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Motivations
We consider SDEs with non smooth coefficients and want to prove
existence of the densities for the law of the solutions.

I SDEs driven by Levy noise with irregular coefficients in Rd :

Xt = x +

∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds (1)

with b and σ only Hölder (or even only bounded for b)  no
Malliavin calculus.
If b and σ are smooth, Malliavin calculus can be developped
(Bitcheler-Gravereaux-Jacod, 1987, Picard, 1996, ...)

I application to process used in the probabilistic representation
of the homogeneous Boltzmann equation: when d = 3, the
collision Kernel is too singular.

I develop a method to prove existence of densities without
Malliavin calculus → application to SPDEs for instance: the
application we have in mind is the 3D Navier-Stokes
equations where it is not known whether the solutions are
Malliavin differentiable.
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with b and σ only Hölder (or even only bounded for b)  no
Malliavin calculus.
If b and σ are smooth, Malliavin calculus can be developped
(Bitcheler-Gravereaux-Jacod, 1987, Picard, 1996, ...)

I application to process used in the probabilistic representation
of the homogeneous Boltzmann equation: when d = 3, the
collision Kernel is too singular.

I develop a method to prove existence of densities without
Malliavin calculus → application to SPDEs for instance: the
application we have in mind is the 3D Navier-Stokes
equations where it is not known whether the solutions are
Malliavin differentiable.



Idea of the method: the non degenerate Brownian case

Xt = x +

∫ t

0
σ(Xs)dWs +

∫ t

0
b(Xs)ds (2)

Now, W is a d-dimensional brownian motion.

1) Take ε > 0 small and define

X ε
t = Xt−ε + σ(Xt−ε)(W (t)−W (t − ε)) + εb(Xt−ε)

2) If σ is non degenerate, X ε
t has a smooth density

3) Use the fact that X ε and X are close to obtain the existence
of a density for Xt



Idea of the method: the non degenerate Brownian case

X ε
t = Xt−ε + σ(Xt−ε)(W (t)−W (t − ε)) + εb(Xt−ε)

First possibility: Use Characteristic functions (Fournier and
Printems)

E(e i〈ξ,X
ε
t 〉) = E

(
E
(
e i〈ξ,X

ε
t 〉|Ft−ε

))
= E

(
e i〈Xt−ε+εb(Xt−ε),ξ〉− ε2 |σ(Xt−ε)ξ|2

)

≤ Ce−αεξ
2

elliptic case

E(e i〈ξ,Xt ) ≤ Ce−αεξ
2

+
∣∣∣E(e i〈ξ,X

ε
t 〉 − e i〈ξ,Xt〉)

∣∣∣
≤ Ce−αεξ

2
+ |ξ|E |X ε

t − Xt |
≤ Ce−αεξ

2
+ C̃ |ξ|ε

1+γ
2

If b is bounded, σ is γ Hölder and elliptic.
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Idea of the method: the non degenerate Brownian case

E(e i〈ξ,Xt ) ≤ Ce−αεξ
2

+ C̃ |ξ|ε
1+γ
2

Take ε = (ln ξ)2

ξ2
 E(e i〈ξ,Xt ) ≤ C (ln ξ)γ+1

|ξ|γ

 If γ > 1/2 and d = 1, the characteristic function is in L2(R)
and by Plancherel, Xt has a density in L2(R).

• This can be extended to Levy processes under some conditions
but it seems impossible to extend the argument to higher spatial
dimension.
• If γ > 1/2, the method gives a little more: since |ξ|ηE(e i〈ξ,Xt ) is
in L2(R), the density has some extra regularity.
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Idea of the method: the non degenerate Brownian case
We keep the first ingredient (approximation of Xt by X ε

t ) but
instead of using the characteristic function, we go bak to the basic
idea of Malliavin: use an integration by part.
Since we do not expect to have very smooth density, we use
discrete derivatives  try to estimate:

E(ϕ(Xt + h)− ϕ(Xt)) =

∫
Rd

(ϕ(x + h)− ϕ(x))fXt (x)dx

=

∫
Rd

ϕ(x)(fXt (x − h)− fXt (x))dx .

If we are able to prove

|E(ϕ(Xt + h)− ϕ(Xt))| ≤ C‖ϕ‖∞‖h‖η.

