Chern degree functions

Andrés Rojas

Universitat de Barcelona - Universität Bonn

Jornadas de Jóvenes Doctores en Geometría Algebraica

(Joint work with Martí Lahoz)

- 1. [Cohomological rank functions on abelian varieties](#page-2-0)
- 2. [Stability conditions](#page-6-0)
- 3. [Chern degree functions](#page-9-0)
- 4. [Applications to abelian surfaces](#page-12-0)

1. Cohomological rank functions on abelian varieties

 (A, L) polarized abelian variety, $g = \dim A$

 $\bf{Jiang\hbox{-}Parsechi:}$ Given $\it{F} \in \mathrm{D^b}(A)$ and $\it{i} \in \mathbb{Z}$, define $\it{h}^i_{F,L} : \mathbb{Q} \to \mathbb{Q}_{\geq 0}$ such that

$$
h^i_{F,L}(x)^{u} = "h^i(A, F \otimes L^x \otimes \alpha), \text{ for general } \alpha \in \text{Pic}^0(A)
$$

Concretely: if $x = \frac{a}{b}$ $\frac{a}{b} \in \mathbb{Q}$, then

$$
h^i_{F,L}(x) := \frac{1}{b^{2g}} \cdot h^i(A, \mu_b^* F \otimes L^{ab} \otimes \alpha), \text{ for general } \alpha \in \text{Pic}^0(A)
$$

where $\mu_b : A \rightarrow A$ is the multiplication-by-*b* isogeny.

The number $h_{F,L}^i(x)$ is well defined.

Theorem (Jiang-Pareschi)

1. The functions are given by polynomials in the neighborhood of every rational number: For every $x_0 \in \mathbb{Q}$, there exists $\epsilon > 0$ and polynomials $P_{x_0}^+, P_{x_0}^-$ such that

$$
h_{F,L}^i(x)=P_{x_0}^-(x) \quad \text{if } x\in (x_0-\epsilon,x_0]\cap\mathbb{Q}
$$

$$
h_{F,L}^i(x)=P_{x_0}^+(x) \quad \text{if } x\in [x_0,x_0+\epsilon)\cap\mathbb{Q}
$$

2. $h_{\digamma,L}^i$ extends to a continuous function $h_{\digamma,L}^i:\mathbb{R}\to\mathbb{R}_{\geq0}$

These results do not imply that cohomological rank functions are piecewise polynomial!

Example 1: Elliptic curves

Let E be an elliptic curve, $F \in \text{Coh}(E)$.

• If F is μ -semistable, then

$$
h_{F,L}^0(x) = \begin{cases} 0 & \chi_{F,L}(x) \le 0\\ \chi_{F,L}(x) = \text{rk } F \cdot x + \text{deg } F & \chi_{F,L}(x) \ge 0 \end{cases}
$$

• More generally, the Harder-Narasimhan filtration

$$
0=F_0\hookrightarrow F_1\hookrightarrow \ldots \hookrightarrow F_r=F
$$

determines $h_{\digamma,L}^0$ and $h_{\digamma,L}^1$.

Example 2: Ideal sheaf of one point

$$
g = \dim A \ge 2, \quad T_0 = \text{ideal sheaf of } 0 \in A, \quad d = h^0(L)
$$

$$
h_{F,L}^{0}(x) = \begin{cases} 0 & x \leq 0 \\ 7? & 0 \leq x \leq 1 \\ x_{\mathcal{I}_0,L}(x) = dx^{g} - 1 & x \geq 1 \end{cases}, \quad h_{F,L}^{1}(x) = \begin{cases} 1 & x \leq 0 \\ 7? & 0 \leq x \leq 1 \\ 0 & x \geq 1 \end{cases}
$$

The number $\eta(L):=\inf\{x\in\mathbb{Q}\mid h^1_{\mathcal{I}_0,L}(x)=0\}$ is an interesting invariant:

\n- Jiang-Pareschi:
$$
\eta(L) = 1 \Longleftrightarrow L
$$
 has base points $\eta(L) < \frac{1}{2} \Longrightarrow L$ is projectively normal.
\n

 \bullet Caucci: $\eta(L) < \frac{1}{p+2} \Longrightarrow L$ satisfies the property (\mathcal{N}_ρ)

(Ito: Also for $\eta(L)=\frac{1}{p+2}$, if $h_{\mathcal{I}_0,L}^1$ is of class $\mathcal{C}^1)$

2. Stability conditions

Classically: Mumford (for curves), Takemoto, Gieseker,...

