Leaps of the integrability (in the sense of Hasse-Schmidt)

María de la Paz Tirado Hernández

Universidad de Sevilla

04/11/2021

M.P. Tirado Hernández (US)

Leaps of the integrability

3

ヘロト 人間ト 人団ト 人団ト

Proposition (Seidenberg '66)

Let A be a noetherian domain containing the rational numbers. Let us denote Σ its fraction field and we consider $\delta \in \text{Der}(\Sigma)$. If $\delta \in \text{Der}(A)$, then $\delta \in \text{Der}(\overline{A})$.

Proposition (Seidenberg '66)

Let A be a noetherian domain containing the rational numbers. Let us denote Σ its fraction field and we consider $\delta \in \text{Der}(\Sigma)$. If $\delta \in \text{Der}(A)$, then $\delta \in \text{Der}(\overline{A})$.

Proposition

If A is a local complete domain of characteristic 0 and k is a coefficient field of A, then $\operatorname{rank}(\operatorname{Der}_k(A)) \leq \dim A$.

3/19

Proposition (Seidenberg '66)

Let A be a noetherian domain of characteristic p > 0. Let us denote Σ its fraction field and we consider $\delta \in \mathrm{IDer}_k(\Sigma)$. If $\delta \in \mathrm{IDer}(A)$, then $\delta \in \mathrm{IDer}(\overline{A})$.

Proposition (Molinelli '77)

If A is a local complete domain of characteristic p > 0 and k is a coefficient field of A, then $\operatorname{rank}(\operatorname{IDer}_k(A)) \leq \dim A$.

3/19

Introduction to the Hasse-Schmidt derivations

イロト イヨト イヨト

E

Let k be a commutative ring and A commutative k-algebra.

3 × 4 3 ×

E

5/19

Let k be a commutative ring and \boldsymbol{A} commutative k-algebra.

Definition

A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length $m \ge 1$ (resp. of length ∞) is a sequence $D := (D_0, D_1, \ldots, D_m)$ (resp. $D = (D_0, D_1, \ldots)$) of k-linear maps $D_r : A \to A$, satisfying the conditions:

$$D_0 = \mathrm{Id}_A, \quad D_r(xy) = \sum_{i+j=r} D_i(x)D_j(y)$$

for all $x, y \in A$ and for all r. We write $HS_k(A; m)$ (resp. $HS_k(A)$) for the set of HS-derivations of A (over k) of length m (resp. ∞).

イロト イ押ト イヨト イヨト

Let k be a commutative ring and A commutative k-algebra.

Definition

A Hasse-Schmidt derivation (HS-derivation for short) of A (over k) of length $m \ge 1$ (resp. of length ∞) is a sequence $D := (D_0, D_1, \ldots, D_m)$ (resp. $D = (D_0, D_1, \ldots)$) of k-linear maps $D_r : A \to A$, satisfying the conditions:

$$D_0 = \mathrm{Id}_A, \quad D_r(xy) = \sum_{i+j=r} D_i(x)D_j(y)$$

for all $x, y \in A$ and for all r. We write $HS_k(A; m)$ (resp. $HS_k(A)$) for the set of HS-derivations of A (over k) of length m (resp. ∞).

$$\operatorname{Der}_k(A) \equiv \operatorname{HS}_k(A;1)$$

5/19

イロト 不得下 イヨト イヨト

Introduction

Examples

3

◆□▶ ◆□▶ ◆□▶ ◆□▶

Examples

• If $\mathbb{Q} \subseteq k$ and $\delta \in \text{Der}_k(A)$, then $(\delta^i/i!)_{i \ge 0} \in \text{HS}_k(A)$.

イロト イボト イヨト イヨト

э

Examples

- If $\mathbb{Q} \subseteq k$ and $\delta \in \text{Der}_k(A)$, then $(\delta^i/i!)_{i \ge 0} \in \text{HS}_k(A)$.
- Let us consider $A = k[x_1, \ldots, x_d]$. The Taylor differential operators $\Delta^{(\alpha)} : A \to A$, $\alpha \in \mathbb{N}^d$, are defined by

$$f(x_1 + T_1, \dots, x_d + T_d) = \sum_{\alpha \in \mathbb{N}^d} \Delta^{(\alpha)}(f) T^{\alpha} \quad \forall f \in A$$

Then,
$$\Delta_j = (\Delta^{(0,\ldots,i}, i,\ldots,0))_{i \ge 0} \in \mathrm{HS}_k(A)$$
 for all $j = 1,\ldots,d$.

