Markovian sports: Tennis vs. Volleyball

Marco Ferrante
Università di Padova, Italia

May 15, 2013

(1) Tennis

- The model
- Winning probabilities and expected duration of a Game
- Set
- Tiebreak
- Match
(2) Volleyball
- Volleyball Memorabilia
- The model
- Winning probabilities: Set
- Winning probabilities: Match
- Expected duration of a set

The model

In this talk I will present a simple model for both the score of a tennis and a volleyball match.

I will assume that the probability that a player wins each point is constant during the match, independent from the other points played and depends just on the fact that the player serves or returns the serve.

So, calling the two players A and B, we will define two parameters p_{A} and p_{B} which represents, respectively, the probabilities of winning a rally when the player A or B serves.

To avoid trivial cases, we will always assume that $0<p_{A}<1$ and $0<p_{B}<1$.

The score in a tennis game is divided into two levels: the games and the sets.

In each game just one player serves and the other player serves in the following one. The score is: 0-15-30-40-deuce-win.

A player wins a set if he/she wins 6 games before the other player wins more then 4 games, or wins 7 games and the other 5 , or, if they arrive to 6 to 6 the set is assigned by a final "long" deciding game, called tie break.

A player wins a match in most of the tournaments if he/she is the first who wins 2 sets, or, in the grand slam tournament for the men, if he is the first to win 3 sets.

By the independence assumption, we are able to consider independently the games forming the set, since the probability to win a set is equal to the product of the probabilities to win the needed games and the same for the sets in the match.

Winning probabilities: Game

Let as assume that player A serves.

By the independence assumption we can model the score of the game with a discrete-time Markov chain X_{n} with state space

$$
\begin{gathered}
S=\{(i, j): i \in\{0,15,30,40\}, j \in\{0,15,30,40\}\} \cup \\
\cup\{\text { Win } A, \text { Win } B\} \backslash\{(40,40)\}
\end{gathered}
$$

			1	2	3	4	5	6	7	8	s	10	11	12	13	14	15	16	17	
	1	Γ	0	p	q	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	2		0	0	0	p	q	0	0	0	0	0	0	0	0	0	0	0	0	
	3		0	0	0	0	p	q	0	0	0	0	0	0	0	0	0	0	0	
	4		0	0	0	0	0	0	p	q	0	0	0	0	0	0	0	0	0	
	5		0	0	0	0	0	0	0	p	q	0	0	0	0	0	0	0	0	
	6		0	0	0	0	0	0	0	0	p	q	0	0	0	0	0	0	0	
	7		0	0	0	0	0	0	0	0	0	0	q	0	0	0	0	p	0	
	\%		0	0	0	0	0	0	0	0	0	0	p	q	0	0	0	0	0	
$G=$	3	\bigcirc	0	0	0	0	0	0	0	0	0	0	0	p	q	0	0	0	0	
	10		0	0	0	0	0	0	0	0	0	0	0	0	p	0	0	0	q	
	11		0	0	0	0	0	0	0	0	0	0	0	0	0	q	0	p	0	
	12		0	0	0	0	0	0	0	0	0	0	0	0	0	p	q	0	0	
	13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	p	0	q	
	14		0	0	0	0	0	0	0	0	0	0	0	q	0	0	0	p	0	
	15		0	0	0	0	0	0	0	0	0	0	0	p	0	0	0	0	q	
	16		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
	17		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-

In order to compute the probability that player A wins the game (remember we are assuming that he/she is serving in this game) we can evaluate the probability that the Markov Chain X_{n} starting from the state $(0,0)$ arrives to the (absorbing) state Win A.

This can be done applying the well known results that follow.

Let C be a subset of the state space S, the hitting time of C is the random variable

$$
H^{C}(\omega)=\inf \left\{n \geq 0: X_{n}(\omega) \in C\right\}
$$

The probability starting from $i \in S$ that X_{n} ever hits C is then

$$
h_{i}^{C}=P_{i}\left(H^{C}<\infty\right)
$$

When C is a closed class (or an absorbing state), h_{i}^{C} is called the absorption probability.

In the preset case we have therefore to evaluate

$$
h_{(0,0)}^{\{\text {Win } A\}}
$$

This can be done by applying the following well known result:
Proposition: The vector of the hitting probabilities $h^{C}=\left(h_{i}^{C}, i \in S\right)$ is the minimal non-negative solution to the system of linear equations

$$
\begin{cases}h_{i}^{C}=1 & \text { for } i \in C \\ h_{i}^{C}=\sum_{j \in S} p_{i j} h_{j}^{C} & \text { for } i \notin C\end{cases}
$$

Even for the case of the game, this is not so simple to apply the previous results, since in this case the matrix P has 17×17 entries.

A more direct approach is the following one (see [2]): denote by $0,1,2,3,4$ the scores $0,15,30,40$, Win A define by p_{A}^{G} the probability that A wins a serving game and by $p_{A}^{G}(i, j)$ the probability that this game arrives to the score (i, j).

It easy to see that

$$
p_{A}^{G}=\sum_{j=0}^{2} p_{A}^{G}(4, j)+p_{A}^{G}(3,3) p_{A d v}^{G}
$$

where $p_{A d v}^{G}$ denotes the probability that player A wins the final tie break of the game.

By simple combinatorial computations, one gets

$$
\begin{gathered}
p_{A d v}^{G}=p_{A}^{2}\left[1-2 p_{A}\left(1-p_{A}\right)\right]^{-1} \\
p_{A}^{G}(4,0)=p_{A}^{4}, \quad p_{A}^{G}(4,1)=4 p_{A}^{4}\left(1-p_{A}\right) \\
p_{A}^{G}(4,2)=10 p_{A}^{4}\left(1-p_{A}\right)^{2}, \quad p_{A}^{G}(3,3)=20 p_{A}^{3}\left(1-p_{A}\right)^{3},
\end{gathered}
$$

which leads to the formula

$$
p_{A}^{G}=p_{A}^{4}\left[1+4\left(1-p_{A}\right)+10\left(1-p_{A}\right)^{2}\right]+20 p_{A}^{3}\left(1-p_{A}\right)^{3} p_{A}^{2}\left[1-2 p_{A}\left(1-p_{A}\right)\right]^{-1}
$$

Winning probabilities: GAME

Expected duration of a Game

By the Markov chain theory, we are able, again at least theoretically, to evaluate the mean hitting (absorbing) times, which correspond in the present setting to evaluate the mean duration of a game.

