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3 T. L. Gómez e I. Sols, Stable tensors and moduli space of orthogonal sheaves,
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Goals

• Construction of a fine moduli space for principal bundles over algebraic

curves.

• Relations with the stack of principal bundles.

• Immersion of the moduli space in the scheme of sections of a projective

bundle.
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Strategy:

1 k denotes an algebraically closed field of characteristic zero and G is an affine

connected semisimple algebraic group.

2 We need to give a notion of principal bundle valid over an arbitrary scheme.

We don’t assumme that schemes are noetherian, quasi-compact or

quasi-separated.

3 Principal bundles have automorphisms, so we add extra data (rigidification of

the problem).

4 We translate the problem of principal bundles with formal trivializations to a

problem concerning vector bundles with a formal trivialization of the vector

bundle.
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Definition

A G -bundle over X with respect to the Zariski topology (resp. étale, fppf, fpqc)

is a G -system (P, π) over X such that π is quasi-compact, quasi-separated and

such that there exists a covering {f : Ui → X}i∈I of X with respect to the Zariski

topology (resp. étale, fppf, fpqc) such that for each index i ∈ I there exists an

isomorphism of G -systems over Ui

f ∗i P
∼ //

!!

Ui × G

||
Ui
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Theorem

Let π : P → X a G -system over X , with π being qc and qs. The following

conditions are equivalent

1 P → X is a G -bundle with respect to the étale topology,

2 π is smooth, surjective, and the G -action on P is free and transitive, that is,

the following natural map

P ×k G → P ×X P

(p, g) 7→ (p, p · g)

is an isomorphism of X -schemes.
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We can use the fpqc descent. We obtain the following consequences

• The structural map π : P → X is affine.

• A morphism of G -bundles with respect to the étale topology is an

isomorphism.

• If the G -bundle admits a section, then, it is isomorphic to the trivial bundle.

• A principal G -bundle with respect to the étale topology is a universal

geometric quotient.

• If F is a quasi-projective scheme equipped with a G -action, then there exists

the associated fiber space P ×G F := (P × F )/G → X , which is the fiber

space over X with typical fibre F .

• Extension and reduction of the structure group.
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Serre Theorem

• We want to linearize the moduli problem. From principal bundles to vector

bundles.

• In the classical setting Serre proves the following

Theorem

Let X be an algebraic variety X over k, and let H ⊂ G be an algebraic closed

subgroup of G . To give the data of an H-bundle is equivalent to give a G -bundle

together with a section s of the associated fiber space of typical fiber G/H

P ×G (G/H) = P/H // X

s

cc
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Serre Theorem

• We fix a k-vector space V and a faithful representation ρ : G ↪→ SL(V ).

• The associated fiber space EP := P ×G V is a vector bundle with trivial

determinant and we have the following commutative diagram

P //

��

I = Isom(VX ,EP)

��
X

sP
// I/G = Isom(VX ,EP)/G

• Conversely, given a G -reduction (E , s), we have a G -bundle

PE := s∗(Isom(VX ,E )) //

��

Isom(VX ,E )

��
X

s
// Isom(VX ,E )/G
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• In H := Hom(VX ,E ) we have the universal map h : VH → EH which induces

∧VH → ∧EH This latter one can be expressed as

det h : OH → ∧V∨H ⊗OH ∧EH

• The line sheaf ∧V∨H ⊗OH ∧EH is known as determinant line sheaf over H,

and det h is the determinant section.

• The determinant line sheaf is equipped with a G -linearization and the

determinant section is G -invariant.

• I is characterized as the open subscheme of H where det h does not vanish.

• Since G is reductive, H→ H//G := Spec(S•OX
(V∨ ⊗ E)G ) is a universal

good quotient. The determinant line sheaf descends to the quotient, as well

as the determinant section. The descent of the determinant section is

denoted by det.