6/19

- - 4 回 ト - 4 回 ト

If $D \in \mathrm{HS}_k(A; m)$ then $D = \sum \mu^i D_i \in \mathrm{End}_k(A) \llbracket \mu \rrbracket_m$.

-

Image: A matrix and a matrix

э

If $D \in \mathrm{HS}_k(A;m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A) \llbracket \mu \rrbracket_m)$.

-

Image: A matrix and a matrix

э

If $D \in \mathrm{HS}_k(A;m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)\llbracket \mu \rrbracket_m)$.

The set $HS_k(A; m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}$.

< 17 > <

If $D \in \mathrm{HS}_k(A;m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)\llbracket \mu \rrbracket_m)$.

The set $\operatorname{HS}_k(A;m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}$.

If $D, D' \in \mathrm{HS}_k(A; m)$, $D'' = D \circ D' \in \mathrm{HS}_k(A; m)$ such that

$$D_r'' = \sum_{i+j=r} D_i \circ D_j'$$

and the identity is $\mathbb{I} = (\mathrm{Id}, 0, \dots, 0) \in \mathrm{HS}_k(A; m).$

If $D \in \mathrm{HS}_k(A;m)$ then $D = \sum \mu^i D_i \in \mathcal{U}(\mathrm{End}_k(A)\llbracket \mu \rrbracket_m)$.

The set $\operatorname{HS}_k(A;m)$ is a group for all $m \in \mathbb{N} \cup \{\infty\}$.

If $D, D' \in \mathrm{HS}_k(A;m)$, $D'' = D \circ D' \in \mathrm{HS}_k(A;m)$ such that

$$D_r'' = \sum_{i+j=r} D_i \circ D_j'$$

and the identity is $\mathbb{I} = (\mathrm{Id}, 0, \dots, 0) \in \mathrm{HS}_k(A; m).$

The map $\delta \in \text{Der}_k(A) \mapsto (\text{Id}, \delta) \in \text{HS}_k(A; 1)$ is a group isomorphism.

7/19

Alternative definition

E

◆□▶ ◆□▶ ◆□▶ ◆□▶

Alternative definition

Let us denote

$$\begin{split} &\operatorname{Hom}_{k-\mathsf{alg}}^{\circ}(A, A[\![\mu]\!]_m) := \\ & \{f \in \operatorname{Hom}_{k-\mathsf{alg}}(A, A[\![\mu]\!]_m) \mid f(x) \equiv x \mod \mu \; \forall x \in A \} \end{split}$$

イロト イヨト イヨト

E

Alternative definition

Let us denote

$$\begin{aligned} \operatorname{Hom}_{k-\operatorname{\mathsf{alg}}}^{\circ}(A, A[\![\mu]\!]_m) &:= \\ \{f \in \operatorname{Hom}_{k-\operatorname{\mathsf{alg}}}(A, A[\![\mu]\!]_m) \mid f(x) \equiv x \mod \mu \; \forall x \in A \} \end{aligned}$$

The map

$$\begin{aligned} \mathrm{HS}_{k}(A;m) &\to & \mathrm{Hom}_{k-\mathsf{alg}}^{\circ}(A, A[\![\mu]\!]_{m}) \\ D &\mapsto & \left[\varphi_{D} : x \in A \mapsto \sum_{i=0}^{m} D_{i}(x) \mu^{i} \in A[\![\mu]\!]_{m} \right] \end{aligned}$$

is a group isomorphism.

イロト イポト イヨト イヨト

E

Substitution maps

E

9/19

◆□▶ ◆□▶ ◆□▶ ◆□▶

Substitution maps

Definition

An A-algebra map $\psi : A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map if $\operatorname{ord}(\psi(\mu)) > 0$.

э

(1日) (1日) (1日)

Substitution maps

Definition

An A-algebra map $\psi : A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map if $\operatorname{ord}(\psi(\mu)) > 0.$

If $\psi: A[\![\mu]\!]_m \to A[\![\mu]\!]_n$ is a substitution map and $D \in \mathrm{HS}_k(A;m)$, then $\psi \circ \varphi_D \in \operatorname{Hom}_{k-\mathsf{alg}}^{\circ}(A, A\llbracket \mu \rrbracket_n)$. We denote $\psi \bullet D \in \operatorname{HS}_k(A; n)$ the HS-derivation determined by $\psi \circ \varphi_D$.