This (formally) says that∫
Rd

|fXt (x + h)− fXt (x)|dx ≤ C‖h‖η.
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The Besov space B s
1,∞

The Besov space Bs
1,∞ can be characterized in terms of finite

differences: define

(∆1
hf )(x) = f (x + h)− f (x),

then, for s < 1,

‖f ‖Bs
1,∞

= ‖f ‖L1 + sup
|h|≤1

‖∆1
hf ‖L1
|h|s

,

is an equivalent norm of Bs
1,∞(Rd). Moreover Bs

1,∞(Rd) can be

defined as the set of L1(Rd) functions such that these quantities
are finite.
It is well know that we have s > s̃, p ∈ [1, d/(d − s̃)]:

Bs
1,∞(Rd) ⊂ B s̃

1,1(Rd) = W s̃,1(Rd) ⊂ Lp(Rd).

 fXt ∈ Bη1,∞(Rd) and thus in Lp(Rd) for some p > 1.
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Idea of the method: the non degenerate Brownian case

We again use X ε
t and write:

E(ϕ(Xt + h)− ϕ(Xt))| ≤ |E(ϕ(X ε
t + h)− ϕε(X ε

t ))|

+|E(ϕ(Xt + h)− ϕ(X ε
t + h)|

+|E(ϕ(Xt)− ϕ(X ε
t ))|

≤ C (ε−1/2‖h‖‖ϕ‖∞ + ε
η(1+γ)

2 ‖ϕ‖Cη)

≤ C‖h‖
η(1+γ)
η(1+γ)+1 ‖ϕ‖Cη

with ε = ‖h‖
2

η(1+γ)+1 .
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Idea of the method: the non degenerate Brownian case

We thus obtain the weaker inequality:

E(ϕ(Xt + h)− ϕ(Xt))| ≤ C‖h‖
η(1+γ)
η(1+γ)+1 ‖ϕ‖Cη

Since η(1+γ)
η(1+γ)+1 > η for η < γ

1+γ , we have a gain in regularity.

Lemma Let g ∈M(Rd). Assume that there are 0 < η < a < 1
and a constant K such that for all φ ∈ C η(Rd), all h ∈ Rd with
|h| ≤ 1, ∣∣∣∣∫

Rd

∆1
hφ(x)g(dx)

∣∣∣∣ ≤ K ||φ||Cη(Rd )|h|a. (3)

Then, for any γ ∈ (0, a− η), g has a density in Bγ1,∞.

 We obtain a density with Besov regularity under the
assumption γ > 0.
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Remarks

I The above argument can be slighltly improved and a Besov
regularity of order < γ can be obtained

I Also, we do not need γ > 1/2.

I The obtained regularity is low and not optimal at all ! By
PDE argument, much more regularity can be obtained.

I In the Brownian case, when σ is invertible, Girsanov formula
can be used. However, this method can be applied in
situations where Girsanov formula does not apply. For
instance if Xt is the solution of a SPDE.



Application to Lévy driven SDEs
We consider, on some filtered probability space (Ω,F , (Ft)t≥0,P),
a pure jump d-dimensional Lévy process (Zt)t≥0 with Lévy
measure m.
Denote by fZt the law of Zt and recall that for ξ ∈ Rd f̂Zt (ξ) := E[exp(i 〈ξ,Zt〉)] = exp(−tΨ(ξ)),

where Ψ(ξ) =

∫
Rd

(
1− e i〈ξ,z〉 + i 〈ξ, z〉 1I{|z|≤1}

)
m(dz).

Let (Xt)t≥0 be a (Ft)t≥0-adapted càdlàg solution to

Xt = x +

∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds.

We introduce X ε
t = Xt−ε + σ(Xt−ε)(Zt − Zt−ε) + εb(Xt−ε)

We need two ingredients:

I Prove that X ε
t has a smooth density and measure its

smoothness in terms of ε

I Estimate precisely how Xt and X ε
t are close.
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Application to Lévy driven SDEs
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∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds

X ε
t = Xt−ε + σ(Xt−ε)(Zt − Zt−ε) + εb(Xt−ε)

If σ is invertible, the smoothness of the density of X ε
t is obtained

thanks to the smoothness of Zt − Zt−ε

We consider stable like processes:

(i)∀ β ∈ [0, α),
∫
{|z|≥1} |z |

βm(dz) <∞,

(ii)∃ C > 0, ∀ a ∈ (0, 1],
∫
{|z|≤a} |z |

2m(dz) ≤ Ca2−α,

(iii) ∃ c > 0, ∃ r > 0, ∀ |ξ| ≥ r ,
∫
Rd (1− cos(〈ξ, z〉))m(dz) ≥ c |ξ|α.

 c |ξ|α ≤ < Ψ(ξ) ≤ C |ξ|α, f̂Zt decays very fast and fZt is smooth.
Schilling, Sztonyk, Wang have proved that this implies that

‖∂βfZt‖L1(Rd ) ≤ C (m)t−m/α

for |β| = m.
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σ(Xs−)dZs +

∫ t

0
b(Xs)ds

X ε
t = Xt−ε + σ(Xt−ε)(Zt − Zt−ε) + εb(Xt−ε)

We deduce that X ε
t has a density fX εt such that

‖fX εt ‖Bm
∞,1(Rd ) ≤ C (δ)‖fX εt ‖Bm

1,1(Rd ) = ‖fX εt ‖Wm,1(Rd ) ≤ C (m, δ)ε−m/α.

The Besov space Bs
1,∞ can also be characterized in terms of higher

order finite differences: define

(∆1
hf )(x) = f (x + h)− f (x),

(∆n
hf )(x) = ∆1

h(∆n−1
h f )(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f (x + jh)

then, for n integer such that s < n, we can take

‖f ‖Bs
1,∞

= ‖f ‖L1 + sup
|h|≤1

‖∆n
hf ‖L1
|h|s

.
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Application to Lévy driven SDEs

Xt = x +

∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds

X ε
t = Xt−ε + σ(Xt−ε)(Zt − Zt−ε) + εb(Xt−ε)

|E(∆n
hϕ(Xt))| ≤ |E(∆n

hϕ(X ε
t ))|+ |E(∆n

hϕ(Xt)−∆n
hϕ(X ε

t ))|
Write:

|E(∆n
hϕ(X ε

t ))| = |
∫
Rd

∆n
hϕ(x)fX εt (x)dx | = |

∫
Rd

ϕ(x)∆n
−hfX εt (x)dx |.

Then

‖fX εt ‖Bn
∞,1(Rd ) = ‖fX εt ‖L1(Rd ) + sup

|h|≤1

‖∆n
hfX εt ‖L1
|h|n−δ

≤ C (n, δ)ε−n/α.

Deduce:

|E(∆n
hϕ(Xt))| ≤ C‖ϕ‖∞ε−n/α‖h‖n + |E(∆n

hϕ(Xt)−∆n
hϕ(X ε

t ))|
≤ C‖ϕ‖∞ε−n/α‖h‖n + C‖ϕ‖CηE‖Xt − X ε

t ‖η.
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Estimate of E‖Xt − X ε
t ‖η and conclusion:

For α ∈ [1, 2), this is estimated by classical stochastic calculus:

E‖Xt − X ε
t ‖β ≤ Cβ

(
εβ(1+θ1)/α + εβ(1+θ2/α)

)
for all β ∈ (0, α). If b is θ2 Hölder (or bounded with θ2 = 0) and
σ is θ1 Hölder. Set κ = min{1 + θ1, α + θ2}  

|E(∆n
hϕ(Xt))| ≤ C‖ϕ‖Cη

(
ε−n/α‖h‖n + εηκ/α

)
≤ C‖ϕ‖Cη‖h‖λn .

with λn → κη, when n→∞.
Use a generalization of the above Lemma  Xt has a density in
Bs
1,∞ for any s < κ− 1.



Estimate of E‖Xt − X ε
t ‖η and conclusion:

I The case α ∈ (0, 1) is slightly more complicated:
X ε
t = Xt−ε + σ(Xt−ε)(Zt − Zt−ε) + εb(Xt−ε) is not a good

approximation of Xt .
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∫
‖z‖≤1 zm(dz), b̃(x) = b(x)− σ(x)

∫
‖z‖≤1 zm(dz)

and rewrite the equation as

Xt = x +

∫ t

0
σ(Xs−)dYs +

∫ t

0
b̃(Xs)ds

I We take V ε
t which satisfies

V ε
t = Xt−ε +

∫ t

t−ε
b̃(V ε

s )ds
and set

X ε
t = V ε

t + σ(Xt−ε)(Yt − Yt−ε)
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t ‖β ≤ Cβ

(
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Estimate of E‖Xt − X ε
t ‖η and conclusion:

We again have: X ε
t = V ε

t + σ(Xt−ε)(Yt − Yt−ε) with V ε
t which is

Ft−ε-measurable and such that, for β < α,

E‖Xt − X ε
t ‖β ≤ Cβ

(
εβ(1/α+θ1) + εβ(1+θ2/α) + εβ/(1−θ2)

)
Similar argument as in the case α ∈ [1, 2) give a density in Bs

1,∞
for any s < (κ− 1)α.