Denoting, accordingly to the previous notation, by

$$
k_{i}^{C}=E_{i}\left[H^{C}\right)
$$

the mean hitting time starting form the state i, a well known result says:

Proposition: The vector of mean hitting times $k^{C}=\left(k_{i}^{C}, i \in S\right)$ is the minimal non-negative solution to the system of linear equations

$$
\begin{cases}k_{i}^{C}=0 & \text { for } i \in C \\ k_{i}^{C}=1+\sum_{j \in S \backslash C} p_{i j} k_{j}^{C} & \text { for } i \notin C\end{cases}
$$

Denoting by \mathbf{P} the sub matrix of P obtained by the entries corresponding to the states in $S \backslash C$ and by K the vector of the mean hitting times for these states, we get

$$
\mathbf{K}=(I d-\mathbf{P})^{-1} \mathbf{1}
$$

Applying this result and thanks to the help of Mathematica, one can obtain that the mean duration of a game when A serves is equal to

$$
\frac{4\left(1-p+p^{2}+6 p^{3}-18 p 4+18 p^{5}-6 p^{6}\right)}{1-2 p-2 p^{2}}
$$

where $p=p_{A}$.

Mean duration: GAME

Set

Set

																	$\begin{aligned} & \text { ~ } \\ & \text { II } \end{aligned}$															
$=$	ミ	\%					\%	$=$.	2	\%	$\stackrel{\sim}{\sim}$	\%	\%	2	3	\sim					-	E	ज	$=$		*	\cdots		,	-	

1	2	3	4	5	6	7	8	3	10	11	12	13	14	15	6	17	$\%$	19	20	21	22	23	24	20	26	27	${ }^{28}$	29	30	31	32	${ }^{3}$	34	35	36	37	8	39	40	41
0	pAG	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	qBG p	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$q B G p$	PBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	pag q	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	pAG q	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0 P	pag q	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	qBG p	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0 q	qBG p	PBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	qBG p	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0 q	qBG p	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	PAG q	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pag q	qag	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pagq	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	PAG	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pag q	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG p	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$q B G \mathrm{p}$	PBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 q	$q B G p$	pBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pBG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qAG	0	0	0	0	0	0	0	0	0	0	0	0	PAG	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pAG	qAG	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pag q	qAG	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pAG q	qAG	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pag	0	0	0	0	0	0	0	0	0	0	QAG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pBG	0	0	0	0	0	0	0	0	$q B G$	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG p	PBG	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	pBG	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	0	0	0	0	0	0	0	pB6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qAG	0	0	0	0	0	PAG	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 P	pag 0	cag	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pag	0	0	0	0	0	qAG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pBG	0	0	0	qBG	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	0	0	0	0	pBG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pAGq		0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pBG	qBG	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBG	0	pBG
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pAT	qAT
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Marco Ferrante Università di Padova, Italia
Markovian sports: Tennis vs. Volleyball

Tiebreak

Winning probabilities of A: SET

$\boldsymbol{p}_{\mathrm{A}}$											
$\boldsymbol{p}_{\mathrm{B}}$	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,1	0,000	0,500	0,762	0,922	0,988	0,999	1,000	1,000	1,000	1,000	1,000
0,2	0,000	0,238	0,500	0,768	0,941	0,993	1,000	1,000	1,000	1,000	1,000
0,3	0,000	0,078	0,232	0,500	0,795	0,958	0,996	1,000	1,000	1,000	1,000
0,4	0,000	0,012	0,059	0,205	0,500	0,813	0,963	0,996	1,000	1,000	1,000
0,5	0,000	0,001	0,007	0,042	0,187	0,500	0,813	0,958	0,993	0,999	1,000
0,6	0,000	0,000	0,000	0,004	0,037	0,187	0,500	0,795	0,941	0,988	1,000
0,7	0,000	0,000	0,000	0,000	0,004	0,042	0,205	0,500	0,768	0,922	1,000
0,8	0,000	0,000	0,000	0,000	0,000	0,007	0,059	0,232	0,500	0,762	1,000
0,9	0,000	0,000	0,000	0,000	0,000	0,001	0,012	0,078	0,238	0,500	1,000
1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	

Mean duration: Set

$$
\begin{aligned}
& k_{1}^{S(40,41)}=13-20 p_{B}^{G}+32 p_{B}^{G^{2}}-35 p_{B}^{G^{3}}+23 p_{B}^{G^{4}}-8 p_{B}^{G^{5}}+p_{B}^{G^{6}}+ \\
& p_{A}^{G}\left(-16+182 p_{B}^{G}-544 p_{B}^{G^{2}}+783 p_{B}^{G^{3}}-596 p_{B}^{G^{4}}+226 p_{B}^{G^{5}}-32 p_{B}^{G^{6}}\right)+ \\
& p_{A}^{G^{2}}\left(19-496 p_{B}^{G}+2230 p_{B}^{G^{2}}-4159 p_{B}^{G^{3}}+3799 p_{B}^{G^{4}}-1660 p_{B}^{G^{5}}+270 p_{B}^{G^{6}}\right)+ \\
& p_{A}^{G^{3}}\left(-17+667 p_{B}^{G}-3983 p_{B}^{G^{2}}+9226 p_{B}^{G^{3}}-10056 p_{B}^{G^{4}}+5140 p_{B}^{G^{5}}-980 p_{B}^{G^{6}}\right)+ \\
& p_{A}^{G^{4}}\left(10-488 p_{B}^{G}+3571 p_{B}^{G^{2}}-9916 p_{B}^{G^{3}}+12778 p_{B}^{G^{4}}-7700 p_{B}^{G^{5}}+1750 p_{B}^{G^{6}}\right)+ \\
& -2 p_{A}^{G^{5}}\left(2-95 p_{B}^{G}+788 p_{B}^{G^{2}}-2542 p_{B}^{G^{3}}+3850 p_{B}^{G^{4}}-2758 p_{B}^{G^{5}}+756 p_{B}^{G^{6}}\right)+ \\
& p_{A}^{G^{6}}\left(1-2 p_{B}^{G}\right)^{2}\left(1-28 p_{B}^{G}+154 p_{B}^{G^{2}}-252 p_{B}^{G^{3}}+126 p_{B}^{G^{4}}\right)
\end{aligned}
$$

