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Asset Price Process

• A random behavior of the asset price is modeled by a positive

adapted stochastic process X defined on a filtered probability

space (Ω,F , {Ft} ,P∗).

• It is assumed that the following conditions hold:

1. For every t > 0, the stock price Xt is an unbounded random

variable.

2. E∗ [Xt] <∞, t > 0.

3. X0 = x0 P∗-a.s. for some x0 > 0.

4. P∗ is a risk-free measure. This means that the discounted

stock price process {e−rtXt}t≥0 is a martingale. Here r ≥ 0

is the interest rate.
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Pricing Functions

• The pricing function for a European call option at time t = 0 is

defined by

C(T,K) = e−rTE∗
[
(XT −K)+

]

where K > 0 is the strike price and T > 0 is the maturity.

• The pricing function for a European put option at time t is de-

fined by

P (T,K) = e−rTE∗
[
(K −XT )+

]
.

• The functions C and P satisfy the put-call parity condition

C(T,K) = P (T,K) + x0 − e−rTK.
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Black-Scholes Call Pricing Function

• In the Black-Scholes model, the stock price process is a geometric

Brownian motion, satisfying the following stochastic differential

equation:

dXt = rXtdt + σXtdW
∗
t ,

where r ≥ 0 is the interest rate, σ > 0 is the volatility of the

stock, and W ∗ is a standard Brownian motion under the risk-free

measure P∗.

• The stock price process X in the Black-Scholes model is given

by

Xt = x0 exp

{(
r − σ2

2

)
t + σW ∗

t

}

where x0 > 0 is the initial price.
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• Black and Scholes found an explicit formula for the pricing func-

tion CBS:

CBS (T,K, σ) = x0N (d1(K, σ))−Ke−rTN (d2(K, σ)) ,

where

d1(K, σ) =
log x0 − logK +

(
r + 1

2σ
2
)
T

σ
√
T

,

d2(K, σ) = d1(K, σ)− σ
√
T ,

and

N(z) =
1√
2π

∫ z

−∞
exp

{
−y

2

2

}
dy.

Implied Volatility

Let C be a call pricing function. The implied volatility

I = I(T,K), (T,K) ∈ (0,∞)2,

associated with the pricing function C, is a function of two variables

satisfying the following condition:

CBS(T,K, I(T,K)) = C(T,K).
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Asymptotic Behavior of the Implied Volatility

• Let C be a call pricing function, and let C̃ be a positive function

such that

C̃(K) ≈ C(K)

as K →∞. Then

√
TI(K) =

√
2 logK + 2 log

1

C̃(K)
− log log

1

C̃(K)

−
√

2 log
1

C̃(K)
− log log

1

C̃(K)

+ O

(log
1

C̃(K)

)−1
2


as K →∞.

• The previous formula was obtained in [5]. This formula was

generalized in an important recent paper [4] of K. Gao and R.

Lee.
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A Sketch of the Proof of the Asymptotic Formula

• First, we prove the following proposition. Let C be a call pric-

ing function, and fix a positive continuous increasing function

ψ, satisfying ψ(K) → ∞ as K → ∞. Suppose φ is a positive

function such that φ(K)→∞ as K →∞ and

C(K) ≈ ψ(K)

φ(K)
exp

{
−φ(K)2

2

}
.

Then we have

I(K) =
1√
T

(√
2 log

K

x0erT
+ φ(K)2 − φ(K)

)

+ O

(
ψ(K)

φ(K)

)

as K →∞.
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• To establish the previous statement, we first show that for every

function Ĩ such that

0 < Ĩ(K) < I(K), K > K0,

the following asymptotic formula holds:

I(K) = Ĩ(K) + O

(
C(K) exp

{
1

2
d1

(
K, Ĩ(K)

)2})

as K →∞.

• The choice of Ĩ. The function Ĩ is determined from the equality

d1
(
K, Ĩ(K)

)
= −φ(K), K > K0.

Such a function exists, since for large values of K the function

σ 7→ d1(K, σ) increases from −∞ to ∞.

• Explicit formula for the function Ĩ:

Ĩ(K) =
1√
T

(√
2 log

K

x0erT
+ φ(K)2 − φ(K)

)
.
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• Prove that the function Ĩ defined above satisfies

Ĩ(K) ≤ I(K)

for K > K0, and use the asymptotic formula relating I and Ĩ

to establish the statement formulated above.