• Since ρ lands in SL(V ), I/G ↪→ H//G is an open subscheme and it is

characterized as the complement of the vanishing locus of det.
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Jesús Mart́ın Ovejero (USAL) The moduli space of principal bundles with formal trivializations over algebraic curvesBarcelona, 2021 12 / 40



Goals The moduli space Bun∞G,C The uniformization theorem Projective immersion and Pgg-algebras

Serre Theorem

Theorem

Let X be a k-scheme and let G be a linear algebraic semisimple group equipped

with a faithful representation ρ : G ↪→ SL(V ), with V an n-dimensional k-vector

space. There exists an equivalence of groupoids{
G -bundles over X

}
'
{
G -reductions over X

}
we send each G -bundle to (EP , sP), and, conversely, each G -reduction (E , s) is

mapped to the G -bundle PE := s∗(Isom(VX ,E )).

The above correspondence is functorial in X : given a morphism of schemes

f : S → X , it holds that (Ef ∗P , sf ∗P) = (f ∗EP , f
∗sP) y Pf ∗E = f ∗PE .
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Serre Theorem

1 We have removed all the hypotheses on the base scheme.

2 We have proved that the correspondence is well behaved under base change.

3 The extra data we want to introduce must be compatible with the Serre

Correspondence
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Formal trivializations

Definition

Let X a formal scheme and let G = Spec(k[G ]) a linear algebraic group. A

G -bundle over X is a formal scheme P over X equipped with a G -action together

with a morphism of formal schemes π : P→ X which is G -invariant, qc, faithfully

flat, and there exists an isomorphism of formal schemes

P×Spf(k) ×G ' P×X P

In this setting, the trivial G -bundle over X is defined as the formal scheme

X×Spf(k) G equipped with the G -action given by the multiplication of G . The

map π : X×Spf(k) G → X is the projection on the first factor.
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Formal trivializations

Definition

Let X be a k-scheme and let Z ⊂ X be a closed subscheme defined by an ideal J .

Let us use the notation Zn := Spec(OX/J n+1). The completion of X along Z is

defined as the formal scheme Z whose underlying topological space is |Z |, and the

sheaf of rings is OZ := lim←−OZn .

Definition

Let P → X be a G -bundle over X and let Z be a closed subscheme. We define

G -formal bundle associated to P over the completion of X along Z as the pair

(P,OP) being P the underlying topological space of the pullback of P to Z , and

OP the sheaf of rings obtained as the projective limit of the sheaves OPn , being

Pn the pullback of P to Zn.
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Formal trivializations

Theorem

Let Z ⊆ X be a closed subscheme and let P → X a G -bundle.

1 The G -bundle associated to P on the completion of X along Z is a G -bundle.

2 The following conditions are equivalent

1 The associated formal G -bundle P→ Z is isomorphic to Z× G .

2 For each n ≥ 1, we have G -equivariant isomorphisms Pn ' Zn × G

compatibles with the inductive systems defined by (Zn) and (Pn).

3 For some n, Pn is trivializable.
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Jesús Mart́ın Ovejero (USAL) The moduli space of principal bundles with formal trivializations over algebraic curvesBarcelona, 2021 17 / 40



Goals The moduli space Bun∞G,C The uniformization theorem Projective immersion and Pgg-algebras

Formal trivializations

Theorem

Let Z ⊆ X be a closed subscheme and let P → X a G -bundle.

1 The G -bundle associated to P on the completion of X along Z is a G -bundle.

2 The following conditions are equivalent

1 The associated formal G -bundle P→ Z is isomorphic to Z× G .

2 For each n ≥ 1, we have G -equivariant isomorphisms Pn ' Zn × G

compatibles with the inductive systems defined by (Zn) and (Pn).

3 For some n, Pn is trivializable.
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Formal trivializations

1 From now on C denotes an algebraic projective smooth curve, p ∈ C is a

fixed closed point and ÔC ,p ' k[[t]] is a fixed isomorphism.

2 Let S be a k-scheme and let P → C × S be a G -bundle. P induces a formal

G -bundle over the completion of C × S along {p} × S .

3 There exists a bijection between the set of formal trivializations of P and the

set of formal trivializations of the associated vector bundle EP .Let us point

out that a formal trivialization of E is an isomorphism Êp×S ' OS [[t]]⊕n.