イロト イ団ト イヨト イヨト

E

10/19

- Let $D \in \mathrm{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}$.
 - For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \ge 0} \in \mathrm{HS}_k(A;m).$

10 / 19

< 17 > <

Let $D \in \mathrm{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}$.

- For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \ge 0} \in \mathrm{HS}_k(A;m).$
- For $1 \leq n \leq m$, $\tau_{mn} : \mu \in A[\![\mu]\!]_m \mapsto \mu \in A[\![\mu]\!]_n$. Then, $\tau_{mn}(D) = (\mathrm{Id}, D_1, \dots, D_n)$.

10 / 19

< 🗇 🕨 < 🖃

Let $D \in \mathrm{HS}_k(A; m)$ with $m \in \mathbb{N} \cup \{\infty\}$.

- For each $a \in A$, we define $a : \mu \in A[\![\mu]\!]_m \mapsto a\mu \in A[\![\mu]\!]_m$. Then, $a \bullet D = (a^r D_r)_{r \ge 0} \in \mathrm{HS}_k(A;m).$
- For $1 \leq n \leq m$, $\tau_{mn} : \mu \in A[\![\mu]\!]_m \mapsto \mu \in A[\![\mu]\!]_n$. Then, $\tau_{mn}(D) = (\mathrm{Id}, D_1, \dots, D_n).$
- For each integer $n \ge 1$, $\psi : \mu \in A[\![\mu]\!]_m \mapsto \mu^n \in A[\![\mu]\!]_{mn}$. Then, $D[n] = \psi \bullet D \in \mathrm{HS}_k(A;mn)$:

$$D[n]_r = \left\{ \begin{array}{ll} D_{r/n} & \text{ if } r = 0 \mod n \\ 0 & \text{ otherwise} \end{array} \right.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

3 Integrability in the sense of Hasse-Schmidt

イロト イ団ト イヨト イヨト

E

Definition

Let $D \in HS_k(A; m)$ where $m \in \mathbb{N} \cup \{\infty\}$ and $n \ge m$. We say that D is n-integrable if there exists $E \in HS_k(A; n)$ such that $\tau_{nm}(E) = D$. Any such E will be called an n-integral of D. If D is ∞ -integrable we simply say that D is integrable.

12 / 19

(4月) (日) (日)

Definition

Let $\delta \in \text{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is *n*-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\operatorname{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\operatorname{IDer}_k(A) := \operatorname{IDer}_k(A; \infty)$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

Let $\delta \in \text{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is *n*-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\operatorname{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\operatorname{IDer}_k(A) := \operatorname{IDer}_k(A; \infty)$.

For example:

• If char(k) = 0, then $Der_k(A) = IDer_k(A; \infty)$.

・何ト ・ヨト ・ヨト

Definition

Let $\delta \in \text{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is *n*-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\operatorname{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\operatorname{IDer}_k(A) := \operatorname{IDer}_k(A; \infty)$.

For example:

- If char(k) = 0, then $Der_k(A) = IDer_k(A; \infty)$.
- If $A = k[x_1, \ldots, x_d]$, then $\operatorname{Der}_k(A) = \operatorname{IDer}_k(A; \infty)$.

く 伺 ト く ヨ ト く ヨ ト

Definition

Let $\delta \in \text{Der}_k(A)$ and $n \in \mathbb{N} \cup \infty$. We say that δ is *n*-integrable if there exists $E \in \text{HS}_k(A; n)$ such that $E_1 = \delta$.

We write $\operatorname{IDer}_k(A; n)$ for the module of *n*-integrable derivations and $\operatorname{IDer}_k(A) := \operatorname{IDer}_k(A; \infty)$.

For example:

• If
$$char(k) = 0$$
, then $Der_k(A) = IDer_k(A; \infty)$.

• If $A = k[x_1, \ldots, x_d]$, then $\operatorname{Der}_k(A) = \operatorname{IDer}_k(A; \infty)$.