• To prove the asymptotic formula for the implied volatility, we

choose the function φ as follows:

φ(K) =

[
2 log

1

C(K)
− log log

1

C(K)
+ 2 logψ(K)

]1
2

.

• It is not hard to check that if the function φ is defined by the

previous formula, then the condition in the proposition formu-

lated above holds. Using this proposition and the mean value

theorem, and getting rid of the function ψ in the error term, we

obtain the asymptotic formula for the implied volatility.
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• Let C be a call pricing function, and let P be the corresponding

put pricing function. Suppose that

P (K) ≈ P̃ (K)

as K → 0, where P̃ is a positive function. Then the follow-

ing asymptotic formula holds:

√
TI(K) =

√
2 log

1

P̃ (K)
− log log

K

P̃ (K)

−
√

2 log
K

P̃ (K)
− log log

K

P̃ (K)

+ O

(log
K

P̃ (K)

)−1
2



as K → 0.
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• Using the mean value theorem, we see that for any call pricing

function C,

√
TI(K) =

√
2 logK + 2 log

1

C(K)
−

√
2 log

1

C(K)

+ O

((
log

1

C(K)

)−1
2

log log
1

C(K)

)

as K →∞. Moreover,

√
TI(K) =

√
2 log

1

P (K)
−

√
2 log

K

P (K)

+ O

((
log

K

P (K)

)−1
2

log log
K

P (K)

)

as K → 0.
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Lee’s Moment Formulas

The theorems formulated below were obtained by R. Lee (see [10]).

• Let I be the implied volatility associated with a call pricing func-

tion C. Define a number p̃ by

p̃ = sup
{
p ≥ 0 : E∗

[
X1+p
T

]
<∞

}
.

Then the following equality holds:

lim sup
K→∞

TI(K)2

logK
= ψ(p̃)

where the function ψ is given by

ψ(u) = 2− 4
(√

u2 + u− u
)
, u ≥ 0.
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• Let I be the implied volatility associated with a call pricing func-

tion C. Define a number q̃ by

q̃ = sup
{
q ≥ 0 : E

[
X−qT

]
<∞

}
.

Then the following formula holds:

lim sup
K→0

TI(K)2

log 1
K

= ψ(q̃).

• Lee’s moment formulas characterize the behavior of the implied

volatility for large and small strikes in terms of the critical orders

at which the moments of the stock price distribution explode.

An asset price model admits exploding moments if p̃ < ∞
and q̃ < ∞. The model does not have exploding moments if

p̃ = q̃ =∞.

• The moment formulas can be derived from sharp asymptotic

formulas for the implied volatility formulated above (see [5]).
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Regularly Varying Functions

• Let α ∈ R, and let f be a positive function defined on some

neighborhood of infinity. The function f is called regularly vary-

ing with index α if for every λ > 0,

f (λx)

f (x)
→ λα

as x→∞. The class consisting of all regularly varying functions

with index α is denoted by Rα. Functions belonging to the class

R0 are called slowly varying.

• Let α ∈ R, and let f be a positive function defined on some

neighborhood of infinity. The function f is called smoothly vary-

ing with index α if the function

h(x) = log f (ex)

is infinitely differentiable and the following conditions hold as

x→∞:

h′(x)→ α, h(n)(x)→ 0 for all integers n ≥ 2.
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• An equivalent definition of the class SRα is as follows:

f ∈ SRα ⇔ lim
x→∞

xnf (n)(x)

f (x)
= α(α− 1) . . . (α− n + 1)

for all n ≥ 1.

• The following are examples of smoothly varying functions with

index 0:

(log x)a, a ∈ R;

(log log x)a, a ∈ R;

exp
{

(log x)b
}
, b < 1.

It can be shown that all smoothly varying functions with index

0 are slowly varying.
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Tail-Wing Formulas of Benaim and Friz

Asymptotic formulas found by Benaim and Friz (see [1]) provide a

link between the behavior of the implied volatility at extreme strikes

and the tail behavior of the distribution of the stock price. Such for-

mulas are called tail-wing formulas. We will next formulate some of

the results obtained by Benaim and Friz, adapting these results our

notation. It is assumed that the stock price XT satisfies the following

condition:

E∗
[
X1+ε
T

]
<∞ for some ε > 0.