Definition

Let (E , s) be a G -reduction over C × S . A formal trivialization of (E , s) is an

isomorphism of sheaves Êp×S ' OS [[t]]⊕n.
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Definition

Let (E , s) be a G -reduction over C × S . A formal trivialization of (E , s) is an

isomorphism of sheaves Êp×S ' OS [[t]]⊕n.
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Definition

Let (P, ψ)(P ′, ψ′) be two G -bundles over C × S equipped with formal

trivializations. A morphism of pairs (P, ψ)→ (P ′, ψ′) is a morphism of G -bundles

f : P → P ′, such that the induced map between the associated formal bundles

f̂ : P→ P′, is compatible with the given formal trivializations

P
f̂ //

ψ $$

P′

ψ′zz
D× S × G

Definition

Let (E , s, ψ), and (E ′, s ′, ψ′) be two G -reductions equipped with a formal

trivialization of the vector bundles. A morphism of those objects is a morphism of

G -reductions f : (E , s)→ (E ′, s ′) such that the induced map between the

compeltions of E and E ′ along p × S is compatible with ψ and ψ′.
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Formal trivializations

Theorem

There exists an equivalence of groupoids which is functorial on S

{ G -bundles over C × S

with formal trivializations

along {p} × S

}
'
{ G -reductions over C × S with

formal trivializations

along {p} × S

}
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The moduli space Bun∞G ,C

• Let us consider the moduli space U∞C . A point of this moduli space is a pair

(E , ψ) being E a vector bundle of rank n over C × S , and ψ a formal

trivialization of E along {p} × S . The moduli space is a closed subscheme of

the infinite Grassmannian Gr(k((t))⊕n).

Definition

We define the determinant morphism det∞ as the map between functors

∞
det : U∞C (S)→ Pic•C (S)

(E , ψ) 7→ det E := ∧nE

• We define the moduli space of vector bundles with formal trivialization and

trivial determinant as U∞,trivC := U∞C ×PicC {[OC ]}
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Jesús Mart́ın Ovejero (USAL) The moduli space of principal bundles with formal trivializations over algebraic curvesBarcelona, 2021 21 / 40



Goals The moduli space Bun∞G,C The uniformization theorem Projective immersion and Pgg-algebras

Definition

We define the functor Bun∞G ,C as

Schk → Sets

S 7→ [P, ψ]

1 P is a G -bundle over C × S (with respect to the étale topology),

2 ψ is a formal trivialization of P,that is, an G -equivariant isomorphism over

D× S , ψ : P ' D× S × G

3 two pairs (P, ψ), (P ′, ψ′) are equivalent if there exists an isomorphism of

G -bundles over C × S such that f is compatible with ψ and ψ′

The universal pair of U∞,trivC is denoted by (EU , ψU ). We use the notation

AU :=
(
S•O

C×U∞,triv
C

(VU ⊗ E∨U )
)G

where VU := V ⊗k OC×U∞,triv
C

.
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Theorem

The functor Bun∞G ,C is representable.

Proof.

Let us consider the scheme
(

Spec(AU )
)
detU

, where detU is the descent of the

determinant section attached to EU y VU .
(

Spec(AU )
)
detU

denotes the open

subscheme of Spec(AU ) where the section detU does not vanish.

Since the representation ρ : G ↪→ SL(V ) is fixed, through the Serre

correspondence, we have defined a forgetful map from Bun∞G ,C to the functor of

points of U∞,trivC :

Bun∞G ,C →
(
U∞,trivC

)•
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Proof.

To prove the representability of Bun∞G ,C is equivalent to prove that the forgetful

map is representable, which is equivalent to prove the representability of the

scheme of sections of the map

Spec(AU )det → U∞,trivC × C

The scheme of sections is representable due to the good properties of

AU =
(
S•O

C×U∞,triv
C

(VU ⊗ E∨U )
)G
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The forgetful mapπ∞

• ¿How are relate Bun∞G ,C and BunG ,C?

We can assign To each k-scheme X a stack SX over Schk in a canonical way.

The

objects of the stack are pairs (S , f ) being S a k-scheme and f : S → X a

morphism of k-schemes. A morphism of objects (S , f )→ (S ′, g) is a morphism of

k-schemes h : S → S ′ making the following diagram commutative

S
h //

f ��

S ′

g
~~

X

Definition

We define the forgetful map π∞ : S Bun∞G ,C → BunG ,C by sending each triple

(S ,P, ψ), to the pair (S ,P).
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The forgetful map π∞

Definition

A group G is said to be special if every G -bundle with respect to the étale

topology, is a G -bundle with respect to the Zariski topology.

