3D geostatistical modelling of clastic lithological distributions at the urban area of Girona city (NE Catalonia) for the assessment of the shallow geothermal potential

Author:

Julian Engels

Tutors:

Ignasi Herms (ICGC), Enrique Gómez-Rivas (UB) and Georgina Arnó (ICGC)

Thesis for the Master's degree Reservoir Geology and Geophysics

Academic year: 2020 - 2021

UB - UAB

Abstract

3D modelling of the lithology distribution in a reservoir is an important step before approaching

the realization of FMH (Flow, Mass and Heat transport) models. For the assessment of the shalbw

geothermal energy (SGE) potential, it is important to know the distribution of the lithology since the

hydraulic and thermal properties depend on it. The main objective of this research is to study

through the use of 3D geostatistical modelling tools, their distribution in the Neogene and

Quaternary aguifers of the study area located in the urban area of the city of Girona (NE Catalonia,

Spain). This information will help to determine the most p romising and interesting areas t o

implement shallow geothermal exploitation schemes. To address the objectives, two approaches

have been used.

The first approach is b ased on the traditional variogram-based geostatistical methods.

Among the differentavailable geostatistical algorithms, the SISIM (Sequential Indicator SIMulation)

within the SGeMS software (Remy, 2005) for simulating the lithological spatial distribution was

selected.

The second approach is based on the transition probability geostatistical simulation

methods. To address it, the open source R package "spMC" for 3D lithological reconstructions

based on spatial Markov chains (Sartore, 2013) was selected within the RStudio desktop graphical

user interface version 1.2.5033 (RStudio Team, 2020).

Based on the results obtained from both approaches, further analysis could be undertaken to

identify the most promising areas to implement OLS or CLS.

Keywords: shallow geothermal energy, stochastic modelling, OLS, CLS, SGeMS, SISIM, spMC

1