Refinement when σ is not invertible everywhere:
Write:∣∣∣∣E( ∆n

hφ(Xt)

|σ−1(Xt)|

)∣∣∣∣ ≤ ∣∣∣∣E(∆n
hφ(Xt)

[
1

|σ−1(Xt)|
− 1

|σ−1(Xt−ε)|

])∣∣∣∣
+

∣∣∣∣E([∆n
hφ(Xt)−∆n

hφ(X ε
t )]

1

|σ−1(Xt−ε)|

)∣∣∣∣
+

∣∣∣∣E([∆n
hφ(X ε

t )]
1

|σ−1(Xt−ε)|

)∣∣∣∣ .
Since

E
(

∆n
hφ(Xt)

|σ−1(Xt)|

)
=

∫
Rd

∆n
hφ(x)

1

|σ−1(x)|
fxt (dx)

Use the same ideas to obtain that fXt (dx)/|σ−1(x)| has a density
in a Besov space.

This shows that fXt has a density on the set
{x ∈ Rd : σ(x) is invertible}.
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The result for α ∈ [1, 2):

Let σ : Rd 7→ Md×d(R) and b : Rd 7→ Rd be measurable and
bounded. Consider a (Ft)t≥0-adapted càdlàg solution (Xt)t≥0 to

Xt = x +

∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds

where (Zt)t≥0 is a Lévy process with Lévy measure m satisfying
(Hα) for some α ∈ [1, 2).
Assume that σ ∈ C θ1(Rd) for some θ1 ∈ (0, 1), that b is
measurable (then set θ2 = 0) or that b ∈ C θ2(Rd) for some
θ2 ∈ (0, 1) and that κ = min{1 + θ1, α + θ2} > 1.
Then for all t > 0, the law fXt of Xt has a density on the set
{y ∈ Rd : σ(y) invertible}. Furthermore, for all γ ∈ (0, κ− 1),
|σ−1|−1fXt ∈ Bγ1,∞(Rd).



The result for α ∈ (0, 1):

Let σ : Rd 7→ Md×d(R) and b : Rd 7→ Rd be measurable and
bounded. Consider a (Ft)t≥0-adapted càdlàg solution (Xt)t≥0 to

Xt = x +

∫ t

0
σ(Xs−)dZs +

∫ t

0
b(Xs)ds

where (Zt)t≥0 is a Lévy process with Lévy measure m satisfying
(Hα) for some α ∈ (0, 1).
Assume that σ ∈ C θ1(Rd) for some θ1 ∈ (0, 1), that b̃ ∈ C θ2(Rd)
for some θ2 ∈ (1− α, 1), where
b̃(x) := b(x)− σ(x)

∫
{|z|≤1} zm(dz) is the true drift coefficient and

set κ = min{1 + αθ1, α + θ2, α/(1− θ2)} > 1.
Then for all t > 0, the law fXt of Xt has a density on the set
{y ∈ Rd : σ(y) invertible}. Furthermore, for all γ ∈ (0, (κ− 1)α),
|σ−1|−1fXt ∈ Bγ1,∞(Rd).



Comments on the assumptions on m:
We have assumed

(i) ∀ β ∈ [0, α),
∫
{|z|≥1} |z |

βm(dz) <∞,

(ii)∃ C > 0, ∀ a ∈ (0, 1],
∫
{|z|≤a} |z |

2m(dz) ≤ Ca2−α,

(iii) ∃ c > 0, ∃ r > 0, ∀ |ξ| ≥ r ,
∫
Rd (1− cos(〈ξ, z〉))m(dz) ≥ c |ξ|α.

I (iii) is equivalent to ∃ c > 0, ∀a ∈ (0, 1], ∀|ζ| = 1:∫
{|z|≤a}

〈ζ, z〉2m(dz) ≥ ca2−α.