	\mathbf{p}_{A}	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
$\mathbf{p}_{\mathbf{B}}$	$\mathbf{p}_{\mathbf{B}}(\mathbf{G}) \mid \mathbf{p}_{\mathrm{A}}(\mathbf{G})$	0,000	0,001	0,022	0,099	0,264	0,500	0,736	0,901	0,978	0,999	1,000
0	0,000		12,98	12,66	11,58	9,83	8,14	6,97	6,32	6,07	6,00	6,00
0,1	0,001	12,97	12,95	12,64	11,57	9,83	8,15	6,97	6,33	6,07	6,01	6,00
0,2	0,022	12,58	12,56	12,32	11,45	9,90	8,26	7,06	6,40	6,13	6,07	6,07
0,3	0,099	11,30	11,29	11,24	10,94	10,06	8,64	7,38	6,66	6,38	6,31	6,30
0,4	0,264	9,41	9,41	9,53	9,84	9,97	9,29	8,13	7,29	6,94	6,85	6,84
0,5	0,500	7,83	7,84	7,96	8,42	9,20	9,66	9,20	8,42	7,96	7,84	7,83
0,6	0,736	6,84	6,85	6,94	7,29	8,13	9,29	9,97	9,84	9,53	9,41	9,41
0,7	0,901	6,30	6,31	6,38	6,66	7,38	8,64	10,06	10,94	11,24	11,29	11,30
0,8	0,978	6,07	6,07	6,13	6,40	7,06	8,26	9,90	11,45	12,32	12,56	12,58
0,9	0,999	6,00	6,01	6,07	6,33	6,97	8,15	9,83	11,57	12,64	12,95	12,97
1	1,000	6,00	6,00	6,07	6,32	6,97	8,14	9,83	11,58	12,66	12,98	

Marco Ferrante Università di Padova, Italia
Markovian sports: Tennis vs. Volleyball

Match

			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	1		0	PABS	pAAS	qABS	qAAS	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
	2		0	0	0	0	0	pABS	pAAS	qABS	qAAS	0	0	0	0	0	0	0	0	0	0	
	3		0	0	0	0	0	qBBS	qBAS	pBBS	pBAS	0	0	0	0	0	0	0	0	0	0	
	4		0	0	0	0	0	0	0	pABS	pAAS	qABS	qAAS	0	0	0	0	0	0	0	0	
	5		0	0	0	0	0	0	0	qBBS	qBAS	pBBS	pBAS	0	0	0	0	0	0	0	0	
	6		0	0	0	0	0	0	0	0	0	0	0	qABS	qAAS	0	0	0	0	PAS	0	
	7		0	0	0	0	0	0	0	0	0	0	0	pBBS	pBAS	0	0	0	0	qBS	0	
	8		0	0	0	0	0	0	0	0	0	0	0	PABS	pAAS	qABS	qAAS	0	0	0	0	
$\mathbf{M}=$	9		0	0	0	0	0	0	0	0	0	0	0	qBBS	qBAS	pBBS	pBAS	0	0	0	0	
	10		0	0	0	0	0	0	0	0	0	0	0	0	0	pABS	paAs	0	0	0	qAS	
	11		0	0	0	0	0	0	0	0	0	0	0	0	0	qBBS	qBAS	0	0	0	pBS	
	12		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qABS	qAAS	pAS	0	
	13		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pBBS	pBAS	qBS	0	
	14		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pABS	pAAS	0	qAS	
	15		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBBS	qBAS	0	pBS	
	16		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	pAS	qAS	
	17		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	qBS	pBS	
	18		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
	19		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	」

Winning probabilities of A: MATCH

$\mathbf{p}_{\mathbf{A}}$											
\mathbf{p}_{B}	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0		1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,1	0,000	0,500	0,908	0,996	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,2	0,000	0,092	0,500	0,914	0,998	1,000	1,000	1,000	1,000	1,000	1,000
0,3	0,000	0,004	0,086	0,500	0,938	0,999	1,000	1,000	1,000	1,000	1,000
0,4	0,000	0,000	0,002	0,062	0,500	0,951	1,000	1,000	1,000	1,000	1,000
0,5	0,000	0,000	0,000	0,001	0,049	0,500	0,951	0,999	1,000	1,000	1,000
0,6	0,000	0,000	0,000	0,000	0,000	0,049	0,500	0,938	0,998	1,000	1,000
0,7	0,000	0,000	0,000	0,000	0,000	0,001	0,062	0,500	0,914	0,996	1,000
0,8	0,000	0,000	0,000	0,000	0,000	0,000	0,002	0,086	0,500	0,908	1,000
0,9	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,092	0,500	1,000
1	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	