Bridgeland: Define stability in the derived category $\mathrm{D}^{\mathrm{b}}(X)$ $(X$ smooth projective variety)

Definition

A *Bridgeland stability condition* on $\mathrm{D}^{\mathrm{b}}(X)$ is a pair $\sigma=(\mathcal{A},\mu)$, where:

- 1. ${\mathcal{A}}$ is the heart of a bounded t-structure on $\mathrm{D}^{\mathrm{b}}(X)$
- 2. $\mu = \frac{D}{R}$ $\frac{D}{R}$ is a slope for objects of ${\cal A}$, such that:
	- D , R are additive for short exact sequences in A
	- $R(E) \ge 0$ for every $E \in \mathcal{A} \setminus \{0\}$, and $R(E) = 0 \Longrightarrow D(E) > 0$
	- Every $E \in \mathcal{A} \setminus \{0\}$ admits a Harder-Narasimhan filtration
- 3. Support property (technical condition)

2. Stability conditions

Classically: Mumford (for curves), Takemoto, Gieseker,...

Bridgeland: Define stability in the derived category $\mathrm{D}^{\mathrm{b}}(X)$ $(X$ smooth projective variety)

Definition

A *Bridgeland (resp. weak) stability condition* on $\mathrm{D}^{\mathrm{b}}(X)$ is a pair $\sigma=(\mathcal{A},\mu)$, where:

- 1. ${\mathcal{A}}$ is the heart of a bounded t-structure on $\mathrm{D}^{\mathrm{b}}(X)$
- 2. $\mu = \frac{D}{R}$ $\frac{D}{R}$ is a slope for objects of \mathcal{A} , such that:
	- D, R are additive for short exact sequences in A
	- $R(E) \ge 0$ for every $E \in \mathcal{A} \setminus \{0\}$, and $R(E) = 0 \Longrightarrow D(E) > 0$ (resp. $D(E) \ge 0$)
	- Every $E \in \mathcal{A} \setminus \{0\}$ admits a Harder-Narasimhan filtration
- 3. Support property (technical condition)

Example: Classical slope-stability is a weak stability condition.

The (α, β) -plane

 (X, L) smooth polarized surface

 (α, β) -plane of stability conditions: $\sigma_{\alpha,\beta} = (\text{Coh}^{\beta} X, \nu_{\alpha,\beta})$ for $(\alpha, \beta) \in \mathbb{R}_{>0} \times \mathbb{R}$

• If $\beta \in \mathbb{R}$.

$$
\operatorname{Coh}^{\beta} X := \{ E \in \operatorname{D}^{\operatorname{b}}(X) \mid \mathcal{H}^{i}(E) = 0 \text{ for } i \neq 0, -1, \ \mu_{+}(\mathcal{H}^{-1}(E)) \leq \beta, \ \mu_{-}(\mathcal{H}^{0}(E)) > \beta \}
$$
\n
$$
\bullet \ \nu_{\alpha,\beta}(E) = \frac{\operatorname{ch}_{2}(E \otimes L^{-\beta}) - \frac{\alpha^{2}}{2} L^{2} \cdot \operatorname{ch}_{0}(E)}{L \cdot \operatorname{ch}_{1}(E \otimes L^{-\beta})}
$$

Bridgeland, Arcara-Bertram: $\sigma_{\alpha,\beta} = (\text{Coh}^{\beta} X, \nu_{\alpha,\beta})$ is a Bridgeland stability condition for every $(\alpha, \beta) \in \mathbb{R}_{>0} \times \mathbb{R}$

Important: When $\alpha = 0$ and $\beta \in \mathbb{Q}$, $\sigma_{0,\beta}$ is a WEAK stability condition.

3. Chern degree functions

 (X, L) smooth polarized surface

 $\mathcal{F}\in \mathrm{D}^{\mathrm{b}}(X),\ k\in \mathbb{Z} \leadsto \mathsf{Define}\ \mathsf{chd}^k_{\mathcal{F},L}:\mathbb{Q}\to \mathbb{Q}_{\geq 0}$

Let $x \in \mathbb{O}$, and set $\beta = -x$.