Theorem (H. Matsumura (1986))

If A is 0-smooth over k, then any Hasse-Schmidt derivation of length $m < \infty$ is ∞ -integrable.

M.P. Tirado Hernández (US)

э

イロト イボト イヨト イヨト

Integrability

Properties

3

ヘロト 人間ト 人団ト 人団ト

Properties

Proposition (L.Narváez Macarro, MPTH., (2021))

IDer_k(A; n) is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}.$

э

13/19

イロト イボト イヨト イヨト

Properties

Proposition (L.Narváez Macarro, MPTH., (2021))

$\operatorname{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}$. If $\operatorname{char}(k) = p > 0$, then $\operatorname{IDer}_k(A; n)$ is restricted $\forall n \in \mathbb{N}$.

13/19

イロト イポト イヨト イヨト

Properties

Proposition (L.Narváez Macarro, MPTH., (2021))

IDer_k(A; n) is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}$. If char(k) = p > 0, then IDer_k(A; n) is restricted $\forall n \in \mathbb{N}$.

Proposition (L. Narváez Macarro (2012))

If A is a finitely presented k-algebra, $n \in \mathbb{N}$ and $\delta \in \text{Der}_k(A)$. Then $\delta \in \text{IDer}_k(A; n)$ iff $\delta_{\mathfrak{p}} \in \text{IDer}_k(A_{\mathfrak{p}}; n) \forall \mathfrak{p} \in \text{Spec}(A)$.

Properties

Proposition (L.Narváez Macarro, MPTH., (2021))

 $\operatorname{IDer}_k(A; n)$ is a Lie-Rinehart algebra (anchor map=inclusion) $\forall n \in \mathbb{N} \cup \{\infty\}$. If $\operatorname{char}(k) = p > 0$, then $\operatorname{IDer}_k(A; n)$ is restricted $\forall n \in \mathbb{N}$.

Proposition (L. Narváez Macarro (2012))

If A is a finitely presented k-algebra, $n \in \mathbb{N}$ and $\delta \in \text{Der}_k(A)$. Then $\delta \in \text{IDer}_k(A; n)$ iff $\delta_{\mathfrak{p}} \in \text{IDer}_k(A_{\mathfrak{p}}; n) \forall \mathfrak{p} \in \text{Spec}(A)$.

We have the chain

 $\operatorname{Der}_k(A) = \operatorname{IDer}_k(A; 1) \supseteq \operatorname{IDer}_k(A; 2) \supseteq \operatorname{IDer}_k(A; 3) \supseteq \cdots$

13/19

Integrability

3

ヘロト 人間ト 人間ト 人間ト

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

< (17) > < (27 >)

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

For example:

• If char(k) = 0 or A is 0-smooth over k, then $Leaps_k(A) = \emptyset$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1 if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

For example:

- If char(k) = 0 or A is 0-smooth over k, then $Leaps_k(A) = \emptyset$.
- Let k be a reduced ring of $\operatorname{char}(k) = p > 0$ and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \operatorname{IDer}_k(A; p)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

For example:

- If char(k) = 0 or A is 0-smooth over k, then $Leaps_k(A) = \emptyset$.
- Let k be a reduced ring of char(k) = p > 0 and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \mathrm{IDer}_k(A; p)$.

$$\mathrm{IDer}_k(A; n) = \begin{cases} \langle \partial_x \rangle & \text{ if } n$$

3

14/19

(日本) (日本) (日本)

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1 if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

For example:

- If char(k) = 0 or A is 0-smooth over k, then $Leaps_k(A) = \emptyset$.
- Let k be a reduced ring of char(k) = p > 0 and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \mathrm{IDer}_k(A; p)$. Then, $\mathrm{Leaps}_k(A) = \{p\}$.

(1日) (1日) (1日)

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1if the inclusion $\operatorname{IDer}_k(A; s-1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by Leaps_k(A).

For example:

- If char(k) = 0 or A is 0-smooth over k, then $Leaps_k(A) = \emptyset$.
- Let k be a reduced ring of char(k) = p > 0 and $A = k[x]/\langle x^p \rangle$, we have that $\partial_x \notin \mathrm{IDer}_k(A; p)$. Then, $\mathrm{Leaps}_k(A) = \{p\}$.

Leaps are not determined by the semigroup of the curve.

