Leaps of the integrability (in the sense of Hasse-Schmidt)

María de la Paz Tirado Hernández

Universidad de Sevilla

04/11/2021

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-68-0) $04/11/2021$ 1/19

4 0 1

重

 299

イロト イ部 トイミト イミト

Proposition (Seidenberg '66)

Let A be a noetherian domain containing the rational numbers. Let us denote Σ its fraction field and we consider $\delta \in \text{Der}(\Sigma)$. If $\delta \in \text{Der}(A)$, then $\delta \in \mathrm{Der}\left(\overline{A}\right)$.

Proposition (Seidenberg '66)

Let A be a noetherian domain containing the rational numbers. Let us denote Σ its fraction field and we consider $\delta \in \text{Der}(\Sigma)$. If $\delta \in \text{Der}(A)$, then $\delta \in \mathrm{Der}\left(\overline{A}\right)$.

Proposition

If A is a local complete domain of characteristic 0 and k is a coefficient field of A, then rank($\mathrm{Der}_k(A)$) $\leq \dim A$.

Proposition (Seidenberg '66)

Let A be a noetherian domain of characteristic $p > 0$. Let us denote Σ its fraction field and we consider $\delta \in \mathrm{IDer}_k(\Sigma)$. If $\delta \in \mathrm{IDer}(A)$, then $\delta \in \mathrm{IDer}(\overline{A}).$

Proposition (Molinelli '77)

If A is a local complete domain of characteristic $p > 0$ and k is a coefficient field of A, then rank($\text{IDer}_k(A)$) $\leq \dim A$.

2 [Introduction to the Hasse-Schmidt derivations](#page-5-0)

B. K. K.

 4 ロ \rightarrow 4 \overline{m} \rightarrow \rightarrow

È

 299

Let k be a commutative ring and A commutative k -algebra.

 \equiv +

٠ \rightarrow \sim

4 ロ ▶ 4 何 ▶

È

 299

Let k be a commutative ring and A commutative k -algebra.

Definition

A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length $m \ge 1$ (resp. of length ∞) is a sequence $D := (D_0, D_1, \ldots, D_m)$ (resp. $D = (D_0, D_1, ...)$) of k-linear maps $D_r : A \rightarrow A$, satisfying the conditions:

$$
D_0 = \text{Id}_A
$$
, $D_r(xy) = \sum_{i+j=r} D_i(x)D_j(y)$

for all $x, y \in A$ and for all r. We write $\text{HS}_k(A; m)$ (resp. $\text{HS}_k(A)$) for the set of HS-derivations of A (over k) of length m (resp. ∞).

つへへ

Let k be a commutative ring and A commutative k -algebra.

Definition

A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length $m \ge 1$ (resp. of length ∞) is a sequence $D := (D_0, D_1, \ldots, D_m)$ (resp. $D = (D_0, D_1, ...)$) of k-linear maps $D_r : A \rightarrow A$, satisfying the conditions:

$$
D_0 = \text{Id}_A
$$
, $D_r(xy) = \sum_{i+j=r} D_i(x)D_j(y)$

for all $x, y \in A$ and for all r. We write $\text{HS}_k(A; m)$ (resp. $\text{HS}_k(A)$) for the set of HS-derivations of A (over k) of length m (resp. ∞).

 $Der_k(A) \equiv HS_k(A;1)$

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-0-0) 104/11/2021 5/19

[Introduction](#page-5-0)

Examples

重

 299

イロト イ部 トイミト イミト

Examples

If $\mathbb{Q} \subseteq k$ and $\delta \in \mathrm{Der}_k(A)$, then $(\delta^i/i!)_{i \geq 0} \in \mathrm{HS}_k(A)$.