Mean duration: Match

Mean duration: MATCH

p_{A}											
\boldsymbol{p}_{B}	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
0		3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000
0,1	3,0000	4,1250	3,7424	3,2468	3,0376	3,0022	3,0000	3,0000	3,0000	3,0000	3,0000
0,2	3,0000	3,7424	4,1250	3,7258	3,1861	3,0202	3,0009	3,0000	3,0000	3,0000	3,0000
0,3	3,0000	3,2468	3,7258	4,1250	3,6487	3,1319	3,0118	3,0005	3,0000	3,0000	3,0000
0,4	3,0000	3,0376	3,1861	3,6487	4,1250	3,5959	3,1131	3,0118	3,0009	3,0000	3,0000
0,5	3,0000	3,0022	3,0202	3,1319	3,5959	4,1250	3,5959	3,1319	3,0202	3,0022	3,0000
0,6	3,0000	3,0000	3,0009	3,0118	3,1131	3,5959	4,1250	3,6487	3,1861	3,0376	3,0000
0,7	3,0000	3,0000	3,0000	3,0005	3,0118	3,1319	3,6487	4,1250	3,7258	3,2468	3,0000
0,8	3,0000	3,0000	3,0000	3,0000	3,0009	3,0202	3,1861	3,7258	4,1250	3,7424	3,0000
0,9	3,0000	3,0000	3,0000	3,0000	3,0000	3,0022	3,0376	3,2468	3,7424	4,1250	3,0000
1	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	3,0000	

Marco Ferrante Università di Padova, Italia
Markovian sports: Tennis vs. Volleyball

Volleyball Memorabilia

IEl porlador d'aquesta entrada s'obliga a complir la segurelat establerta pel COOB'92,S.A. En. pspecial,
és terminantment prohibide es tarminantment prohibida la introducció doblectes que puguin fer danys a lercers. Es reserve el drel d'admissi L'entrada no podras ser cials, promocionals, polftiques oreligioses. Són prohibides lambé lexhibició de matorial publicliari dins els recintes des.
3 Les
Les imatges dels Jocs Oilimpics obtingudes miliancaant videocàmeres, càmeres fotio grâflquess 0 allres mitjans no podran ser en cap cas objecto 'uutilizació comercial.
4La presentació d'una enirasova anulilació lia denegacio de 'laccés a la sessióocrresponent, sense que es singul iret a la devolució de limpor 5 Per a qualsevol discreparnque pugui sorgir amb portador se sotmet a la liel spenyola al al Tribunal Aditiral de Barcelona.

A. : NMT

A)

El portador de esta entrada
se obliga al cumplimiento de sequridad establecida por of COOB'92, S.A. En especial queda terminantemente prohiida la introduoción de objetos que sean-susceptibiffode producir daños a terceros. Reser2 La entrada no podrá ser uilizada con fines comercia. es, promocionales, políticos ni religiosos. Igualmente, queda prohibida la exhibicio e material publichitario en fos ecintos olimpicos, asi co pro a reventa de entradas. Limpicos oblenidas

videófcama
gráficas u ootses mefrios. 10 bo
podrán ser en ei pouñ cos
bjeto de utille ef ión codtercial.
4 La presentacion de inna ende anulac on y de fagación del acceso a la seffidn que orresponda sin deretho a devolución de su íppo 5 Para cualquier difcrepancia que pueda surgir en feleción al se somete a la ley el portado y al Tribunal Arbitral de Barcelona.

1 The holder of this ticket agrees to abide by the organisation and safety regulations laid down by COOB'92, S.A. In particular, it is strictly for-
bidden to bring objects into the venue which could cause injury to cither people. Right to refuse admission reserved. 2 The ticket may not be used for commercial, promotional, coltical or religious purposes also lorbidden to display a advertising material inside the
3 lmages of the Oymp Games obtained with video cameras, cameras or other
means cannot be used for commercial purposes under any circumstances.
4 Any ticket which is defaced will be invalid and the hoider vill not be allowed to enter the venue for the session. There 5 in the event of any dispute concerning the use of the ticket. the holder agrees to submit to Spanish law and the decision of the Tribunal

The model

Let us consider the following model for volleyball.

The probability that a team wins each point is constant during the match, independent from the other points played and depends just on the fact that the team serves or returns the serve.

So, calling the two teams 0 and 1 , we will define two parameters p_{0} and p_{1} which represents, respectively, the probabilities of winning a rally when the team 0 or 1 serves.

To avoid trivial cases, we will always assume that $0<p_{0}<1$ and $0<p_{1}<1$.

Furthermore and in contrast to the similar model for the tennis given before, it will be here reasonable to consider both this numbers less then 0.5

In order to analyze the probability of winning a set (and a match) under these assumptions, we recognize that the score can be thought as the realization of a discrete-time Markov chain, whose transition matrix will be specified in the sequel.

Since the scoring system has recently changed, we will consider separately the two cases, starting from the present rally point scoring system.

Winning probabilities of a set: Rally point scoring system

Let us start considering the actual rally point scoring system.
We can define the set S of the states of the Markov chain that describes the evolution of a volleyball set under the rally point scoring system.
$S:=\{(i, j, s): i \in\{0,1, \ldots, 24, A d, W\}, j \in\{0,1, \ldots, 24\}, s \in\{0,1\}\}$
where the first number represents the score of the serving team, the states $A d$ and W in the first position stand for Advantage and Winning of the serving team, and similarly for the numbers in second position relative to the returning team, while the last number indicates which team serves.

The transition probabilities are defined as follows: when $\max \{i, j\}<24$ then

$$
\begin{aligned}
&(i, j, s) \longrightarrow(i+1, j, s) \quad \text { with probability } p_{s} \\
&(i, j, s) \longrightarrow(j+1, i, 1-s) \quad \text { with probability } 1-p_{s}
\end{aligned}
$$

$(23,24, s) \longrightarrow(24,24, s)$ with probability p_{s}
$(23,24, s) \longrightarrow(W, 23,1-s) \quad$ with probability $1-p_{s}$
$(24,23, s) \longrightarrow(W, 23, s)$ with probability p_{s}
$(24,23, s) \longrightarrow(24,24,1-s)$ with probability $1-p_{s}$
$(24,24, s) \longrightarrow(A d, 24, s)$ with probability p_{s}
$(24,24, s) \longrightarrow(A d, 24,1-s) \quad$ with probability $1-p_{s}$
$(A d, 24, s) \longrightarrow(W, 24, s) \quad$ with probability p_{s}
$(A d, 24, s) \longrightarrow(24,24,1-s) \quad$ with probability $1-p_{s}$

Let us now compute the conditional probability that the team who starts serving, wins the set.

