasing process A (the dual predictable projection of 1 ,..;) such that
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Is a G-martingale, where G; = NesoFiie Vo(T A (t+€)).

Then, the problem is : given A, construct a random time 7 which admits A as
Intensity.




Problem

The classical construction is: extend the probability space (€2, F,P) so that there
exists a random variable ©, with exponential law, independent of F4 and define

T:=inf{t : Ay > O}
Then,
P(r > 0|F,) =P(Ag < O|F) =eile, §<t
and, in particular
P(r > t|F;) = et
Moreover 1,-; — Ai~, IS @ G martingale

Moreover, under this construction, one can show that any F martingale isa G
martingale: this is the so-called immersion hypothesis.




Problem

Our goal is to provide other constructions. One starts with noting that, in general,
Zt = ]P(T > t‘ft)

IS a supermartingale (called the Azéma supermartingale) with multiplicative
decomposition Z; = N;D;, where N is a local martingale and D a decreasing
predictable process. In this talk, we assume that 7 does not vanishes and D
is continuous so that D, = ei’+ for some continuous increasing process A. In
that case, the continuous process A is the intensity of 7.




Problem

Problem (x): let (2, F,P) be a filtered probability space, A an increasing
predictable process, NV a non-negative local martingale such that, for ¢t > 0,

0< Z;:= Niel™ <1

Construct, on the canonical extended space (2 x [0, o0]), the canonical map 7
(such that 7(w,t) = t) and a probability Q such that

1. restriction condition Q| =P|g__

2. projection condition Q[r > t|F;] = N;el’

We shall note P(X) := Ep(X). We assume that 7, = 1.
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Related work

Nikeghbali, A. and Yor, M. (2006) Doob’s maximal identity, multiplicative
decompositions and enlargements of filtrations, Illinois Journal of Mathematics, 50,

791-814.
Ny

In that paper, given a supermartingale of the form Z; = ST where N is a
continuous local F-martingale which goes to 0 at infinity, the authors show that
P(g > t|F:) = Z;, where g = sup{t : Z; = 1}.




Problem

Related work

Nikeghbali, A. and Yor, M. (2006) Doob’s maximal identity, multiplicative
decompositions and enlargements of filtrations, Illinois Journal of Mathematics, 50,

791-814.

In that paper, given a supermartingale of the form Z; = Sup]\f N

continuous local martingale which goes to 0 at infinity, the authors show that
P(g > t|F:) = Z;, where g = sup{t : Z; = 1}.

Open problem in our setting: characterize Z so that = can be constructed on {2

where N Is a
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Particular case: Z = ei ¥,

In that case a solution is Q = Q¢ where, for A € Fq:

t
QYAN{s<rt<th) =P (ﬂA/ eiAudAu>
so that (as in the classical Cox process model)

Q(1 > 0| F,) = el fort >0
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Outline of the talk
e Increasing families of martingales
e Semi-martingale decompositions
e Predictable Representation Theorem

e Exemple
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Problem

The link between the supermartingale Z and the conditional law Q(7 € dul|F;) for
u < tis: Let M} = Q(7 < u|F;), then M is increasing w.r.t. « and

MY = 1-2Z,
M < Mle—Zt
Note that, for ¢t < u, M} =E(1 — Z,|F;).

Solving the problem (%) is equivalent to find a family AM*“. The solution of problem
(x) Is not unique.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 11



Problem

Given an iMy, let d, M4 be the random measure on (0, co) associated with the
Increasing map v — M% . The following probability measure Q is a solution of the
problem (%)

Q(F):=P </[o . F(u, -)(Mg_50(du) +d, M35 + (1 — Mj'_‘)51(du))>

The two properties for Q:

e Restriction condition: For B € F4,
Q(B)=P (]IB/ (Mg_éo(du) +d, M35 + (1 — MJJ_‘)(Sl(du))) = P|B]
[0,1]

e Projection condition: For 0 <t < oo, A € Fy,
QIAN{T <t}] =P[IaM3] =PIaM;] = Q[Is(1 - Z)]

are satisfied.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 12



Family iMz

Family 1M

An increasing family of positive martingales bounded by 1 — Z (in short
1M z) is a family of processes (M™“ : 0 < u < oo) satisfying the following conditions:

1. Each M* is a cadlag P-F martingale on [u, cc].
2. For any u, the martingale M™ is positive and closed by M4 = lim;s 71 M}".