(Biri)

4 何 下

4 **E** F

 299

Examples

If $\mathbb{Q} \subseteq k$ and $\delta \in \mathrm{Der}_k(A)$, then $(\delta^i/i!)_{i \geq 0} \in \mathrm{HS}_k(A)$.

j

• Let us consider $A = k[x_1, \ldots, x_d]$. The Taylor differential operators $\Delta^{(\alpha)}:A\rightarrow A, \ \alpha\in{\mathbb N}^d,$ are defined by

$$
f(x_1 + T_1, \dots, x_d + T_d) = \sum_{\alpha \in \mathbb{N}^d} \Delta^{(\alpha)}(f) T^{\alpha} \quad \forall f \in A
$$

$$
\text{Then, } \Delta_j=(\Delta^{(0,\ldots, \overbrace{i}^j,\ldots,0)})_{i\geq 0}\in \text{HS}_k(A) \text{ for all } j=1,\ldots, d.
$$

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathrm{End}_k(A)[\![\mu]\!]_m$.

4 **EL F**

 \leftarrow \leftarrow \leftarrow

Þ

 299

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)[\![\mu]\!]_m)$.

4 **E** F

 \leftarrow \leftarrow \leftarrow

Þ

 299

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)[\![\mu]\!]_m)$.

The set $\text{HS}_k(A; m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}.$

4 **EL F**

- 1 冊 →

Þ

 $2Q$

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)[\![\mu]\!]_m)$.

The set $\text{HS}_k(A; m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}.$

If $D, D' \in \text{HS}_k(A; m)$, $D'' = D \circ D' \in \text{HS}_k(A; m)$ such that

$$
D''_r = \sum_{i+j=r} D_i \circ D'_j
$$

and the identity is $\mathbb{I} = (\text{Id}, 0, \dots, 0) \in \text{HS}_k(A; m)$.

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)[\![\mu]\!]_m)$.

The set $\text{HS}_k(A; m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}.$

If $D, D' \in \text{HS}_k(A; m)$, $D'' = D \circ D' \in \text{HS}_k(A; m)$ such that

$$
D''_r = \sum_{i+j=r} D_i \circ D'_j
$$

and the identity is $\mathbb{I} = (\text{Id}, 0, \dots, 0) \in \text{HS}_k(A; m)$.

The map $\delta \in \mathrm{Der}_k(A) \mapsto (\mathrm{Id}, \delta) \in \mathrm{HS}_k(A; 1)$ is a group isomorphism.

Alternative definition

È

 299

イロト イ部 トイヨ トイヨト

Alternative definition

Let us denote

$$
\operatorname{Hom}_{k-\text{alg}}^{\circ}(A, A[\![\mu]\!]_m) :=
$$

$$
\{f \in \operatorname{Hom}_{k-\text{alg}}(A, A[\![\mu]\!]_m) \mid f(x) \equiv x \mod \mu \,\,\forall x \in A\}
$$

イロト イ部 トイヨ トイヨト

 $2Q$

Alternative definition

Let us denote

$$
\operatorname{Hom}_{k-\text{alg}}^{\circ}(A, A[\![\mu]\!]_m) :=
$$

$$
\{f \in \operatorname{Hom}_{k-\text{alg}}(A, A[\![\mu]\!]_m) \mid f(x) \equiv x \mod \mu \,\,\forall x \in A\}
$$

The map

$$
\begin{array}{ccc}\n\text{HS}_k(A; m) & \to & \text{Hom}_{k-\text{alg}}^{\circ}(A, A[\![\mu]\!]_m) \\
D & \mapsto & \left[\varphi_D : x \in A \mapsto \sum_{i=0}^m D_i(x) \mu^i \in A[\![\mu]\!]_m \right]\n\end{array}
$$

is a group isomorphism.

(□) (/ [□])

Ξ $\,$ $\,$ \Rightarrow

 \sim

 \prec

E

 $2Q$

Substitution maps

È

 299

イロト イ部 トイヨ トイヨト

Substitution maps

Definition

An A-algebra map $\psi: A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map if ord $(\psi(\mu)) > 0$.

4 **EL F**

1 → 1 э \rightarrow 2990

Substitution maps

Definition

An A-algebra map $\psi : A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map if $ord(\psi(\mu)) > 0.$

If $\psi: A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map and $D \in \text{HS}_k(A;m)$, then $\psi \circ \varphi_D \in \text{Hom}_{k-\text{alg}}^{\circ}(A, A[\![\mu]\!]_n)$. We denote $\psi \bullet D \in \text{HS}_k(A; n)$ the HS-derivation determined by $\psi \circ \varphi_D$.