Call pricing function – implied volatility

Suppose that

C(K) = exp {−η(logK)}

with η ∈ Rα, α > 0. Then

I(K) ∼
√

logK√
T

√
ψ

(
−logC(K)

logK

)
as K →∞, where

ψ(u) = 2− 4
(√

u2 + u− u
)
.
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Complementary distribution function – implied volatility

Let F̄T be the complementary distribution function of the stock price

XT given by

F̄T (y) = P∗ (XT > y) ,

and suppose that

F̄T (y) = exp {−ρ(log y)}

with ρ ∈ Rα, α > 0. Then

I(K) ∼
√

logK√
T

√
ψ

(
−log[Kρ(K)]

logK

)
as K →∞.

Stock price density – implied volatility

If the distribution µT of the stock price XT admits a density DT ,

and if

DT (x) =
1

x
exp {−h(log x)}

as x→∞, where h ∈ Rα, α > 0, then

I(K) ∼
√

logK√
T

√
ψ

(
−log[K2DT (K)]

logK

)
as K →∞.

17



Tail-Wing Formulas. Improvements

• The following formula is equivalent to one of the sharp asymp-

totic formulas for the implied volatility formulated above:

I(K) =

√
logK√
T

√
ψ

(
−logC(K)

logK

)

+ O

((
log

1

C(K)

)−1
2

log log
1

C(K)

)

as K →∞.

• The previous formula is stronger than a similar formula obtained

by Benaim and Friz. Note that there are no restrictions on the

call pricing function in the previous formula, and an error term

is included.

• The tail-wing formulas due to Benaim and Friz do not contain

error terms. We will next discuss tail-wing formulas with error

estimates. Smoothly varying functions play an important role in

this discussion.
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Tail-wing formulas with error estimates

• Let C be a call pricing function and let F̄ be the complementary

distribution function of the stock price XT . Suppose that

F̄ (y) ≈ exp {−ρ(log y)}

as y → ∞, where ρ is a function such that either ρ ∈ SRα

with α > 1, or ρ ∈ SR1 and λ(u) = ρ(u) − u ∈ Rβ for some

0 < β ≤ 1. Then

I(K) =

√
2√
T

(√
ρ(logK)−

√
ρ(logK)− logK

)

+ O

(
log [ρ(logK)]√

ρ(logK)

)

as K →∞.
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• Let C be a call pricing function and let DT be the distribution

density of the stock price XT . Suppose that

DT (x) ≈ 1

x
exp {−h(log x)}

as x → ∞, where h is a function such that either h ∈ SRα

with α > 1, or h ∈ SR1 and g(u) = h(u)− u ∈ SRβ for some

0 < β ≤ 1. Then

I(K) =

√
2√
T

(√
h(logK)−

√
h(logK)− logK

)

+ O

(
log [h(logK)]√

h(logK)

)

as K →∞.
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Special Stochastic Volatility Models

Heston model.

• The stock price process S and the variance process Y in the He-

ston model satisfy the following system of stochastic differential

equations:


dSt = µStdt +

√
YtStdWt

dYt = q (m− Yt) dt + c
√
YtdZt,

where q ≥ 0, m ≥ 0, c > 0, and standard Brownian motions W

and Z are such that

d〈W,Z〉t = ρdt with ρ ∈ [−1, 1].

The initial conditions for the processes X and Y are denoted

by x0 and y0, respectively. The variance process in the Heston

model is called the Cox-Ingersoll-Ross process (the Feller pro-

cess).

• In terms of the log-price process X = logS and the variance

process Y , the Heston model can be rewritten as follows:

{
dXt =

(
µ− 1

2Yt
)
dt +

√
YtdWt

dYt = q (m− Yt) dt + c
√
YtdZt.
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• For every t > 0, the following formula holds for the distribu-

tion density Dt of the stock price Xt in the Heston model with

−1 < ρ ≤ 0:

Dt(x) = A1x
−A3eA2

√
log x (log x)

−3
4+

a
c2

(
1 + O((log x)−

1
2)
)

as x→∞.

• The previous formula was obtained in the case where ρ = 0 in a

joint paper [9] of E. M. Stein and A. G. This result was extended

to the correlated Heston model by P. Friz, S. Gerhold, S. Sturm,

and A. G. (see [3]).
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Stein-Stein model.

• In the absence of correlation between the stock price and the

volatility process, the Stein-Stein model can be considered in

the following two forms:


dXt = µXtdt + YtXtdWt

dYt = q (m− Yt) dt + σdZt,

or


dXt = µXtdt + |Yt|XtdWt

dYt = q (m− Yt) dt + σdZt,

where q ≥ 0, m ≥ 0, and σ > 0.