3. For each fixed ¢, 0 < t < o0, u € [0,t] — M} is a right continuous

increasing map.

4 MY =1—Z,and M < M} =1—Z;, for u <t < 0.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 13



Constructions of iM

Constructions of 1M,
Hypothesis (") Forall 0 <t < o0, 0< Z; < 1,0 < Z;; < 1.
The simplest iM

Under conditions (°X), the family

t
Zs
Mg’“::(l—Zt)exp<—/ 1—ZdA8> 0<u<oo,u<t< oo,

defines an 1Mz, called basic solution. We note that
e 1At

dM = —M" dNt, 0 <u <t < oo.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 14



Constructions of iM

Let us recall that, to construct an i), we should respect four constraints :

i. MY =(1—-2,)

1. 0 < M™

1. M*<1—2

w. M* < MY for u < v

These constraints are particularly "easy" to handle if M are solutions of a SDE:
The constraint ; indicates the initial condition;

the constraint iz means that we must take an exponential SDE;

the constraint v is a comparison theorem for one dimensional SDE,

the constraint ::i: can be handled by local time as described in the following result :

Let m be a (P, F)-local martingale such that m, <1 — Z,. Then,
my < (1 —Z;) on t € [u,) if and only if the local time at zero of

m — (1 — Z) on |u,00) is identically null.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 15



Constructions of iM

Other solutions when 1 — 7 > 0
Hypothesis (XX ):
1. Forall 0 <t <o0,0< 7, < 1,0 75 < 1.

2. All P-F martingales are continuous.

M = Qlr < u|F), Zi=1- Mf — Nie At
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Constructions of iM

Hypothesis (XX ):
1. Forall 0 <t < o0, 0< 7 < 1,0 < Zy; < 1 (strictly smaller than 1).
2. All P-F martingales are continuous.

Assume ((X0X). Let Y be a (P, F) local martingale and f be a bounded Lipschitz
function with f(0) = 0. For any 0 < u < oo, we consider the equation

( i A
dXt = Xt ( ‘ dNt -+ f(Xt — (1 — Zt))d}/t> , U <t <o

(D) < 1-2Z

X, = «x

\

Let M* be the solution on [u, o) of the equation () with initial condition
Ml =1—Z,. Then, (M", u <t < oo) defines an iMy.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 17



Constructions of iM

Proof

e Inequality M* < 1— Z on |u,00) is satisfied if the local time of A = M* — (1 - 2)
at zero is null. This is the consequence of the following estimation:

AY 2 (AN
d(A), = A? (f_AZ ) d(N), + M2F2(A)A(Y ), — 24, 1€_AZ M, f(A)A(N,Y),
RAY 2
< 247 <1€_AZ ) d(N)¢ + 2M7 f2(A)d(Y )y

1Ay 2
< 2A? ( ¢ ) d(N); + 2MZK*A2d(Y),
From this, we can write

t
1
/O Hf0<As<€ng<A>s <00, 0<e0<t<

and get the result according to Revuz-Yor.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 18



Constructions of iM

e Inequality M* < M" on [v,00) when u < v. The comparison theorem holds for
SDE(®). We note also that M* and M" satisfy the same SDE(Q) on [v, c0). So,
since M < (1—2,)=M?, M* < M forall ¢t € [v,00).

M = Q(T < ulFt), Zt=1— M} = Nee Nt 19



Constructions of iM

A specific case is when N =1, so that Z, = ei is decreasing. The basic solution
Is the standard one, but for a general solution (for example f(x) = x), we obtain a
non standard construction. The random time 7 is then a pseudo-stopping time,
and for any bounded IF martingale

E(m.) =mg

(note that, in general, 7 is NOT a stopping time)

M = Q(T < ulFt), Zt=1— M} = Nee Nt 20



Constructions of iM

Case when 1 — Z can reach zero

We introduce Z = {s: 1 — Z, = 0} and, for t € (0, ), the random time
g = sup{0<s<t:seZ}

Hypothesis(Z) The set Z is not empty and is closed.

The measure dA has a decomposition dA; = dV, + dAs where V, A are continuous
Increasing processes such that dV charges only Z while dA charges its
complementary Z¢.