Theorem

If Schk is equipped with the Zariski topology, then π∞ is surjective when G is

special.

If we replace the Zariski topology by the fppf topology or the étale topology, then

π∞ is surjective for every group G .
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Jesús Mart́ın Ovejero (USAL) The moduli space of principal bundles with formal trivializations over algebraic curvesBarcelona, 2021 27 / 40



Goals The moduli space Bun∞G,C The uniformization theorem Projective immersion and Pgg-algebras

Loop Group

Definition

Given a group G , we define the positive Loop group of G , L+G , as the

representative of the functor that assign to each affine k-scheme Spec(R), the

group Hom(k[G ],R[[z ]]).

Let us give a geometric interpretation. Let us consider the functor

AutG : Schk → Groups

assigning to each k-scheme S , the automorphism group of the trivial G -bundle

over D× S , this is

AutG (S) := AutD×S(D× S × G )

Theorem

The sheafification of AutG is canonically isomorphic to L+G .
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The uniformization Theorem

• The group AutG acts on the moduli space Bun∞G ,C .

• Let P → C × S be a G -bundle, ψ : P ' D× S × G a formal trivialization,

and γ ∈ AutG (S) = AutD×S(D× S × G ) an automorphism. The action is

given by the following formula

(P, ψ) · γ := (P, γ−1 ◦ ψ)

Theorem

Let G be a linear semisimple special algebraic group. There exists an isomorphism

of stacks over Schk (equipped with the Zariski topology).

[Bun∞G ,C /AutG ] ' BunG ,C

The theorem is true for any linear semisimple group G if we consider the étale

topology on Schk.
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Jesús Mart́ın Ovejero (USAL) The moduli space of principal bundles with formal trivializations over algebraic curvesBarcelona, 2021 30 / 40



Goals The moduli space Bun∞G,C The uniformization theorem Projective immersion and Pgg-algebras

We have the following situation

Bun∞G ,C
� � // Sect(Spec(S•(AU)G )→ U∞,trivC × C )

• We prove that Sect(Spec(S•AU))→ U∞,trivC × C ) admits a natural

immersion in the scheme of sections of a projective bundle.

• We prove that there exists a canonical immersion of Spec(AU) in a projective

bundle.

• To obtain the above results we need to study the algebra of invariants

AU = S•(VU ⊗ EU )G .
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Pgg-algebras and properties

Definition

Let R be a ring. A partial algebra over R with support I is to give {Ai ,mij}i,j∈I
where each Ai is an R-module, and each mij is a bilinear map of R-modules,

which is known as the multiplication map

mij : Ai × Aj → Ai+j para todo i , j ∈ I con i + j ∈ I

The multiplication maps must satisfy the commutative property

mij(ai , aj) = mji (aj , ai ) for every ai ∈ Ai , aj ∈ Aj and every pair of index i , j with

i , j , i + j ∈ I ; The multiplication maps must verify the associative property (when

it makes sense)

mi+j,k ◦ (mij , 1) = mi,j+k ◦ (1,mjk)
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Let AlgR be the category of R-algebras. Given a natural number t > 0 and a

graded R-algebra A = ⊕n≥0An, there exists a natural transformation of functors

on AlgR

Φ≤t : HomR-alg(A,−) −→ HomR-alg-parcial(A≤t ,−)

for each R-algebra B, the above transformation is defined as

Φ≤t(B) : HomR-alg(A,B) −→ HomR-part-alg(A≤t ,B)

f 7−→ Φ≤t(B)(f ) := (fi := f |Ai )i=0,...,t

(1)

Definition

Let A = ⊕n≥0An be a graded R-algebra. We say that A is a graded partially

generated R-algebra, or for the sake of simplicity, a pgg-R-algebra, if A0 = R and

there exists a natural number t such that Φ≤t is an isomorphism of functors on

AlgR . In this case we say that A is a t-pgg-R-algebra.
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• Any graded algebra of finitely presented is a pgg-algebra.