We have to evaluate the probabilities that the Markov chain starting from the state $(0,0, s)$ reaches one of the states $(W, 0, s),(W, 1, s), \ldots,(W, 23, s),(W, 24, s)$.

One possible approach would be to consider the whole Markov chain and to compute the absorbing probabilities of these states starting from ($0,0, s$). Although this is theoretically correct, it is not viable in practice, since the Markov chain representing a volleyball set can be described by a huge 1265×1265 transition matrix, not suitable for any, at least simple, computation.

As an alternative (see [1]), we can consider directly the computation of this probability.

$$
\begin{gathered}
\mathbb{P}[s \text { wins a set serving first }]=\sum_{l=0}^{23} p_{(W, l, s)}+p_{(24,24, s)} p_{A d v, s}+ \\
+p_{(24,24,1-s)}\left(1-p_{A d v, 1-s)}\right)
\end{gathered}
$$

where $p_{(W, l, s)}$ denotes the probability that team s wins the set while team $1-s$ scores exactly / points, while $p_{(24,24, s)}$ is the probability that team s reaches the score $(24,24)$ serving next and $p_{A d v, s}$ that team s wins the tiebreak at the end of the set.

A simple computation gives first that

$$
p_{(W, 0, s)}=p_{s}^{25}
$$

since the team s has to win all the played rallies.

The situation becomes slightly more complicated once the loosing team scores points itself. In this case to evaluate the value of $p_{(W, l, s)}$ we have to take into account all the possible breaks (changes in the serving team) that happened during the set and their relative position in the set.

This computation leads to this formula

$$
p_{(W, I, s)}=\sum_{k=1}^{l} A(k, 25, /) p_{s}^{25-k} p_{1-s}^{l-k}\left(1-p_{s}\right)^{k}\left(1-p_{1-s}\right)^{k}
$$

for $I \geq 1$, where for positive integers k, m, l, with $k \leq I$,

$$
A(k, m, l)=C((k, l-k)) C((k+1, m-k))
$$

and $C((n, k))$ denotes the number of combinations with repetitions of k objects from a set of cardinality n, which is equal to

$$
C((n, k))=\binom{n+k-1}{k} .
$$

Note that the term $A(k, m, l)$ counts all the possible sequences of consecutive points won by the serving team, between two breaks.

If the set arrives to the score $(24,24)$ we have to consider the probability of winning the final tiebreak.

By the Markov property, we can first compute the probability to reach the score $(24,24, s)$ or $(24,24,1-s)$ and multiply it by the probability, respectively, that team s wins the tiebreak serving first or that team $1-s$ loose the tiebreak serving first

$$
p_{(24,24, s)} p_{A d v, s}+p_{(24,24,1-s)}\left(1-p_{A d v, 1-s}\right)
$$

Proceeding as before, we obtain that

$$
\begin{aligned}
p_{(24,24, s)} & =\sum_{k=1}^{24} A(k, 24,24) p_{s}^{24-k} p_{1-s}^{24-k}\left(1-p_{s}\right)^{k}\left(1-p_{1-s}\right)^{k} ; \\
p_{(24,24,1-s)} & =\sum_{k=1}^{23} B(k+1,25,24) p_{s}^{24-k} p_{1-s}^{23-k}\left(1-p_{s}\right)^{k+1}\left(1-p_{1-s}\right)^{k},
\end{aligned}
$$

where

$$
B(k, m, I)=C((k, m-k)) C((k, I-k)) .
$$

In order to compute the probability $p_{A d v, s}$, let us consider the sub Markov chain consisting only of the states
$\{(24,24,0),(24,24,1),(A d, 24,0),(A d, 24,1),(W, 24,0),(W, 24,1)\}$.

The computation of the absorbing probability, starting from $(24,24, s)$ of the state $(W, 24, s)$, gives

$$
p_{A d v, s}=\frac{p_{s}^{2}}{p_{s}^{2}+p_{1-s}^{2}+p_{s} p_{1-s}-p_{s}^{2} p_{1-s}-p_{s} p_{1-s}^{2}} .
$$

	p_{1}						
p_{0}	0.1	0.2	0.3	0.4	0.5	0.6	0.7
0.1	0.42650	0.10414	0.01844	0.00233	0.00020	0.00001	0.00000
0.2	0.83438	0.45763	0.17102	0.04462	0.00789	0.00086	0.00005
0.3	0.96807	0.78324	0.47516	0.20804	0.06349	0.01258	0.00140
0.4	0.99581	0.94163	0.76498	0.48834	0.22934	0.07361	0.01424
0.5	0.99965	0.98970	0.92862	0.76175	0.50000	0.24006	0.07476
0.6	0.99998	0.99891	0.98637	0.92639	0.76890	0.51172	0.24125
0.7	1.00000	0.99994	0.99860	0.98685	0.93345	0.78633	0.52511

Table: Rally point scoring system. Probability of winning a set by team 0 when it serves first.

Winning probabilities of a set: Side-out scoring system

The side-out scoring system can be modeled in the Markov chain framework as follow:
let us define the set S of the states as
$S:=\{(i, j, s): i \in\{0,1, \ldots, 14, A d, W\}, j \in\{0,1, \ldots, 14\}, s \in\{0,1\}\}$
where the first number represents the score of the serving team, the states $A d$ and W in the first position stand for Advantage and Winning of the serving team, and similarly for the numbers in second position relative to the returning team, while the last number indicates which team serves next.

