The activities developed can be named Development of Advanced Micro and Nanosystems. They cover from basic science (physics, chemistry, materials and nanoscience) to applied and technological topics (applied physics, engineering, micro and nanofabrication), always focusing on addressing specific societal problems. The three main topics are described briefly in the following:
1) Fabrication of advanced nanomaterials, their integration into nanodevices and the development of nanosystems for gas sensing applications. This is supported by a project financed by MINECO (TEC2016-76898-C6-2-R). This activity has a focus on the fabrication of crystalline metal oxide nanowires (NWs) for their use in gas sensing. A second aspect and to avoid the transfer of the NWs to the microhotplates (MHP) of the final chip, a new route has been set-up that allows the site-selective growth of the NWs directly on top of the MHP. It consists in modifying the classical vapor-liquid-solid growth method. Furthermore, this methodology has allowed growing different NWs onto different MHPs of the same chip. The different gas sensing pattern has allowed this chip to constitute a nano-electronic-nose, which provides gas discrimination and quantification.
2) Development of a nanosystem for the assessment of mechanical stresses in living tissues, started in an Explora project (TEC2014-62144-EXP). This is a truly interdisciplinary work, developed together with scientists from the department of Genetics of UB and nanobiotechnologists from the Technical University of Denmark, aiming at developing a system that allows continuous monitoring the stresses of the tissues under disease conditions.
3) Development of ultra low power gas sensors, targeting improvements 3 orders of magnitude better than the state-of-the-art (i.e. a reduction from ~10mW down to ~10W). This has been achieved by means of miniaturization and integration of the sensor materials with microLED devices, that supply the energy needed to activate the gas-surface interactions needed to trigger a response to gases in a much more energy efficient way, compared to the standard heat-based devices and compared to previous much bulkier implementations based on large LEDs. This activity has been carried out in close cooperation with the Technical University of Braunschweig and the Institut de Microelectrònica de Barcelona (IMB-CNM-CSIC), that provide GaN foundry services within the ERC Starting Grant “BetterSense” project.
Blas Garrido Fernández (Full Professor) blas.garrido(at)ub.edu
Albert Cirera Hernández (Full Professor) acirera(at)ub.edu
Juan Daniel Prades Garcia (Full Professor) dprades(at)ub.edu
Albert Romano Rodríguez (Full Professor)
albert.romano(at)ub.edu
Sergio Hernández Márquez (Full Professor)
Paolo Pellegrino (Associate Professor)
Daniel Navarro Urrios (Associate Professor)
Cristian Fàbrega Gallego (Associate Professor)
Olga Casals Guillén (Tenure-Track Lecturer)
Giovanni Vescio (Postdoctoral Researcher)
Francisco Palacio Bonet (Postdoctoral Researcher)
Júlia Marí Guaita (Postdoctoral Researcher)
Guillem Domènech Gil (Postdoctoral Researcher Marie Sklodowska-Curie)
David Alonso Tomás (Predoctoral Researcher)
Joshua Diago Forero (Predoctoral Researcher)
Ignasi Fort Grandas (Predoctoral Researcher)
Yuzelfy Mendoza Gamero (Predoctoral Researcher)
Francisco de P. Hernandez Ramirez (Collaborator)
Anna Estany Macià (Technician)
Back-compatible Color QR Codes for colorimetric applications. Benito-Altamirano I.; Martínez-Carpena D.; Casals O.; Fábrega C.; Waag A.; Prades J.D. 2023, Pattern Recognition, 133, 108981. Doi: 10.1016/j.patcog.2022.108981
Highly sensitive SnO2 nanowire network gas sensors. Domènech-Gil G.; Samà J.; Fàbrega C.; Gràcia I.; Cané C.; Barth S.; Romano-Rodríguez A. 2023, Sensors and Actuators B: Chemical, 383. Doi: 133545 10.1016/j.snb.2023.133545
