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en Geometŕıa Algebraica
Barcelona

November 4-5th, 2021

Giorgio Ottaviani

University of Florence, Italy

Giorgio Ottaviani The Geometry of Tensor Spaces 1 / 29



Books grading make a matrix

Readers grade books from 1 to 5.
Alice rates 5/5 Don Quixote, but 2/5 Les misérables.

Anna
Kar

en
in

a

D
on

Q
uixo

te

Les
m

isé
ra

bles

Alice 5 3 5 ? 2 . . .
Bob 3 ? 4 3 ? . . .

Mario ? . . . . . . . . .
Maria
. . .

Typically, only a small percent of the large matrix is known.
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Low rank assumption

Web services like to recommend you the books that you like. A
reasonable assumption is that the large matrix M can be
approximated by a small rank matrix, so that
M︸︷︷︸

105×104
= A︸︷︷︸

(105×r)

Bt︸︷︷︸
(r×104)

In many other situations one wishes to decompose
M =

∑r
i=1 ai ⊗ bi (ai columns of A, bi columns of B)

This decomposition is not unique, since M = (AC )(BC−t)t for any
invertible C of format r × r .
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Matrices versus Tensors

Tensors encode data with more dimensions, like readers, genres
and book titles, which can be encoded as a tensor in A⊗ B ⊗ C .
In the tensor setting the not uniqueness problem disappears.

This is a 2× 2× 3 tensor
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Tensor space

K is a field, typically R or C.

Kn1 ⊗ . . .⊗Knd = Kn1×...×nd is the vector space of tensors with d
modes.

In coordinates it is given by n1 · . . . · nd scalars ti1...id .

The case d = 2 corresponds to matrices.
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Tensor rank

Let
T ∈ Kn1 ⊗ . . .⊗Knd

Definition

We say that the tensor T has rank r if

1 T is the sum of r decomposable tensors.

T =
r∑

i=1

vi ,1 ⊗ . . .⊗ vi ,d

2 r is the minimal number of summands.

So, by definition, decomposable tensors have rank one.
It is an exercise to show that for matrices (d = 2), this definition
of rank agrees with the classical one.
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Symmetric tensors and symmetric tensor rank

Let
T ∈ Kn ⊗ . . .⊗Kn

We say that the tensor T is symmetric if σ(T ) = T for any
permutation σ on the modes.
In coordinates, T is symmetric iff

ti1...id = tσ(i1)...σ(id ) ∀ permutation σ

Of course, symmetric matrices are exactly the ones we know.
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Homogeneous polynomials

Symmetric matrices correspond to quadratic forms, symmetric
tensors with d modes correspond to homogeneous polynomials of
degree d .

Let T ∈ SymdKn

Definition

We say that the polynomial T has symmetric rank r if

1 T is the sum of r powers of linear forms, T =
∑r

i=1 l
d
i

2 r is the minimal number of summands.

So, by definition, powers of linear forms have symmetric rank one.
Again, for symmetric matrices (d = 2), this definition of rank
agrees with the classical one.
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Rank versus symmetric rank

It was believed that rank is equal to symmetric rank for any
symmetric tensor (Comon Conjecture).

This conjecture has been disproved in 2018 by Shitov with a
complicated counterexample in a 800-dimensional space.

Still is not clear if for generic tensors Comon Conjecture remains
true. It is true in many small rank cases (as the toy examples we
see in next slides).
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Main differences between matrix rank and tensor rank, I

Matrix rank does not depend on field extension. Tensor rank may
depend on the field.
Indeed

2x3 + 6xy2 = (x + y)3 + (x − y)3 rkR = 2

2x3 − 6xy2 =?

2x3 − 6xy2 = (x +
√
−1y)3 + (x −

√
−1y)3 rkC = 2

over R we have

2x3 − 6xy2 = 4x3 − (x + y)3 − (x − y)3 rkR = 3
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Main differences between matrix rank and tensor rank, II

If rk(Mn) = r then rk (limn Mn) ≤ r (lower semicontinuity of
matrix rank)

Tensor rank is not semicontinuous,
limt→0

1
t

(
(x + ty)3 − x3

)
= 3x2y which has rank three, indeed

3x2y = 3x3 +
1

2
(x + y)3 +

1

2
(x − y)3

Even on C we cannot do better.
Note that 3 is bigger than the dimension of the factor C2, which
again does not happen for matrices !
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Main differences between matrix rank and tensor rank, III

Matrix rank is lower or equal than the dimension of the factors.