イロト イポト イヨト イヨト

Definition

Let s > 1 be an integer. We say that the k-algebra A has a leap at s > 1 if the inclusion $\operatorname{IDer}_k(A; s - 1) \supseteq \operatorname{IDer}_k(A; s)$ is proper. The set of leaps of A over k is denoted by $\operatorname{Leaps}_k(A)$.

Theorem (MPTH)

Let k be a ring of characteristic p > 0 and A a k-algebra. Then, $Leaps_k(A) \subseteq \{p^{\tau} \mid \tau \ge 1\}.$

э

14/19

Integrability

Logarithmic integrable derivations

M.P. Tirado Hernández (US)

Leaps of the integrability

04/11/2021

イロト イ団ト イヨト イヨト

E

15 / 19

Logarithmic integrable derivations

Definition

Let $I \subseteq A$ be an ideal and $m, n \in \mathbb{N} \cup \{\infty\}$

• $D \in \operatorname{HS}_k(A;m)$ is I-logarithmic if $D_r(I) \subseteq I$ for all r. The set of I-logarithmic HS-derivations is denoted by $\operatorname{HS}_k(\log I;m)$.

15/19

・何ト ・ヨト ・ヨト

Logarithmic integrable derivations

Definition

Let $I \subseteq A$ be an ideal and $m, n \in \mathbb{N} \cup \{\infty\}$

- $D \in HS_k(A;m)$ is I-logarithmic if $D_r(I) \subseteq I$ for all r. The set of I-logarithmic HS-derivations is denoted by $HS_k(\log I;m)$.
- Let $\delta \in \text{Der}_k(\log I) \equiv \text{HS}(\log I; 1)$. We say that δ is *I*-logarithmically *n*-integrable if there exists $E \in \text{HS}_k(\log I; n)$ such that *E* is an *n*-integral of δ . We denote $\text{IDer}_k(\log I; n)$ the set of *I*-logarithmically *n*-integrable derivations

15/19

< ロト < 同ト < ヨト < ヨト

HS-derivations of polynomial rings

Let A = R/I where $R = k[x_i \mid i \in \mathcal{I}]$ and $I \subseteq R$ an ideal.

Image: A matrix and a matrix

HS-derivations of polynomial rings

Let A = R/I where $R = k[x_i \mid i \in \mathcal{I}]$ and $I \subseteq R$ an ideal.

Proposition (L. Narváez Macarro (2012))

Under the above conditions, the map Π_m^I : $\mathrm{IDer}_k(\log I; n) \to \mathrm{IDer}_k(A; n)$ is a surjective homomorphism of R-modules for all $m \in \mathbb{N} \cup \{\infty\}$.

HS-derivations of polynomial rings

Let A = R/I where $R = k[x_i \mid i \in \mathcal{I}]$ and $I \subseteq R$ an ideal.

Proposition (L. Narváez Macarro (2012))

Under the above conditions, the map Π_m^I : $IDer_k(\log I; n) \to IDer_k(A; n)$ is a surjective homomorphism of *R*-modules for all $m \in \mathbb{N} \cup \{\infty\}$.

Corollary

A has a leap at s > 1 if and only if the inclusion $\operatorname{IDer}_k(\log I; s - 1) \supseteq \operatorname{IDer}_k(\log I; s)$ is proper.

16 / 19

イロト イポト イヨト イヨト

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

3

Theorem

If $\operatorname{char}(k) = p > 0$, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $\operatorname{IDer}_k(\log I; n - 1) = \operatorname{IDer}_k(\log I; n)$.

• Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$

3

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in \mathrm{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \mathrm{HS}_k(\log I; n-1).$

э

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in \mathrm{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \mathrm{HS}_k(\log I; n-1)$.
- Let us consider $E \in HS_k(R; n)$ such that:

э

17/19

イロト イポト イヨト イヨト

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in HS_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in HS_k(\log I; n-1)$.
- Let us consider $E \in HS_k(R; n)$ such that:

•
$$E_1 = 0$$

э

17/19

イロト イポト イヨト イヨト

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in \mathrm{HS}_k(R;n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \mathrm{HS}_k(\log I; n-1)$.
- Let us consider $E \in HS_k(R; n)$ such that:

•
$$E_1 = 0$$

• $\tau_{n,n-1}(E) \in \operatorname{HS}_k(\log I; n-1).$

э

17/19

イロト イ押ト イヨト イヨト

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in \mathrm{HS}_k(R; n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \mathrm{HS}_k(\log I; n-1)$.
- Let us consider $E \in HS_k(R; n)$ such that:

•
$$E_1 = 0$$

- $\tau_{n,n-1}(E) \in \operatorname{HS}_k(\log I; n-1).$
- $E_n = -D_n + H$ where $H(I) \subseteq I$.