• The volatility process in the first of the previous models is the

Ornstein-Uhlenbeck process, while in the second model the pro-

cess |Y | is used to model the volatility. It is known that the

marginal distributions of the stock price process in both models

coincide. In the presence of correlation, it is more popular to

consider the Stein-Stein model with Y instead of |Y |.
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• LetDT be the stock price density in the Stein-Stein model. Then

DT (x) = B1x
−B3eB2

√
log x (log x)−

1
2
(
1 + O((log x)−

1
2)
)

as x→∞.

• The previous formula was obtained for the uncorrelated Stein-

Stein model by E. M. Stein and A. G. (see [9]). For the correlated

model with the long-run mean m equal to zero, the formula

follows from the asymptotic formula for the Heston density. In

the case where m 6= 0 in the correlated Stein-Stein model, the

formula also holds. This was shown in a recent paper of J.-D.

Deuschel, P. Friz, A. Jacquier, and S. Violante (see [2]).

Asymptotic behavior of the implied volatility

• Fix the maturity T and consider the implied volatility as a func-

tion k 7→ Î(k) of the log-strike k = logK.

24



• Heston model. The following asymptotic formula holds for the

implied volatility in the Heston model:

Î(k) = β1k
1
2 + β2 + β3

log k

k
1
2

+ O

(
1

k
1
2

)

as k → ∞, where the constants β1, β2, and β3 depend on T

and on the model parameters.

• Stein-Stein model. The following asymptotic formula holds for

the implied volatility in the Stein-Stein model:

Î(k) = γ1k
1
2 + γ2 + O

(
1

k
1
2

)

as k → ∞, where the constants γ1 and γ2 depend on T and

on the model parameters.

• The previous formulas can be strengthened, using the recent

results obtained in [4].
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Models without Moment Explosions

• Suppose that a stochastic model is such that all moments of the

stock price are finite. Then Lee’s moment formulas do not char-

acterize the asymptotic behavior of the implied volatility. How-

ever, our general formulas can be applied to stock price models

without moment explosions. The following statements hold (see

[6]):

1. Let C̃ be a positive function such that

C̃(K) ≈ C(K) as K →∞.

Suppose also that p̃ =∞. Then

I(K) =
1√
2T

logK√
log 1

C̃(K)

+ O

 (logK)2(
log 1

C̃(K)

)3
2


+ O

 1√
log 1

C̃(K)



as K →∞.
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2. Suppose that

P (K) ≈ P̃ (K) as K → 0

where P̃ is a positive function. Suppose also that q̃ = ∞.

Then

I(K) =
1√
2T

log 1
K√

log K

P̃ (K)

+ O

 (log 1
K )2(

log K

P̃ (K)

)3
2


+ O

 1√
log K

P̃ (K)


as K → 0.

Examples

• Constant Elasticity of Variance Model. The asset price pro-

cess in the CEV model obeys the stochastic differential equation

dSt = σSρt dWt.

We assume that 0 < ρ < 1 and σ > 0. For the CEV model

we have p̃ = ∞ and q̃ = 2(1 − ρ). Hence, the behavior of the

implied volatility as K → 0 is regular, while the case K → ∞
is characterized by a nonstandard behavior.
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• The following formulas hold for the implied volatility in the CEV

model:

I(K) = σ(1− ρ)
logK

K1−ρ + O

(
1

K1−ρ

)
as K →∞, and

√
T√
2
I(K) =

√
(3− 2ρ) log

1

K
− 1

2
log log

1

K

−
√

(2− 2ρ) log
1

K
− 1

2
log log

1

K
+ O

((
log

1

K

)−1
2

)
as K → 0.

• Rubinstein’s Displaced Diffusion Model. The displaced diffu-

sion model was introduced by M. Rubinstein. The stock price

process in this model is a convex combination of a risky asset

following a driftless geometric Brownian motion and a riskless

asset. If the interest rate satisfies r = 0, then the stock price

process S in Rubinstein’s model is given by

St = S0

[
η exp

{
−1

2
σ2t + σWt

}
+ (1− η)

]
where 0 ≤ η ≤ 1, S0 > 0 is the initial price, and σ > 0 is the

volatility parameter.