 \bullet If $F\in \mathsf{Coh}^{\beta}(X)$ has HN filtration $0=F_0\hookrightarrow F_1\hookrightarrow...\hookrightarrow F_s\hookrightarrow...\hookrightarrow F_r=F$ with respect to $\sigma_{0.\beta}$,

$$
\mathsf{chd}_{\mathsf{F},\mathsf{L}}^0(-\beta) := \mathsf{ch}_2(\mathsf{F}_\mathsf{s} \otimes \mathsf{L}^{-\beta}), \quad \mathsf{chd}_{\mathsf{F},\mathsf{L}}^1(-\beta) := \mathsf{ch}_2(\mathsf{F}/\mathsf{F}_\mathsf{s} \otimes \mathsf{L}^{-\beta}),
$$

$$
\mathsf{chd}_{\mathsf{F},\mathsf{L}}^k(-\beta) = 0 \text{ for } k \neq 0,1
$$

 $\bullet\,$ For arbitrary $F\in{\rm D}^{\rm b}(X),$ use the "partition" of F into pieces of $\mathsf{Coh}^{\beta}(X)$:

$$
\mathsf{chd}_{\mathcal{F},L}^k(-\beta):=\mathsf{chd}_{\mathcal{H}_\beta^k(\mathcal{F}),L}^0(-\beta)+\mathsf{chd}_{\mathcal{H}_\beta^{k-1}(\mathcal{F}),L}^1(-\beta)
$$

"Cohomological" properties:

•
$$
\sum_{k\in\mathbb{Z}} (-1)^k \cdot \text{chd}_{F,L}^k(x) = \text{ch}_2(F \otimes L^x) \text{ for every } x \in \mathbb{Q}
$$

- Serre vanishing
- Serre duality
- \bullet Under certain assumptions, chd 0 is non-decreasing and chd 1 is non-increasing

Theorem

Given an object $F \in D^b(X)$ and $k \in \mathbb{Z}$:

- 1. Every rational number $x_0 \in \mathbb{Q}$ admits a left (resp. right) neighborhood where the function $\mathsf{chd}^k_{E,L}$ is given by a polynomial P^- (resp. $P^+)$ depending on $\mathsf{x}_0.$
- 2. $\mathsf{chd}^k_{E,L}$ extends to a continuous function $\mathsf{chd}^k_{E,L}:\mathbb{R}\to\mathbb{R}_{\geq 0}$

Again, these results do not imply that Chern degree functions are piecewise polynomial!

Theorem

Let $\beta_0 \in \mathbb{Q}$ and $F \in \text{Coh}^{\beta_0} X$. Then:

 $\mathsf{chd}^0_{\mathsf{F},L},\;\mathsf{chd}^1_{\mathsf{F},L}$ are not of class \mathcal{C}^1 at $\,-\,\beta_0 \Longleftrightarrow \mathsf{F}$ has a HN factor with $\nu_{0,\beta_0}=0$

Theorem

If (X, L) is a polarized abelian surface, then for every $F \in \mathrm{D}^{\mathrm{b}}(X)$ and $k \in \mathbb{Z}$

$$
\mathsf{chd}_{\mathsf{F},\mathsf{L}}^k=h_{\mathsf{F},\mathsf{L}}^k
$$

Analogy with the case of elliptic curves:

- \bullet Heart whose objects only have functions h^0 and $h^1.$
- For stable objects of the heart only one of the functions survives.
- The HN filtration breaks the function into smaller pieces (LOCALLY)

 (X, L) polarized abelian surface of type $(1, d) \; (\Longrightarrow d = h^0(L))$, $\; NS(X) \cong \mathbb{Z} \cdot [L]$ We want to compute the cohomological rank functions of \mathcal{I}_0

- $\bullet\,{\rm \; }{\mathcal I}_0 \in \mathsf{Coh}^{\beta}(X)$ for every $\beta < 0$
- $\bullet\;\: \mathcal{I}_0\in\mathsf{Coh}^{\beta}(X)$ is $\sigma_{\alpha,\beta}$ -semistable for all $\beta< 0, \alpha\gg 0$
- $\bullet\,$ Possible walls for ${\cal I}_0\longleftrightarrow$ Positive solutions to $x^2-4dy^2=1$

Theorem

1. If d is a perfect square, then

$$
h_{\mathcal{I}_0,L}^0(x) = \begin{cases} 0 & x \leq \frac{\sqrt{d}}{d} \\ dx^2 - 1 & x \geq \frac{\sqrt{d}}{d} \end{cases}
$$

2. If d is not a perfect square, then $\eta(L) \in \{\frac{2y_0}{x_0-1}, \frac{2y_1}{x_1-1}\}$ $\frac{2y_1}{x_1-1}$ } where (x_0, y_0) and (x_1, y_1) are the two smallest positive solutions to $x^2 - 4dy^2 = 1$. Furthermore, $h_{\mathcal{I}_0,L}^0$ is of class \mathcal{C}^1 everywhere.

Corollary

Let (X, L) be a polarized abelian surface of type $(1, d)$, such that $NS(X) \cong \mathbb{Z} \cdot [L]$.

1. If $d > 7$, then L is projectively normal.

2. If $p\geq 1$ and $d>(p+2)^2$, then L satisfies the property (N_p) .

Gracias!