The definition of the transition probabilities here is more delicate: As before, p_{s} denotes the probability that the team s wins a rally when it is serving. In this scoring system, we have to compute also the probability $p p_{s}$, that denotes the probability that team s starts serving and scores a point.
This can be easily preformed by defining a four states Markov chain, with state space $\{A 0, A 1, W 0, W 1\}$, where $A 0$, respectively $A 1$, stands for team 0 , resp. 1 , serves, while $W 0$, resp. $W 1$, stands for team 0 , resp. team 1 , marks the point, and transition probability matrix

$$
\left[\begin{array}{cccc}
0 & 1-p_{0} & p_{0} & 0 \\
1-p_{1} & 0 & 0 & p_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The probability $p p_{s}$ is equal to the absorbing probability of state Ws starting from As, which is equal to

$$
\begin{equation*}
p p_{s}=\frac{p_{s}}{p_{s}+p_{1-s}-p_{s} p_{1-s}} . \tag{1}
\end{equation*}
$$

Remark: It is worth noting that if the probabilities $p_{0}=p_{1}=1 / 2$, in the side-out scoring system it is no more true that the probability of scoring a point is independent from the event of who is serving first. Indeed, from (1) we get that in this case the above probability is equal to $p p_{0}=p p_{1}=2 / 3$. It is easy to prove that in general $p p_{s} \geq p_{s}$ and that $p p_{0}=1 / 2$ if

$$
p_{0}=\frac{p_{1}}{1+p_{1}} .
$$

Proceeding as before (see also [3] , it is easy to see that if the first serving team is s, then the transition probabilities are defined as follows: when $0 \leq i, j \leq 13$, then

$$
\begin{aligned}
&(i, j, s) \longrightarrow(i+1, j, s) \quad \text { with probability } p p_{s} \\
&(i, j, s) \longrightarrow(j+1, i, 1-s) \quad \text { with probability } 1-p p_{s}
\end{aligned}
$$

and similarly for the other cases.

The winning probability for the set in this case is

$$
\begin{gathered}
\mathbb{P}[s \text { wins a set serving first }]=\sum_{l=0}^{13} p_{(W, l, s)}+p_{(14,14, s)} p p_{A d v, s}+ \\
+p_{(14,14,1-s)}\left(1-p p_{A d v, 1-s}\right)
\end{gathered}
$$

where:

$$
\begin{gathered}
p_{(W, 0, s)}=p p_{s}^{15} \\
p_{(W, l, s)}=\sum_{k=1}^{l} A(k, 15, /) p p_{s}^{15-k} p p_{1-s}^{I-k}\left(1-p p_{s}\right)^{k}\left(1-p p_{1-s}\right)^{k}
\end{gathered}
$$

for $I \geq 1$.

In order to compute the remaining terms, we get

$$
\begin{aligned}
& p_{(14,14, s)}=\sum_{k=1}^{14} A(k, 14,14) p p_{s}^{14-k} p p_{1-s}^{14-k}\left(1-p p_{s}\right)^{k}\left(1-p p_{1-s}\right)^{k} \\
& p_{(14,14,1-s)}=\sum_{k=1}^{14} B(k, 15,14) p p_{s}^{15-k} p p_{1-s}^{14-k}\left(1-p p_{s}\right)^{k}\left(1-p p_{1-s}\right)^{k-1} .
\end{aligned}
$$

and

$$
p p_{A d v, s}=\frac{p p_{s}^{2}}{p p_{s}^{2}+p p_{1-s}^{2}+p p_{s} p p_{1-s}-p p_{s}^{2} p p_{1-s}-p p_{s} p p_{1-s}^{2}} .
$$

	p_{1}						
p_{0}	0.1	0.2	0.3	0.4	0.5	0.6	0.7
0.1	0.50394	0.02017	0.00056	0.0002	0.00000	0.00000	0.00000
0.2	0.98125	0.50837	0.10241	0.01321	0.00139	0.00013	0.00001
0.3	0.99951	0.90690	0.51344	0.17214	0.03974	0.00693	0.00092
0.4	0.99999	0.98890	0.84788	0.51938	0.21975	0.06659	0.01459
0.5	1.00000	0.99894	0.96793	0.81260	0.52658	0.25127	0.08614
0.6	1.00000	0.99991	0.99501	0.94912	0.79556	0.53574	0.27064
0.7	1.00000	0.99999	0.99943	0.99038	0.93915	0.79399	0.54832

Table: Side-out scoring system. Probability of winning a set by team 0 when it serves first.

It is now interesting to compare the winning probabilities in the two scoring systems for the same parameters p_{0} and p_{1}.

Comparison of Table 1. and 2. shows that the introduction of the rally point system increased the difficulty of winning a set for the first serving team, for every choice of probabilities such that $p_{0} \geq p_{1}$.

On the other hand, if $p_{1}>p_{0}$ and the difference $p_{1}-p_{0}$ is substantial, then team 0 (that serves first in the set) has more chances to win the set. Hence, the change in the scoring system facilitated the weaker teams and introduced a source of randomness in the outcomes of the sets (and therefore of the matches).

Winning probabilities: Match

Let us now compute the winning probabilities, in both the presentand former scoring systems.

Who serves first in the first set, then serves first in the third set, while the other team starts serving in the second and in the (possible) fourth set.

If the teams play the deciding fifth set, a toss is carried out to determine who starts serving.

The fifth, deciding set, in the rally point scoring system as in the side-out scoring system, corresponds to a rally point set ending with 15 points.

By the Markovian assumption, we get that the probability to win a match is equal to the product of the probabilities for the two teams to win the single sets.

Let us denote by

$$
\begin{aligned}
& p_{(W, 0)}=\mathbb{P}[0 \text { wins a set serving first }] \\
& p_{(W, 1)}=\mathbb{P}[1 \text { wins a set serving first }]
\end{aligned}
$$

while

$$
\begin{aligned}
& p_{(T, 0)}=\mathbb{P}[0 \text { wins the deciding set serving first }] \\
& p_{(T, 1)}=\mathbb{P}[1 \text { wins the deciding set serving first }] .
\end{aligned}
$$