Tensor rank may exceed the dimension of the factors
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Main differences between matrix rank and tensor rank, IV

Matrix rank can be computed efficiently by Gaussian elimination.

Tensor rank is NP-hard to be computed.
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Uniqueness of decomposition, the feature that makes
tensor decomposition important

A decomposition

T =
r∑

i=1

vi ,1 ⊗ . . .⊗ vi ,d

is (almost always!) unique for general tensors of subgeneric rank,
that is when r is smaller than the rank attained by generic tensors.
This feature makes tensor decomposition of small rank tensors a
central feature for many applications, like book grading discussed
at the beginning.
Another striking examples is sound reconstruction.
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Geometric view with secant varieties

Symmetric tensors of rank one are powers ld and fill the
d-Veronese variety of Pn.
Recall it is given by the image of the map

P(Cn+1) → P(SymdCn+1)
v 7→ vd

and we call it vd(Pn).
Define

σk(vd(Pn)) =

{
k∑

i=1

ldi |degli = 1

}
which is the Zariski closure of polynomials of symmetric rank k .
For d = 2 the varieties σk(vd(Pn)) consist of symmetric d × d
matrices of rank ≤ k and are well known.
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Alexander-Hirschowitz(AH) Theorem on generic symmetric
rank

Theorem (Alexander-Hirschowitz 1995)

Let d ≥ 3. The k-secant variety σk(vd(Pn)) has the expected
dimension

min{k(n + 1)− 1,

(
n + d

n

)
− 1}

unless the following cases

1 σ5(v4(P2)) Clebsch quartics

2 σ9(v4(P3))

3 σ14(v4(P4))

4 σ7(v3(P4))
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The case of Clebsch quartics

Consider differential operators P of degree 2 on Cn+1. They are
polynomials of degree 2 in ∂i = ∂

∂xi
for i = 0, . . . , n.

Note P(
∑k

i=1 l
4
i ) is a linear combination of l21 , . . . , l

2
k . In particular

the map
Cf : Sym2C3∨ → Sym2C3

P 7→ P(f )

has image contained in 〈l21 , . . . , l25 〉 for f =
∑5

i=1 l
4
i so it has rank

≤ 5 for f ∈ σ5(v4(P2)).Since the map is given by a 6× 6 matrix
Cf , it follows that detCf is the equation of hypersurface of
Clebsch quartics in P(Sym4C3) = P14 !
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A conjecture toward an analog of AH-Theorem for generic
(unsymmetric) rank

In the (unsymmetric) general case, rank one tensors make the
Segre variety.
There is a conjectured list of exceptions (Abo-O-Peterson) for an
analog of AH-theorem about the dimension of k-secants.
One of them is P1×P1×P1×P1, (four qubits) where the 3-secant
is expected to be an hyperurface, indeed it has codimension 2.
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Uniqueness of decomposition for subgeneric cases

Theorem (Chiantini-Ciliberto, Mella, Ballico,
Chiantini-O-Vannieuwenhoven)

The general f ∈ σk(vdPn) when σk(vdPn) is properly contained in
the ambient space it has a unique decomposition unless the
following cases

1 The defective cases of AH Theorem

2 σ9(v6(P2)) 2 decompositions, AH Thm implies finitely many.

3 σ8(v4(P3)) 2 decompositions

4 σ9(v3(P5)) 2 decompositions

The last three items have the common property that an elliptic
normal curve passes through:

2 9 points in P2

3 8 points in P3

4 9 points in P5
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Uniqueness of decomposition for generic symmetric cases

The generic tensors in P(SymdCn+1) has NOT a unique
decomposition unless the following cases

1 SymdC2 for odd d (odd binary forms)

2 Sym5C3 plane quintics

3 Sym3C4 cubic surfaces (Sylvester Pentahedral Theorem)

Theorem (Sylvester Pentahedral Theorem)

The general cubic surface can be written in a unique way as a sum∑5
i=1 l

3
i of 5 cubes of linear forms.

Note the shape of the Theorem is opposite from previous cases.
The number of decompositions (when finitely many) is unknown
even on P2 for d ≥ 10.
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Uniqueness of decomposition for (unsymmetric) cases

The expected shape of the results is analogous to the symmetric
case.