I This can be satisfies by very rough measures. For instance:

m(A) =

∫ ∞
0

µ(dr)

∫
Sd−1

1A(rσ)λ(dσ)

for λ nonnegative finite measure on Sd−1 whose support
contains a basis of Rd and µ =

∑
n≥1 n

α−1δ1/n
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Comments on the assumptions on m:
We have assumed

(i) ∀ β ∈ [0, α),
∫
{|z|≥1} |z |

βm(dz) <∞,

(ii)∃ C > 0, ∀ a ∈ (0, 1],
∫
{|z|≤a} |z |

2m(dz) ≤ Ca2−α,

(iii) ∃ c > 0, ∃ r > 0, ∀ |ξ| ≥ r ,
∫
Rd (1− cos(〈ξ, z〉))m(dz) ≥ c |ξ|α.

I If we consider a α-stable process (Yt)t≥0 with α ∈ (1, 2), f̂Yt (ξ) := E[exp(i 〈ξ,Yt〉)] = exp(−tΨ(ξ)),

where Ψ(ξ) =

∫
Rd

(
1− e i〈ξ,z〉 + i 〈ξ, z〉

)
m(dz),

where m(A) =
∫∞
0 r−α−1dr

∫
Sd−1 1IA(rσ)λ(dσ), (Hα)-(i)-(ii)

clearly hold. If the support of λ contains a basis of Rd , then
(Hα)-(iii) is also OK.

I Zt = Yt − t
∫
‖x‖≥1 xm(dx) satisfies all our assumptions.
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Comments on the assumptions on m:

We have assumed

(i) ∀ β ∈ [0, α),
∫
{|z|≥1} |z |

βm(dz) <∞,

(ii)∃ C > 0, ∀ a ∈ (0, 1],
∫
{|z|≤a} |z |

2m(dz) ≤ Ca2−α,

(iii) ∃ c > 0, ∃ r > 0, ∀ |ξ| ≥ r ,
∫
Rd (1− cos(〈ξ, z〉))m(dz) ≥ c |ξ|α.

I (i) is not essential and can be replaced by∫
{|z|≥1}

m(dz) <∞.

The conclusion is the same: existence of a density where σ is
invertible but we loose the Besov smoothness



Comments on the assumptions on m:

We have assumed

(i) ∀ β ∈ [0, α),
∫
{|z|≥1} |z |

βm(dz) <∞,

(ii)∃ C > 0, ∀ a ∈ (0, 1],
∫
{|z|≤a} |z |

2m(dz) ≤ Ca2−α,

(iii) ∃ c > 0, ∃ r > 0, ∀ |ξ| ≥ r ,
∫
Rd (1− cos(〈ξ, z〉))m(dz) ≥ c |ξ|α.

I It would more satisfactory to prove a result with (ii) and (iii)
satisfied with possibly different values of α. This could be
studied but the computations would be much longer.



The stochastic Navier-Stokes equations in dimension 3

Let u, p be the velocity and pressure of an incompressible fluid in a
domain O:

du + (−ν∆u +∇p + (u · ∇)u)dt = fdt + dη, t ≥ 0, x ∈ O,
div u = 0, t ≥ 0, x ∈ O,
u = 0, on ∂O,
u(0) = u0, x ∈ O.

I ν is the viscosity and we take it equal to 1.

I The exterior forcing has two component. A deterministic one
f , we take f = 0 and a random one of white noise type:
η = Q1/2

∑
i∈N βiei = Q1/2W .

I The covariance operator describres the spatial smoothness of
the noise



The stochastic Navier-Stokes equations in dimension 3

Let u, p be the velocity and pressure of an incompressible fluid in a
domain O:

du + (−ν∆u +∇p + (u · ∇)u)dt = fdt + dW , t ≥ 0, x ∈ O,
div u = 0, t ≥ 0, x ∈ O,
u = 0, on ∂O,
u(0) = u0, x ∈ O.

I Project the equation on H = {u ∈ (L2(O))3; div u = 0}.
I Define A = ∆u, D(A) = H2(O) ∩ H1

0 (0) ∩ H.

I P is the projector onto H and b(u) = P.

→ 
du = (Au + b(u))dt +

√
QdW ,

u(0) = u0 ∈ H.