28



• In a more general displaced diffusion model, the stock price pro-

cess is the solution to the following stochastic differential equa-

tion:

dSt = σ (St + a) dWt, S0 = s0 a.s.

where s0 > 0, σ > 0, and a 6= 0. It follows that the process

Xt = St + a is a driftless geometric Brownian motion with the

volatility equal to σ and the initial condition given by x0 = s0+a.

It follows that

St = (s0 + a) exp

{
−1

2
σ2t + σWt

}
− a.

• Since we are considerimg only nonnegative stock price processes,

it is natural to suppose that a < 0 and s0 > |a|. Then the

process S coincides with the stock price process in Rubinstein’s

model with

S0 = s0 and η =
s0 + a

s0
.

• Let I be the implied volatility in the displaced diffusion model

with a < 0 and s0 > |a|. Then

I(K) = σ + O

(
log logK

logK

)
as K →∞.
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• Finite Moment Log-Stable Model of Carr and Wu. In this

model, α-stable Lévy processes with skew parameter β = −1

are used in stochastic modeling of log-returns associated with

the spot levels of S&P 500 index.

• The index level S in the finite moment log-stable model satisfies

the following stochastic differential equation:

dSt = St

(
rdt + σdLα,−1t

)
,

where 1 < α < 2, σ > 0, and r > 0 is the interest rate. The pro-

cess Lα,−1 driving the equation is the Lévy process such that the

random variable Lα,−1t is distributed according to the α-stable

law Lα

(
0, t

1
α ,−1

)
.

• The following formulas hold for the implied volatility in the finite

moment log-stable model:

I(K) =
(σα)

α
2(α−1)T

1−α
2α√

2(α− 1)
(logK)

− 2−α
2(α−1) + O

(
(logK)

− α
2(α−1)

)
as K →∞, and

√
T√
2
I(K) =

√
log

1

K
+ α log log

1

K
− 1

2
log log log

1

K

−
√
α log log

1

K
− 1

2
log log log

1

K
+ O

((
log log

1

K

)−1
2

)
as K → 0.
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• SV1 Model of Rogers and Veraart. This model was suggested

by L. Rogers and L. Veraart as a less complicated alternative to

SABR model. The asset price in SV1 model is given by

X = X(1)X(2),

where

X
(1)
t = σ

2
γ
t , X

(2)
t = z

1
γ
t , t > 0,

and the processes σ and z solve the following stochastic differ-

ential equations:

dσt = ησtdBt

and

dzt = (a1 − a2zt) dt + 2σ
√
ztdWt.

• Assumptions: B and W are independent standard Brownian

motions, η > 0 is fixed, the interest rate r is equal to zero,

1 ≤ γ < 2, a1 = 2(γ − 1)γ−1, and a2 = (2 − γ)η2γ−1. It was

established in the paper of Rogers and Veraart that if the param-

eters are chosen as above, then the process X is a martingale.
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• Let K 7→ I(K) be the implied volatility in the SV1 model. Then

the following asymptotic formulas hold:

I(K) ∼ 2ηγ−1 as K →∞ (1)

and

I(K) ∼
(

2

T

)1
2
√

log
1

K
(2)

as K → 0.

Piterbarg’s Conjecture

• Let X be a stock price process for which p̃ < ∞ and q̃ < ∞.

Then, as we already know, a typical behavior of the implied

volatility near infinity is described by the function

K 7→ c1
√

logK

and near zero by the function

c2

√
log

1

K
.

However, if p̃ = ∞ or q̃ = ∞, then the class of approximating

functions is wider.
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• Piterbarg’s conjecture (see [11]).

Let w be a positive increasing function on (0,∞) satisfying

w(y)→∞ as y →∞ and such that the limit

M = lim
y→∞

w(y)

log y

exists (finite or infinite). Put

p̃w = sup {p ≥ 0 : E∗ [exp {pw (XT )}] <∞} .

Then, under the condition p̃ =∞,

lim sup
K→∞

I(K)
√
w(K)

logK
=

1√
2T p̃w

• Remark: Our notation is different from that in Piterbarg’s pa-

per.
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• A modification. We modify the formula conjectured by Piter-

barg as follows. Let C ∈ PF∞ be a call pricing function, and

suppose p̃ =∞. Then

lim sup
K→∞

I(K)
√
w(K)

logK
=

1√
2T p̂w

.

where

p̂w = sup

{
p ≥ 0 : E∗

[∫ XT

0

epw(y)dy

]
<∞

}
,

• Statement. The modified formula always holds.
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