In the subgeneric case it is expected uniqueness of decomposition
unless a list of exceptions. Here there are again exceptions related
to elliptic curves with 2 decompositions (among them
σ5(P1 × P1 × P1 × P1 × P1) (five qubits) and an additional
mysterious exception given by σ8(P2 × P5 × P5) [Chiantini-Mella-O
2014] with 6 decompositions.
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The 3× 4× 5 case

In the generic case it is expected NOT uniqueness of
decomposition unless a list of exceptions. There is a nice exception
which is given by 3× 4× 5 Theorem.

Theorem (Hauenstein-Oeding-O-Sommese)

The general tensor in C3 ⊗C4 ⊗C5 has a unique decomposition as
a sum of 6 decomposable tensors.
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The case of qubits

The case of qubits is almost completely understood.

Theorem (Catalisano-Geramita-Gimigliano 2011)

k-secant varieties to the Segre variety given by n copies of P1 have
the expected dimension unless σ3(P1 × P1 × P1 × P1)

Theorem (Casarotti-Mella, 2019)

The general tensor in the k-secant varieties to the Segre variety
given by n copies of P1 has a unique decomposition for n ≥ 5 and
k ≤ b 2n

n+1c − 1.
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Weierstrass canonical form, I

We are ready for the first classification result in Tensor Spaces.
From triangle inequality, the only format 2× b × c where the
hyperdeterminant exists (so that the triangular inequality is
satisfied) are 2× k × k and 2× k × (k + 1).
Consider first the 2× k × k case.

Theorem (Weierstrass)

Let A be a 2× k × k tensor and let A0,A1 be the two slices.
Assume that Det(A) 6= 0. Under the action of GL(k)× GL(k) A is
equivalent to a matrix where A0 is the identity and
A1 = diag(λ1, . . . , λk). In this form the hyperdeterminant of A is
equal to

∏
i<j(λi − λj)2.
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Weierstrass canonical form, II

The second case 2× k × (k + 1) was also solved by Weierstrass.

Theorem (Weierstrass)

All tensors of format 2× k × (k + 1) with Det 6= 0 are
GL(k)× GL(k + 1) equivalent to the polynomial multiplication
tensor with α = 1, β = k − 1.
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Kronecker-Weierstrass canonical form, I

It is interesting, and quite unexpected, that the format
2× k × (k + 1) is a building block for all the other formats
2× b× c . The canonical form illustrated by the following Theorem
is called the Kronecker-Weierstrass canonical form (there is an
extension in the degenerate case that we do not pursue here).

Theorem (Kronecker, 1890)

Let 2 ≤ b < c . There exist unique n,m, q ∈ N satisfying{
b = nq + m(q + 1)
c = n(q + 1) + m(q + 2)

such that the general tensor t ∈ C2 ⊗ Cb ⊗ Cc decomposes under
the action of GL(b)× GL(c) as n blocks 2× q × (q + 1) and m
blocks 2× (q + 1)× (q + 2) in Weierstrass form.
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Kac Theorem, I

Kac has generalized this statement to the format 2 ≤ w ≤ s ≤ t
satisfying the inequality t2 − wst + s2 ≥ 1. Note that in these
cases the hyperdeterminant does not exist (for w ≥ 3). The result
is interesting because it gives again a canonical form.
Given w , define by the recurrence relation a0 = 0, a1 = 1,
aj = waj−1 − aj−2
For w = 2 get 0, 1, 2, . . . and Kronecker’s result.
For w = 3 get 0, 1, 3, 8, 21, 55, . . . (odd Fibonacci numbers)
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Kac Theorem and Fibonacci blocks

Theorem (Kac, 1980)

Let 2 ≤ w ≤ s ≤ t satisfying the inequality t2 − wst + s2 ≥ 1.
Then there exist unique n,m, j ∈ N satisfying{

s = naj + maj+1

t = naj+1 + maj+2

such that the general tensor t ∈ Cw ⊗ Cs ⊗ Ct decomposes under
the action of GL(s)× GL(t)as n blocks w × aj × aj+1 and m
blocks w × aj+1 × aj+2 which are denoted “Fibonacci blocks”.
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Thanks

Thanks !!
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