Let, for 0 < u <t < o

M=z~ [

u

t S Zv "
Ly, eugexp | — . dA, | e" " =dN,

The family (M™ : 0 < u < oo) defines an iMy.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 21



Constructions of iM

Proof indication

We Introduce

t
Zs
M = ]Ifgt-ugexp<—/ 1_ZdAs)(l—Zt),O<u<oo,u§t§oo.

(Balayage Formula.) Let Y be a continuous semi-martingale and define
g =sup{s <t:Y, =0},

with the convention sup{()} = 0. Then
o Yi = Yo + [ by, dY.

for every predictable, locally bounded process h.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 22



Constructions of iM

We need only to prove that each M™ satisfies the above equation, and therefore,
that M™ Is a local P-F martingale. Let

t Zs
Ef:exp<—/ T dAS>

d(Ef(1— Z,)) = Ef (—eV™dN, + Z,dV;)

Then,

We apply the balayage formula and we obtain

My = HfgtwugE;L(l — Zt)
t

= Hfgt°ug(1 - Zu) T / Hfgs°ugEg <_6iASdNS + ZSdVS)

(7

t

M =Q(r < u



Constructions of iM

Semimartingale decomposition formula for the models constructed with
SDE(Q), in the case 1 — Z > 0

We suppose Hy (I0X), 74 = 0 and that the map v — M}* is continuous on [0, ],
where M™ is solution of the generating equation (©): 0 < u < oo,

€_A

dM, = Mt(—1i;tht+f(Mt—(1—Zt))dYt),u§t<oo
M, 1 -7,

(V)

Let X be a P-FF local martingale. Then the process

~ t eiAs 12 eiAS
Xy = Xy— / Ilfs°7-g 7d<N7X>S T / Il1:7'<sg ﬁd<N7 X>s
0 0 -

S S

—/O Treoq(f(MI — (1= Z)) + MIfY(MI — (1 — Z,)))d(Y, X)s

IS a Q-G-local martingale.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 24



Constructions of iM

Semimartingale decomposition formula in the case of eventual 1 — 7 =0

We suppose Hy(Z). We consider the iM; constructed above and its associated
probability measure Q on [0, 00] x Q2. Let g = limx 1 g:.

Let X be a (P, F)-local martingale. Then

t iA t i
elss et s d(N, X)s
0 S i 0 S i

Is a (Q, G)-local martingale.

M = Q(T < ulFt), Zt=1— M} = Nee Nt 25



Predictable Representation Property

Predictable Representation Property
Assume »X and that

1. there exists an (P, F)-martingale m which admits the (PP, F)-Predictable
Representation Property

2. The martingales N and Y are orthogonal

Let m be the (P, G)-martingale part of the (P, G)-semimartingale m.

Then, (m, M) enjoys the (Q, G)-Predictable Representation Property where
Mt — ]17'°t — At’\T-
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Example

Example

Let o is the standard Gaussian density and ¢ the Gaussian cumulative function, F
generated by a Brownian motion B.

Let X = fO s)dBs where f is a deterministic, square-integrable function and
Y = ¢(X) Where 1 is a positive and strictly increasing function. Then,
B <ulF) =P( [ 9B, < vt @) - mi7)
where m; = fo s)dB; is F;-measurable. It follows that
U w il (U,) — My
— < —
MY = P(Y < ulF}) c1>( =0 )

The family M} is then a family of iMz martingales which satisfies

dMy = —p (2VH(M)) %d&
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Example

The multiplicative decomposition of Z; = N; exp (— fot Asds) where

_ p(Y?) _ () p(Y2)
e NSmean ™ M T s e
B — i)
Yo = o(t)
The basic martingale satisfies
w _ agu d@)e(Yr)
dM; = — M, L DY, )dBt
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Example

Jeanblanc, M. and Song, S. (2010)
Explicit Model of Default Time with given Survival Probability. Stochastic
Processes and their Applications

Default times with given survival probability and their F-martingale decomposition
formula. Stochastic Processes and their Applications

Li, L. and Rutkowski, M. (2010) Constructing Random Times Through
Multiplicative Systems, Preprint.

In that paper, the authors give a solution to the problem (%), based on Meyer,
P.A. (1967): On the multiplicative decomposition of positive supermartingales.

In: Markov Processes and Potential Theory, J. Chover, ed., J. Wiley, New York, pp.
103-116.
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Example

Begin at the beginning, and go on till you come to the end. Then, stop.

Lewis Carroll, Alice’s Adventures in Wonderland
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Example

Thank you for your attention
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