The stochastic Navier-Stokes equations in dimension 3
du = (Au + b(u))dt +

√
QdW ),

u(0) = u0 ∈ H.

I The noise is supposed to be sufficiently smooth: Tr Q <∞
and existence of weak martingale solutions is classical.

I It is difficult to go beyond this except for very non degenerate
noises.

I Since no Lebesgue measure exist in infinite dimension, a
natural idea is to prove existence of a density for the law of
the solutions with respect to the gaussian measure invariant
for the linear equation

I open problem. Very difficult, even for d = 2

I Try to prove that finite dimensional projections of u have
densities with respect to the Lebesgue measure.
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The stochastic Navier-Stokes equations in dimension 3
du = (Au + b(u))dt +

√
QdW ,

u(0) = u0 ∈ H.

I It seems difficult to use Malliavin calculus. Indeed
Dh
s u(t) = η(t) where η is the solution of

d

dt
η = Aη + b′(u) · η,

η(0) =
√
Qh.

I We have no control on the Malliavin derivative of u.

I If the noise is sufficiently non degenerate, it is possible to use
Malliavin on a truncated form of the Navier-Stokes equation
and to obtain densities for the finite dimensional projections.

I Can we obtain something for degenerate noise ?



The stochastic Navier-Stokes equations in dimension 3
du = (Au + b(u))dt +

√
QdW ,

u(0) = u0 ∈ H.

I Let F be a finite dimensional subspace of H and πF be the
projector onto F .

I uF = πFu satisfies duF = (AuF + πFb(u))dt + πF
√
QdW

(assume for simplicity that πF , A, Q commute).
I We investigate the quantity:∫

F
∆h

nϕ(z)dνF (z) = E(∆h
nϕ(πFu(1)))

I Introduce uε:
uε(t) = u(t), t ≤ 1− ε,

(I − πF )uε(t) = (I − πF )u(t), t ≥ 1− ε,

dπFu
ε = πFAu

ε + πF
√
QdW , t ≥ 1− ε.
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I Since E(|πFb(u)|) is bounded. It is easy to check that
E(|πFu(1)− πFuε(1)|) ≤ C1ε.
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We then write, assuming that kerQ = {0}:

E(∆h
nϕ(u(1))) = E(∆h

nϕ(u(1))−∆h
nϕ(uε(1)))

+E(∆h
nϕ(uε(1) + h)−∆h

nϕ(uε(1)))

≤ |ϕ|Cα(F )E(|πF (u(1)− uε(1)|)α

+CF ,Q‖ϕ‖∞|h|n ε−n/2

≤ Cα1 |ϕ|Cα(F )εα + C2‖ϕ‖∞|h|n ε−n/2

≤ C4|ϕ|Cα(F )|h|
2αn
2α+n

for ε = |h|
2n

2α+n . We deduce that u(1) has a density in Bs
1,∞(F ) for

s < 2αn
2α+n − α→ α when n→∞.
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Theorem: Consider the stochastic Navier-Stokes equations,
assume that ker Q = {0} then for any finite dimensional space
F ⊂ H and any solution u of the martingale problem (limit of
some Galerkin approximation), πFu(1) has a density with respect
to the Lebesgue measure in Bγ1,∞(F ) for any γ < 1 and in Lp(F )
for any 1 ≤ p < d/d − 1.
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A stationary solution has more regularity property (Flandoli &
Romito):

E
(
|∇uS |2

)
<∞

This allow to improve the approximation of u by uε:

uε(1) = eεAu(1− ε) +

∫ 1

1−ε
eA(1−s)b(eA(s−1+ε)u(1− ε))ds

+

∫ 1

1−ε
eA(1−s)

√
QdW (s)

We can prove
Theorem: Consider the stochastic Navier-Stokes equations,
assume that ker Q = {0} then for any finite dimensional space
F ⊂ H and any stationary solution u of the martingale problem
(limit of some Galerkin approximation), πFu(1) has a density with
respect to the Lebesgue measure in Bγ1,∞(F ) for any γ < 2 and in

W 1,p(F ) for any 1 ≤ p < d/d − 1or in Lp(F ) for any
1 ≤ p < d/d − 2.
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Remark
• This together with a result of Shirikyan implies that the densities
are positive.
• Can we extend this result to the hypoelliptic case ?
• Can we obtain more regularity ?