Contactless characterization of the elastic properties of glass microspheres. Maire J.; Necio T.; Chávez-Ángel E.; Colombano M.F.; Jaramillo-Fernández J.; Sotomayor-Torres C.M.; Capuj N.E.; Navarro-Urrios D. 2023, APL Materials, 11, 4, 041128. Doi: 10.1063/5.0146969
Unidirectional Synchronization of Silicon Optomechanical Nanobeam Oscillators by External Feedback. Alonso-Tomás D.; Capuj N.E.; Mercadé L.; Griol A.; Martínez A.; Navarro-Urrios D. 2023, ACS Photonics. Doi: 10.1021/acsphotonics.3c01397
Fully Inkjet-Printed Green-Emitting PEDOT:PSS/NiO/Colloidal CsPbBr3/SnO2 Perovskite Light-Emitting Diode on Rigid and Flexible Substrates. Vescio G.; Mathiazhagan G.; González-Torres S.; Sanchez-Diaz J.; Villaueva-Antolí A.; Sánchez R.S.; Gualdrón–Reyes A.F.; Oszajca M.; Linardi F.; Hauser A.; Vinocour-Pacheco F.A.; Żuraw W.; Öz S.; Hernández S.; Mora-Seró I.; Cirera A.; Garrido B. 2023, Advanced Engineering Materials, 25, 21, 2300927. Doi: 10.1002/adem.202300927
Automatic electrocardiogram detection and classification using bidirectional long short-term memory network improved by Bayesian optimization. Li H., Lin Z., An Z., Zuo S., Zhu W., Zhang Z., Mu Y., Cao L., Prades García J.D. Biomedical Signal Processing and Control 73, 103424, 2022
2D PEA2SnI4Inkjet-Printed Halide Perovskite LEDs on Rigid and Flexible Substrates. Vescio G., Sanchez-Diaz J., Frieiro J.L., Sánchez R.S., Hernández S., Cirera A., Mora-Seró I., Garrido B. ACS Energy Letters, 7, 10, 3653, 2022
High Quality Inkjet Printed-Emissive Nanocrystalline Perovskite CsPbBr3 Layers for Color Conversion Layer and LEDs Applications. Vescio G., Frieiro J.L., Gualdrón-Reyes A.F., Hernández S., Mora-Seró I., Garrido B., Cirera A. Advanced Materials Technologies, 7, 7, 2101525, 2022
Visible-Light-Driven Room Temperature NO2 Gas Sensor Based on Localized Surface Plasmon Resonance: The Case of Gold Nanoparticle Decorated Zinc Oxide Nanorods (ZnO NRs). Qomaruddin, Casals O., Wasisto H.S., Waag A., Prades J.D., Fàbrega C. Chemosensors, 10, 1, 28, 2022.
Fabrication, characterization and performance of low power gas sensors based on (Gax in1‐x )2 o3 nanowires. López‐Aymerich E., Domènech‐gil G., Moreno M., Pellegrino P., Romano‐rodriguez A. Sensors. 2021, 21, 10, 3342
Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Engel L., Benito-Altamirano I., Tarantik K.R., Pannek C., Dold M., Prades J.D., Wöllenstein J. Sensors and Actuators, B: Chemical. 2021, 330, 129281
Plasmon expedited response time and enhanced response in gold nanoparticles-decorated zinc oxide nanowire-based nitrogen dioxide gas sensor at room temperature. Kim D.W., Park K.H., Lee S.-H., Fàbrega C., Prades J.D., Jang J.-W. Journal of Colloid and Interface Science, 2021. 582
Hybrid liquid crystalline zinc phthalocyanine@Cu2O nanowires for NO2 sensor application. Sisman O., Kilinc N., Akkus U.O., Sama J., Romano-Rodriguez A., Atilla D., Gürek A.G., Ahsen V., Berber S., Ozturk Z.Z. Sensors and Actuators, B: Chemical. 2021, 345, 130431
Dielectric function of vanadium oxide thin films by thermal annealing. Canillas A., Guell F., Arteaga O., Martinez-Alanis P.R., Vergnat M., Rinnert H., Garrido B. Applied Optics. 2021, 60, 15
The structural, electronic, and optical properties of GE/SI quantum wells: Lasing at a wavelength of 1550 NM. Li H., Wang J., Bai J., Zhang S., Zhang S., Sun Y., Dou Q., Ding M., Wang Y., Qu D., Du J., Tang C., Li E., Prades J.D. Nanomaterials. 2020, 10(5)
Toward RGB LEDs based on rare earth-doped ZnO. Frieiro J.L., Guillaume C., López-Vidrier J., Blázquez O., González-Torres S., Labbé C., Hernández S., Portier X., Garrido B. Nanotechnology. 2020, 31(46).