3

イロト イ押ト イヨト イヨト

Theorem

If char(k) = p > 0, R a polynomial ring and $I \subseteq R$ an ideal. Then, $\forall n > 1$ not a power of p, $IDer_k(\log I; n - 1) = IDer_k(\log I; n)$.

- Let $\delta \in \operatorname{IDer}_k(\log I; n-1)$
- Then there is $D \in \mathrm{HS}_k(R;n)$ an *n*-integral of δ such that $\tau_{n,n-1}(D) \in \mathrm{HS}_k(\log I; n-1)$.
- Let us consider $E \in HS_k(R; n)$ such that:
 - $E_1 = 0$
 - $\tau_{n,n-1}(E) \in \operatorname{HS}_k(\log I; n-1).$
 - $E_n = -D_n + H$ where $H(I) \subseteq I$.
- $D \circ E \in \operatorname{HS}_k(\log I; n)$ is an *n*-integral of δ .

э

17/19

イロト イポト イヨト イヨト

Integrability

Question (with A. Reguera, L. Narváez Macarro)

M.P. Tirado Hernández (US)

▶ < ∃ ▶</p>

э

18/19

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary?

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

18 / 19

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

• If char(k) = 0, then $Leaps_k(A) = \emptyset$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If char(k) = 0, then $Leaps_k(A) = \emptyset$.
- If $\operatorname{char}(k) = p > 0$, then $\operatorname{Leaps}_k(A) \subseteq \{p^{\tau} \mid \tau \ge 1\}$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

- If char(k) = 0, then $Leaps_k(A) = \emptyset$.
- If $\operatorname{char}(k) = p > 0$, then $\operatorname{Leaps}_k(A) \subseteq \{p^{\tau} \mid \tau \ge 1\}$.
- Given $S \subseteq \{p^{\tau} \mid \tau \ge 1\}$, there is a k-algebra A such that $\text{Leaps}_k(A) = S$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

• If
$$char(k) = 0$$
, then $Leaps_k(A) = \emptyset$.

• If
$$char(k) = p > 0$$
, then $Leaps_k(A) \subseteq \{p^{\tau} \mid \tau \ge 1\}$.

• Given $S \subseteq \{p^{\tau} \mid \tau \ge 1\}$, there is a k-algebra A such that $\text{Leaps}_k(A) = S$.

For example: char(k) = p > 0, $S = \{p^i \mid i \in \mathcal{I}\}$ where $\mathcal{I} \subseteq \mathbb{N}$ and $A = k[x_i \mid i \in \mathcal{I}]/\langle x_i^{p^i} \mid i \in \mathcal{I} \rangle$.

Under what condition is the chain $\mathrm{IDer}_k(A; 1) \supseteq \mathrm{IDer}_k(A; 2) \supseteq \cdots$ stationary? i.e. when is $\mathrm{Leaps}_k(A)$ a finite set?

• If
$$char(k) = 0$$
, then $Leaps_k(A) = \emptyset$.

• If
$$char(k) = p > 0$$
, then $Leaps_k(A) \subseteq \{p^{\tau} \mid \tau \ge 1\}$.

• Given $S \subseteq \{p^{\tau} \mid \tau \ge 1\}$, there is a k-algebra A such that $\text{Leaps}_k(A) = S$.

For example:
$$\operatorname{char}(k) = p > 0$$
, $S = \{p^i \mid i \in \mathcal{I}\}$ where $\mathcal{I} \subseteq \mathbb{N}$ and $A = k[x_i \mid i \in \mathcal{I}] / \langle x_i^{p^i} \mid i \in \mathcal{I} \rangle$.
If $\mathcal{I} = \mathbb{N}$, then $\operatorname{Leaps}_k(A) = \{p^{\tau} \mid \tau \geq 1\}$.

(日本) (日本) (日本)

Thanks for your attention

< □ > < 同 >

E