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Introduction

Data fusion strategies for Multivariate Statistical Process Control (MSPC) combining diverse NIR-derived information or with other sensors were explored through real process examples. The first process is a real-time
monitoring of a fluidized bed drying process of wet pharmaceutical granules. Temperature at three points of the process and NIR spectra of pharmaceutical granules were monitored in-line, while samples were collected
to determine moisture content by off-line reference methods in order to build PLS models. A PCA-based MSPC model for end-point detection was built with process end-point NIR spectra. Combination of temperature
readings, PLS predictions of moisture and the output of MSPC model based on the sole NIR information where used to build data fusion end-point detection MSPC. The second process is a lab-scale distillation process.
Here, temperature, recovered distillation fraction and NIR spectra were acquired simultaneously. NIR data from several batches were first decomposed by multivariate curve resolution - alternating least squares (MCR-
ALS). MCR-ALS compressed the original NIR data into concentration profiles of distilled fractions which were combined by mid-level data fusion with distillation temperature measurements to build on-line MSPC models
for process trajectory monitoring. In all examples, NIR compressed information was separated into the part following the model (based on T2 in PCA or concentration profiles in MCR) and out of it, i.e., residuals. Fusion is
defined in a wide sense, as connecting information of different sensors or parameter-specific and general information from the same sensor.
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Experimental and methods
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PLS model was built with NIR spectra and reference moisture
content measured from off-line samples.

MSPC/Sole NIR was built with spectra collected at the end of
dried batches.
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* The mid-level data fusion matrix with the combination of outputs
from different multivariate models requires variable scaling to be
further used in the data fusion based end-point MSPC.

* DF/MSPC end-point model was built with a data fusion matrix

output from dried batches.
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* MCR-ALS was built with a column-
wise augmented multiset matrix
using NIR spectra from 9 on-
specification gasoline distillation
batches.

* The recovered spectral, ST, matrix
was used to predict new batches
distillation C-profiles.

Mid-level data fusion was performed combining the recovered fraction
wt%, temperature readings and four MCR-ALS distillation C-profile.
Autoscaling was required to balance the input of the DF/on-line MSPC
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In the data fusion approach all
available output were used as input
to the end-point MSPC model.
Observations before reaching the
end-point have Q,, value more
clearly different and higher than
the control limit.

The data fusion approach allowed
clear detection of end-point.
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- On-line MSPC for process
evolution monitoring strategy
was successfully applied with
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information.

- Off-specification situation
was detected early in the data
fusion on-line MSPC control
charts when compared to
distillation temperature curve.

Conclusions

v’ MSPC models built using data fusion strategies allow providing a single answer on the performance of a process taking advantage of all the gathered information by the different sensors (or models) involved in process
monitoring.
v" The use of this richer information generally helps to provide clearer conclusions on off-specification situations in batch monitoring and a more accurate end-point detection that takes into account all sensor outputs
and the natural correlation that should exist among them.
v' The data fusion strategies presented in this work offer at the same time a general framework in terms of model building methodology and an extreme adaptability to the many diverse combinations of information that
can arise due to the variability in nature and key properties to be controlled in the different processes of interest.
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