Electron beam lithography for contacting single nanowires on non-flat suspended substrates. Samà J., Domènech-Gil G., Gràcia I., Borrisé X., Cané C., Barth S., Steib F., Waag A., Prades J.D., Romano-Rodríguez A. Sensors and Actuators, B: Chemical. 2019, 286.
How to implement a selective colorimetric gas sensor with off the shelf components?. Driau C., Fàbrega C., Benito-Altamirano I., Pfeiffer P., Casals O., Li H., Prades J.D. Sensors and Actuators, B: Chemical. 2019, 293.
Tecnologías disruptivas para LEDs y Displays basadas en impresión Inkjet de perovskitas libres de plomo. PID2022-140978OB-I00. IP: Albert Cirera Hernández. Ministerio de Ciencia e Innovación (2023-2026)
Integrated thermo-optically activated Nanosensors for environmental monitoring (Nano4E). IP: Juan Daniel Prades Garcia. The Austrian Research Promotion Agency (FFG) (2023-2026)
Towards ALL-optical sEnsinG and signal pRocessing using cavity and moleculaR Optomechanics. TED2021-132040B-C21. IP1: Daniel Navarro Urrios/IP2: Albert Romano Rodríguez. Convocatoria 2021 de ayudas a Proyectos estratégicos orientados a la transición ecológica y a la transición digital. Ministerio de Ciencia e Innovación (MICINN) (2022-2024)
Colorimetric Indoor Air Quality Sensors (ColorIndS). INNOTEC. ACE034/21/000057. IP: Cristian Fàbrega Gallego. Convocatòria per a l’any 2021 de la línia de subvencions per a la realització de projectes de recerca industrial i desenvolupament experimental entre empreses catalanes i desenvolupadors de tecnologia acreditatsTECNIO (projectes INNOTEC) (2022-2024)
Computación en Memoria en soporte flexible: una tecnología disruptiva para el empoderamiento ciudadano. TED2021-129643B-I00. IP1: Albert Cirera Hernández/IP2: Sergi Hernández Márquez. Convocatoria 2021 de ayudas a Proyectos estratégicos orientados a la transición ecológica y a la transición digital. Ministerio de Ciencia e Innovación (MICINN) (2022-2024)
Continuous two-dimensional Stretch monitoring of fresh tissue Biopsies (StretchBio). H2020 FET-OPEN. IP: Albert Romano Rodríguez (2021-2025)
A user-friendly approach to widespread gas monitoring (Stick-n-Sense). (ERC-2020-PoC). IP: Prades García, Juan Daniel. (2021-2022)
DRop-on demand flexible Optoelectronics & Photovoltaics by means of Lead-Free halide perovskITes (DROP-IT). (H2020-FETOPEN-2018-2019-2020-01). IP: Garrido Fernández, Blas. (2019-2022)
Nanodevice Engineering for a Better Chemical Gas Sensing Technology (BetterSense). (ERC-SG – ERC Starting Grant). IP: Prades García, Juan Daniel. (2014-2019)
Innovación tecnológica en micro y nanosensores para monitorización de calidad de aire y control medioambiental. TEC2016-79898-C6-2-R. Ministerio de Economia y Competitividad. IP: Romano Rodríguez, Albert. (2017-2020)
Research Center: Technical University of Denmark (DTU)
Group leader: Winnie E. Svendsen
City: Lyngby (Denmark)
Research Center: Goethe University of Frankfurt
Group leader: Sven Barth
City: Frankfurt (Germany)
Research Center: Albrechts-Ludwig Universität Freiburg
Group leader: Jürgen Wöllenstein
City: Freiburg im Breisgau (Germany)
Research Center: TU Braunschweig
Group leader: Andreas Waag
City: Braunschweig (Germany)