ミドマミド

K ロ ▶ K 母 ▶ K

È

 299

- Let $D \in \text{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}.$
	- For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \geq 0} \in \text{HS}_k(A; m).$

4 **EL F**

Let $D \in \text{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}.$

- For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \geq 0} \in \text{HS}_k(A; m).$
- For $1 \leq n \leq m$, $\tau_{mn} : \mu \in A[\![\mu]\!]_m \mapsto \mu \in A[\![\mu]\!]_n$. Then, $\tau_{mn}(D) = (\mathrm{Id}, D_1, \ldots, D_n).$

Let $D \in \text{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}.$

- For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \geq 0} \in \text{HS}_k(A; m).$
- For $1 \leq n \leq m$, $\tau_{mn} : \mu \in A[\![\mu]\!]_m \mapsto \mu \in A[\![\mu]\!]_n$. Then, $\tau_{mn}(D) = (\mathrm{Id}, D_1, \ldots, D_n).$
- For each integer $n \geq 1$, $\psi : \mu \in A[\![\mu]\!]_m \mapsto \mu^n \in A[\![\mu]\!]_{mn}$. Then,
 $D[n] = \psi \bullet D \subset \mathbf{HS}.$ (A: mn): $D[n] = \psi \bullet D \in \text{HS}_k(A; mn)$:

$$
D[n]_r = \begin{cases} D_{r/n} & \text{if } r = 0 \mod n \\ 0 & \text{otherwise} \end{cases}
$$

3 [Integrability in the sense of Hasse-Schmidt](#page-27-0)

ミドイヨド

K ロ ▶ K 何 ▶ K

重

 299

Definition

Let $D \in \text{HS}_k(A; m)$ where $m \in \mathbb{N} \cup \{\infty\}$ and $n \geq m$. We say that D is *n*-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $\tau_{nm}(E) = D$. Any such E will be called an n-integral of D. If D is ∞ -integrable we simply say that D is integrable.

4 **EL F**

Definition

Let $\delta \in \mathrm{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is n-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\text{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\text{IDer}_k(A) := \text{IDer}_k(A; \infty).$

4 **EL F**

Definition

Let $\delta \in \mathrm{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is n-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\text{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\text{IDer}_k(A) := \text{IDer}_k(A; \infty).$

For example:

• If $char(k) = 0$, then $Der_k(A) = IDer_k(A; \infty)$.

Definition

Let $\delta \in \mathrm{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is n-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\text{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\text{IDer}_k(A) := \text{IDer}_k(A; \infty).$

For example:

- If $char(k) = 0$, then $Der_k(A) = IDer_k(A; \infty)$.
- If $A = k[x_1, \ldots, x_d]$, then $\text{Der}_k(A) = \text{IDer}_k(A; \infty)$.

Definition

Let $\delta \in \mathrm{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is n-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\text{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\text{IDer}_k(A) := \text{IDer}_k(A; \infty).$

For example:

• If
$$
char(k) = 0
$$
, then $Der_k(A) = IDer_k(A; \infty)$.

• If $A = k[x_1, \ldots, x_d]$, then $Der_k(A) = IDer_k(A; \infty)$.

Theorem (H. Matsumura (1986))

If A is 0-smooth over k , then any Hasse-Schmidt derivation of length $m < \infty$ is ∞ -integrable.

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-0-0) 19/11/2021 12/19

Þ

[Integrability](#page-27-0)

Properties

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-0-0) 1994/11/2021 13/19

イロト イ部 トイモト イモト

 299

重

Proposition (L.Narváez Macarro, MPTH., (2021))

 $\text{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}.$

 $2Q$

→ 何 ▶ → ヨ ▶ → ヨ ▶

4 **EL F**

Proposition (L.Narváez Macarro, MPTH., (2021))

$\text{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}$. If $char(k) = p > 0$, then $\text{IDer}_k(A; n)$ is restricted $\forall n \in \mathbb{N}$.