Since a toss is carried out to determine who first serves the deciding set, the probability that team 0 wins this set will be equal to

$$
p_{T}=\frac{1}{2} p_{(T, 0)}+\frac{1}{2}\left(1-p_{(T, 1)}\right)
$$

A simple computation gives in the rally point scoring system:

$$
\begin{gathered}
\mathbb{P}[0 \text { wins }(3,0)]=p_{(W, 0)}^{2}\left(1-p_{(W, 1)}\right) \\
\mathbb{P}[0 \text { wins }(3,1)]=2\left(1-p_{(W, 0)}\right) p_{(W, 0)}\left(1-p_{(W, 1)}\right)^{2}+ \\
+p_{(W, 0)}^{2} p_{(W, 1)}\left(1-p_{(W, 1)}\right) \\
\mathbb{P}[0 \text { wins }(3,2)]=\left[p_{(W, 0)}^{2} p_{(W, 1)}^{2}+\left(1-p_{(W, 0)}\right)^{2}\left(1-p_{(W, 1)}\right)^{2}+\right. \\
\left.+4 p_{(W, 0)} p_{(W, 1)}\left(1-p_{(W, 0)}\right)\left(1-p_{(W, 1)}\right)\right] p_{T} .
\end{gathered}
$$

Therefore, the probability that team 0 wins a match when starts serving in the first set is equal to
$\mathbb{P}[0$ wins $(3,0)]+\mathbb{P}[0$ wins $(3,1)]+\mathbb{P}[0$ wins $(3,2)]$.

Expected duration of a set

Let us consider the expected duration of a set, measured in number of rallies.

We shall assume again that the probabilities to win a rally could be different for the two teams, but constant along the set and independent of the previous rallies. Moreover, we shall assume that team 0 starts serving.

From the Markov chain theory, it is possible to solve this problem since this is equivalent to determine the expected number of steps that the chain takes to arrive for the first time to a given state or subset of states C.

The problem is that this solution is finite, and therefore useful, just when the subset of states C includes all the closed classes of the Markov chain.

In the present case, it is possible to determine the expected number of rallies needed to finish a given set, but not the expected number of rallies needed to play a set won by team 0 .

This problem can be overcome in the rally point scoring system, but not in the side-out scoring system.

Rally point scoring system

In this case the computation is simple, since a point is scored at the end of each rally.

If the probability that team 0 or team 1 wins a set with a final score $(25, I), I \in\{0, \ldots, 23\}$, we get that the contribution of this outcome to the expected duration of the set is equal to

$$
(25+l) \times\left(p_{(W, l, 0)}+p_{(W, l, 1)}\right) .
$$

Slightly more complicated is the case when the score reaches $(24,24)$.

In this case we have to compute the expected number of rallies that one team needs to end the set, conditional to the fact that we arrive to the tie break after exactly 48 rallies.

This can be easily computed thanks to the Markov chain theory if we define a suitable sub Markov chain.

As before, we have to consider separately the cases that we arrive to the score $(24,24,0)$ or $(24,24,1)$, since the expected length of the tie break is generally different.

Let us consider a Markov chain defined on the state space $S:=$ $\{(24,24,0),(24,24,1),(25,24,0),(25,24,1),(26,24,0),(26,24,1)\}$ with transition matrix

$$
P=\left[\begin{array}{cccccc}
0 & 0 & p_{0} & 1-p_{0} & 0 & 0 \\
0 & 0 & 1-p_{1} & p_{1} & 0 & 0 \\
0 & 1-p_{0} & 0 & 0 & p_{0} & 0 \\
1-p_{1} & 0 & 0 & 0 & 0 & p_{1} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Denoting by $E=\{(26,24,0),(26,24,1)\}$ the set of the absorbing states, an easy computation allows us to obtain the mean absorbing times to the set E starting form the states $(24,24,0),(24,24,1),(25,24,0),(25,24,1)$ as the (minimal) nonnegative solution k of the linear system

$$
\left\{\begin{array}{l}
k_{i}=\sum_{j=1}^{4} P_{i, j} k_{j} \quad, \text { for } i=1, \ldots, 4 \tag{2}\\
k_{5}=k_{6}=0
\end{array}\right.
$$

where we renames the states, in the same order as before, as $\{1,2,3,4,5,6\}$.

Solving this system, we obtain that the mean duration of the tie break starting by $(24,24,0)$ is equal to k_{1}, where

$$
\begin{equation*}
k_{1}=\frac{2\left(p_{0}+p_{1}-p_{0} p_{1}\right)+2 p_{0}\left(1-p_{0}\right)}{\left(p_{0}+p_{1}-p_{0} p_{1}\right)^{2}-p_{0} p_{1}\left(1-p_{0}\right)\left(1-p_{1}\right)} \tag{3}
\end{equation*}
$$

while the mean duration of the tie break starting by $(24,24,1)$ is equal to k_{2}, where

$$
\begin{equation*}
k_{2}=\frac{2+p_{1}\left(1-p_{1}\right) \times k_{1}}{p_{0}+p_{1}-p_{0} p_{1}} . \tag{4}
\end{equation*}
$$

Therefore, conditioning on the fact that the set reaches the $(24,24,0)$ or $(24,24,1)$ scores, respectively, the expected duration of such a set is equal to

$$
k_{T B}=p_{(24,24,0)} \times\left(48+k_{1}\right)+p_{(24,24,1)} \times\left(48+k_{2}\right) .
$$

Collecting all these terms, we obtain that the expected duration of a set under the rally point scoring system is equal to