 QQ

イロト イ押ト イヨト イヨト

Proposition (L.Narváez Macarro, MPTH., (2021))

 $\text{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup {\infty}$. If $char(k) = p > 0$, then $\text{IDer}_k(A; n)$ is restricted $\forall n \in \mathbb{N}$.

Proposition (L. Narváez Macarro (2012))

If A is a finitely presented k-algebra, $n \in \mathbb{N}$ and $\delta \in \text{Der}_k(A)$. Then $\delta \in \mathrm{IDer}_k(A; n)$ iff $\delta_{\mathfrak{p}} \in \mathrm{IDer}_k(A_{\mathfrak{p}}; n)$ $\forall \mathfrak{p} \in \mathrm{Spec}(A)$.

イロト イ母 トイヨ トイヨ トー

Proposition (L.Narváez Macarro, MPTH., (2021))

 $\text{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup {\infty}$. If $char(k) = p > 0$, then $\text{IDer}_k(A; n)$ is restricted $\forall n \in \mathbb{N}$.

Proposition (L. Narváez Macarro (2012))

If A is a finitely presented k-algebra, $n \in \mathbb{N}$ and $\delta \in \text{Der}_k(A)$. Then $\delta \in \mathrm{IDer}_k(A; n)$ iff $\delta_{\mathfrak{p}} \in \mathrm{IDer}_k(A_{\mathfrak{p}}; n)$ $\forall \mathfrak{p} \in \mathrm{Spec}(A)$.

We have the chain

 $\text{Der}_k(A) = \text{IDer}_k(A; 1) \supseteq \text{IDer}_k(A; 2) \supseteq \text{IDer}_k(A; 3) \supseteq \cdots$

 QQ

イロト イ押 トイヨ トイヨ トー

[Integrability](#page-27-0)

重

 $2Q$

イロト イ部 トイモト イモト

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

4 **EL F**

∢ 何 → → ←

Þ

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

For example:

If $char(k) = 0$ or A is 0-smooth over k , then $\text{Leaps}_k(A) = \emptyset$.

4 **EL F**

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

For example:

- If $char(k) = 0$ or A is 0-smooth over k , then $\text{Leaps}_k(A) = \emptyset$.
- Let k be a reduced ring of $\text{char}(k) = p > 0$ and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \mathrm{IDer}_k(A; p)$.

4 **EL F**

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

For example:

- If $char(k) = 0$ or A is 0-smooth over k , then $\text{Leaps}_k(A) = \emptyset$.
- Let k be a reduced ring of $\text{char}(k) = p > 0$ and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \mathrm{IDer}_k(A; p)$.

$$
\text{IDer}_k(A; n) = \begin{cases} \langle \partial_x \rangle & \text{if } n < p \\ \langle x \partial_x \rangle & \text{if } n \ge p \end{cases}
$$

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

For example:

- If $char(k) = 0$ or A is 0-smooth over k , then $\text{Leaps}_k(A) = \emptyset$.
- Let k be a reduced ring of $\text{char}(k) = p > 0$ and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \not\in \mathrm{IDer}_k(A; p)$. Then, $\mathrm{Leaps}_k(A) = \{p\}.$

4 **EL F**

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

For example:

- If $char(k) = 0$ or A is 0-smooth over k , then $\text{Leaps}_k(A) = \emptyset$.
- Let k be a reduced ring of $\text{char}(k) = p > 0$ and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \not\in \mathrm{IDer}_k(A; p)$. Then, $\mathrm{Leaps}_k(A) = \{p\}.$

Leaps are not determined by the semigroup of the curve.

イロト イ母 トイヨ トイヨ トー

Þ

Definition

Let $s > 1$ be an integer. We say that the k-algebra A has a leap at $s > 1$ if the inclusion $\text{IDer}_k(A; s-1) \supseteq \text{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\mathrm{Leaps}_k(A)$.

Theorem (MPTH)

Let k be a ring of characteristic $p > 0$ and A a k-algebra. Then, Leaps_k $(A) \subseteq \{p^\tau \mid \tau \geq 1\}.$

4 **EL F**

④ キッシュ ミット マニット

÷.

[Integrability](#page-27-0)

Logarithmic integrable derivations

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-0-0) 04/11/2021 15/19

 \Rightarrow

∢ ロ ▶ ィ 何 ▶

 \mathcal{A} ٠ \mathbb{R}^2 \sim È

 299

Logarithmic integrable derivations

Definition

Let $I \subseteq A$ be an ideal and $m, n \in \mathbb{N} \cup \{\infty\}$

 \bullet $D \in \text{HS}_k(A; m)$ is I-logarithmic if $D_r(I) \subseteq I$ for all r. The set of I-logarithmic HS-derivations is denoted by $\text{HS}_k(\log I; m)$.

4 **EL F**

Logarithmic integrable derivations

Definition

Let $I \subseteq A$ be an ideal and $m, n \in \mathbb{N} \cup \{\infty\}$

- \bullet $D \in \text{HS}_k(A; m)$ is I-logarithmic if $D_r(I) \subseteq I$ for all r. The set of I-logarithmic HS-derivations is denoted by $\text{HS}_k(\log I; m)$.
- Let $\delta \in \text{Der}_k(\log I) \equiv \text{HS}(\log I; 1)$. We say that δ is I-logarithmically n-integrable if there exists $E \in \text{HS}_k(\log I; n)$ such that E is an n-integral of δ . We denote $\text{IDer}_k(\log I; n)$ the set of I-logarithmically n-integrable derivations

4 **EL F**

つへへ

HS-derivations of polynomial rings

Let $A=R/I$ where $R=k[x_i\mid i\in\mathcal{I}]$ and $I\subseteq R$ an ideal.

4 **EL F**

Þ

 298

HS-derivations of polynomial rings

Let $A=R/I$ where $R=k[x_i\mid i\in\mathcal{I}]$ and $I\subseteq R$ an ideal.

Proposition (L. Narváez Macarro (2012))

Under the above conditions, the map $\Pi_m^I: \mathrm{IDer}_k(\log I; n) \to \mathrm{IDer}_k(A; n)$ is a surjective homomorphism of R-modules for all $m \in \mathbb{N} \cup \{\infty\}$.

つへへ

HS-derivations of polynomial rings

Let $A=R/I$ where $R=k[x_i\mid i\in\mathcal{I}]$ and $I\subseteq R$ an ideal.

Proposition (L. Narváez Macarro (2012))

Under the above conditions, the map $\Pi_m^I: \mathrm{IDer}_k(\log I; n) \to \mathrm{IDer}_k(A; n)$ is a surjective homomorphism of R-modules for all $m \in \mathbb{N} \cup \{\infty\}$.

Corollary

A has a leap at $s > 1$ if and only if the inclusion $\text{IDer}_k(\log I; s-1) \supseteq \text{IDer}_k(\log I; s)$ is proper.

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n - 1) = \text{IDer}_k(\log I; n)$.

Þ

 QQ

イロト イ押 トイラト イラトー

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n-1) = \text{IDer}_k(\log I; n)$.

• Let $\delta \in \text{IDer}_k(\log I; n-1)$

Þ

 QQ

イロト イ押 トイヨ トイヨ トー

Theorem

If $\text{char}(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n-1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$

 QQ

イロト イ押 トイヨ トイヨ トー

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n-1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$
- Let us consider $E \in \text{HS}_k(R; n)$ such that:

4 **EL F**

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n-1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$
- Let us consider $E \in \text{HS}_k(R; n)$ such that:

$$
\bullet \ \ E_1=0
$$

4 **EL F**

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n-1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$
- Let us consider $E \in \text{HS}_k(R; n)$ such that:

$$
\bullet \ \ E_1=0
$$

• $\tau_{n,n-1}(E) \in \text{HS}_k(\log I; n-1).$

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n - 1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$
- Let us consider $E \in \text{HS}_k(R; n)$ such that:

$$
\bullet \ \ E_1=0
$$

- $\tau_{n,n-1}(E) \in \text{HS}_k(\log I; n-1).$
- $E_n = -D_n + H$ where $H(I) \subseteq I$.