$$
\sum_{I=0}^{23}(25+I)\left(p_{(w, l, 0)}+p_{(W, I, 1)}\right)+k_{T B}
$$

	p_{1}						
	0.1	0.2	0.3	0.4	0.5	0.6	0.7
0.1	54.05265	47.80129	44.01562	41.13975	38.44668	35.77786	33.11061
	(14.91289)	(7.18016)	(3.93678)	(3.14317)	(3.01603)	(2.90388)	(2.68593)
0.2	48.87572	48.85170	46.35838	43.30936	40.26262	37.25137	34.24906
	(7.89125)	(6.74883)	(5.02883)	(4.12290)	(3.74588)	(3.51311)	(3.23776)
0.3	44.78652	46.83601	47.02174	45.26924	42.40624	39.11653	35.71018
	(4.32246)	$(5.15053)(4.70905)$	(4.41072)	(4.36950)	(4.23204)	(3.90302)	
0.4	41.71137	43.79625	45.52038	45.80878	44.26045	41.29771	37.60288
	(3.25019)	$(4.18764)(4.37762)$	(4.16734)	(4.39654)	(4.74957)	(4.67248)	
0.5	38.89249	40.63788	42.65790	44.34614	44.72994	43.18093	39.87165
	(3.06057)	$(3.77841)(4.36223)$	(4.37096)	(4.23089)	(4.68663)	(5.22015)	
0.6	36.11127	37.50153	39.25614	41.29776	43.08409	43.58975	41.88578
	(2.94329)	(3.54051)	(4.24623)	(4.74215)	(4.72003)	(4.59817)	(5.19371)
0.7	33.33334	34.37508	35.71170	37.44397	39.54475	41.52885	42.21003
	(2.72073)	(3.24971)	(3.90737)	(4.65775)	(5.25218)	(5.31985)	(5.21359)

Table: Rally point scoring system. Expected duration of a set (and standard deviation, estimated by 1,000,000 replicates of played sets).

Side-out point scoring system

This case is more complicated, since the side-out scoring system needs a "small tie break" to decide if a team scores a single point.

Thanks to the Markov chain theory, described above, we are able to compute the expected duration of any such "small tie break". However, this duration depends on who is serving first and so it will not be sufficient to know the expected duration of the "small tie break", but we should know the duration of a "small tie break" won by team s

This is not easy to compute using the classical Markov chain approach and so we have two alternatives.

1) we can consider the whole set as a Markov chain and evaluate directly the expected duration solving the linear system recalled before;
2) we can simulate a large number of sets and estimate the expected duration of the set along with its standard deviation in a very simple and fast way.

The first approach is "complicate" in practice, even if theoretically feasible, since for the rally point scoring system this is equivalent to solve a linear system with 1254 equations or, which is equivalent, define and invert a 1254 square matrix, while for the side-out scoring system these numbers fall to 510 .

The second approach is much easier and one can obtain the results that are summarized in the following Table, where the simulated durations of $1,000,000$ sets have been obtained for some given pairs of the parameters $\left(p_{0}, p_{1}\right)$

		p_{1}						
p_{0}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	
0.1	258.89002	142.48141	90.00662	63.61648	47.78484	37.20972	29.67830	
	(59.80855)	(36.34303)	(22.90847)	(15.94363)	(11.64220)	(8.69363)	(6.46740)	
0.2	141.33413	128.11294	93.00187	66.74642	50.00907	38.74286	30.71503	
	(36.27911)	(28.99328)	(22.69687)	(16.88541)	(12.52573)	(9.37190)	(6.99569)	
0.3	88.87538	91.99717	84.42871	67.93844	52.37300	40.64645	32.03526	
	(22.90984)	(22.77603)	(18.73650)	(15.90992)	(13.03704)	(10.14068)	(7.64992)	
0.4	62.53499	65.47384	67.00376	62.46464	52.90798	42.52611	33.67196	
	(15.92535)	(16.93181)	(16.11341)	(13.65832)	(12.06242)	(10.40962)	(8.32781)	
0.5	46.68319	48.76056	51.06549	51.95234	49.13692	42.86594	35.23850	
	(11.64442)	(12.49328)	(13.13281)	(12.30704)	(10.68072)	(9.62438)	(8.52962)	
0.6	36.11113	37.49909	39.23885	41.08895	41.84133	40.05917	35.53665	
	(8.69699)	(9.35017)	$(10.14523)(10.55737)$	(9.92346)	(8.76973)	(7.98580)		
0.7	28.56746	29.46810	30.60417	32.05322	33.59113	34.41184	33.33850	
	(6.45749)	(6.97537)	(7.61331)	(8.35032)	(8.73049)	(8.34485)	(7.50407)	

p_{0}	${ }^{1}$						
	0.1	0.2	0.3	0.4	0.5	0.6	0.7
0.1	25	142.48141	90.00662	63.61648	47.78484	37.209	29.67830
	54.05265	47.80129	44.01562	41.1397	38.4466	35.77786	33
0.2	141.33413	128.11294	93.00187	66.74642	50.00907	38.74286	30.715
	48.87572	48.85170	46.35838	43.3093	40.262	37.251	34.2
0.3	88.87538	91.99717	84.42871	67	52.37	40.64645	
	44.78652	46.83601	47.0217	45.2692	42.4062	39.1165	35.71
0.4	62.53499	65.47384	67.00376	62.46464	52.907	42.52611	
	41.71137	43.79625	45.5203	45.808	44.26045	41.29	37.60288
0.5	46.68319	48.76056	51.06549	51.95234	49.13692	42.865	35.23
	38.89249	40.63788	42.65790	44.3461	44.7299	43.18093	39.8716
0.6	36.11113	37.49909	39.23885	41.08895	41.84133	40.05917	35.5
	36.11127	37.50153	39.25614	41.29776	43.08409	43.5897	.88
0.7	28.56746	29.46810	30.60417	32.05322	33.59113	34.41184	33.338
	33.33334	34.37	35	37	39	41.5	42.2

The mean durations are lower in the rally point system as long as $p_{0} \leq 0.5$ and $p_{1} \leq 0.5$.

Outside this range the mean durations are, generally higher in the rally point system (except for $p_{1}=0.6$ and $p_{0} \leq 0.4$).

Probably, this is due to the fact that, as outlined before, in the rally point system it is more probable for the weaker team to reach higher scores (and possibly win the set).

围 K. T. Lee and S. T. Chin.
Strategies to serve or receive the service in volleyball.
Math. Methods Oper. Res., 59(1):53-67, 2004.
0
Paul K. Newton and Joseph B. Keller.
Probability of winning at tennis. I. Theory and data. Stud. Appl. Math., 114(3):241-269, 2005.

目 John Simmons.
A probabilistic model of squash: strategies and applications.
J. Roy. Statist. Soc. Ser. C, 38(1):95-110, 1989.