э

Theorem

If $char(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\text{IDer}_k(\log I; n - 1) = \text{IDer}_k(\log I; n)$.

- Let $\delta \in \text{IDer}_k(\log I; n-1)$
- Then there is $D \in \text{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \text{HS}_k(\log I; n-1).$
- Let us consider $E \in \text{HS}_k(R; n)$ such that:

$$
\bullet \ \ E_1=0
$$

- $\tau_{n,n-1}(E) \in \text{HS}_k(\log I; n-1).$
- $E_n = -D_n + H$ where $H(I) \subseteq I$.
- $D \circ E \in \text{HS}_k(\log I; n)$ is an *n*-integral of δ .

4 **EL F**

- ④ → ④ ∃ → ④ ∃ → →

Þ

[Integrability](#page-27-0)

Question (with A. Reguera, L. Narváez Macarro)

M.P. Tirado Hernández (US) [Leaps of the integrability](#page-0-0) 04/11/2021 18/19

4 **EL F**

 \leftarrow \leftarrow \leftarrow

Þ

 299

Under what condition is the chain $\text{IDer}_k(A; 1) \supseteq \text{IDer}_k(A; 2) \supseteq \cdots$ stationary?

4 0 1

Under what condition is the chain $\text{IDer}_k(A; 1) \supseteq \text{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

If $char(k) = 0$, then $Leaps_k(A) = \emptyset$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If $char(k) = 0$, then $Leaps_k(A) = \emptyset$.
- If $\text{char}(k) = p > 0$, then $\text{Leaps}_k(A) \subseteq \{p^\tau \mid \tau \ge 1\}.$

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If $char(k) = 0$, then $Leaps_k(A) = \emptyset$.
- If $\text{char}(k) = p > 0$, then $\text{Leaps}_k(A) \subseteq \{p^\tau \mid \tau \ge 1\}.$
- Given $S \subseteq \{p^\tau \mid \tau \geq 1\}$, there is a k-algebra A such that Leaps_k $(A) = S$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If $char(k) = 0$, then $Leaps_k(A) = \emptyset$.
- If $\text{char}(k) = p > 0$, then $\text{Leaps}_k(A) \subseteq \{p^\tau \mid \tau \ge 1\}.$
- Given $S \subseteq \{p^\tau \mid \tau \geq 1\}$, there is a k-algebra A such that Leaps_k $(A) = S$.

For example: $\mathrm{char}(k)=p>0, \, S=\{p^i\mid i\in\mathcal{I}\}$ where $\mathcal{I}\subseteq\mathbb{N}$ and $A = k[x_i \mid i \in \mathcal{I}]/\langle x_i^{p^i} \rangle$ $i \atop i \equiv 1$, $i \in \mathcal{I}$.

Under what condition is the chain $\mathrm{IDer}_k(A;1) \supseteq \mathrm{IDer}_k(A;2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If $char(k) = 0$, then $Leaps_k(A) = \emptyset$.
- If $\text{char}(k) = p > 0$, then $\text{Leaps}_k(A) \subseteq \{p^\tau \mid \tau \ge 1\}.$
- Given $S \subseteq \{p^\tau \mid \tau \geq 1\}$, there is a k-algebra A such that Leaps_k $(A) = S$.

For example: $\mathrm{char}(k)=p>0, \, S=\{p^i\mid i\in\mathcal{I}\}$ where $\mathcal{I}\subseteq\mathbb{N}$ and $A = k[x_i \mid i \in \mathcal{I}]/\langle x_i^{p^i} \rangle$ $i \atop i \equiv 1$, $i \in \mathcal{I}$. If $\mathcal{I} = \mathbb{N}$, then $\text{Leaps}_k(A) = \{p^{\tau} \mid \tau \ge 1\}.$

Thanks for your attention

←ロ ▶ → 母 ▶

Ξ $\,$ $\,$ $\rightarrow \equiv$ \rightarrow

 \prec

È

 299