• Let V be k-vector space and let G be a linear algebraic semisimple group

acting on V through a faithful representation ρ : G ↪→ SL(V ). The ring of

invariants k[V ]G := (S•kV
∗)G is a pgg-k-algebra.

• If A is a t-pgg-R-algebra and R → R ′ is a ring homomorphism, then,

AR′ := A⊗R R ′ is a t-pgg-R ′-algebra.
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Canonical immersion

If A = ⊕i≥0Ai is a graded R-algebra generated by its elements of degree 1, there

exists an immersion locally closed Spec(A)→ P(R ⊕ A1).

Theorem

Let A be a tA-pgg-R-algebra and let t := tA + 1. Then, the map

SpecA→ SpecR factorizes through a locally closed immersion of SpecR-schemes

SpecA ↪→ P
(
⊕

1≤|d|≤t
Sd1A1 ⊗R · · · ⊗R SdtAt

)
The closure of the image is given by Proj(A⊗R R[T ]). Besides, there exists a

natural action of G := Autk−alg−grad(A) over P
(
⊕

1≤|d|≤t
Sd1A1 ⊗R · · · ⊗R SdtAt

)
such that the above immersion is G-equivariant.
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Generalization of Nagata Theorem

• Nagata proves that for any finitely generated k-algebra A and every faithful

representation ρ : G → Autk−alg (A), the ring of invariants AG ⊂ A is a

finitely generated k-algebra when G is reductive.

• Seshadri proves a generalization of the above Theorem. If R is a finitely

generated k-algebra, G a reductive algebraic group, M finitely generated free

R-module and ρ : G•R → AutR−mod(M) a representation, then the algebra of

invariants S•R(M∨)GR is finitely generated over R.

• We study the algebra (S•T (M∨ ⊗R N))GT , with R an arbitrary k-algebra, M

being a free finitely generated R-module, ρ : G•R → AutR−mod(M) a faithful

representation, T an arbitrary R-algebra and N a T -module.
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Theorem

Let R be a k-algebra, T a R-algebra, M a free R-module of finite rank, and N a

T -module. Let G be a linear semisimple algebraic group over k together with a

faithful representation ρ : G•R ↪→ AutR−mod(M). Let A denotes the graded

T -algebra (S•T (M∨ ⊗R N)GT . Then

1 If G is a classical group, then A is a T -pgg-algebra.

2 If N is finitely presented, then A is a finitely presented T -algebra.

3 If N is finitely generated, then A is a finitely generated T -algebra.

4 If the representation is ρ : G• → Autk−mod(V ), being V a k-vector space,

and we assume that M := V ⊗k R then, if N is a flat T -module, then A is a

flat T -algebra.

Besides, if R → T is a finitely presented map (resp. flat), 1), 2) (resp. 3)) are still

valid if we replace T by R.
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Projective immersion

Theorem

Let R be a k-algebra, T a R-algebra, M a free R-module of finite rank and N a

T -module. Let G be a linear semisimple algebraic group over k together with a

faithful representation ρ : G•R ↪→ AutR−mod(M). If N is finitely presented, or G is

a classical group (Sln, SOn, Sp2n), then there exists a natural locally closed

immersion

ΦM,N,G : Spec

((
S•T (M∨ ⊗R N)

)GT

)
↪→ P

(
⊕

1≤|d|≤d
Sd1A1 ⊗R · · · ⊗R SdtAt

)
with Ai =

(
S i (M∨ ⊗R N))GT , for some natural number d .

Besides, if G is one of

the classical groups, d depends on G but does not depend on N. In any case,

ΦM,N,G is AutT (N)-equivariant.
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Theorem

Let G be a linear semisimple classical algebraic group (SLn,SOn,Sp2n) over k
equipped with a faithful representation ρ : G• ↪→ SL(V ). There exists a canonical

immersion of Bun∞G ,C in the scheme of sections of the projective bundle

P
(
⊕

1≤|d|≤t
Sd1A1 ⊗R · · · ⊗R SdtAt

)
→ U∞,trivC × C

with Ai =
(
S i
O

C×U∞,triv
C

(VU ⊗ E∨U )
)G

. Therefore, Bun∞G ,C can be described as a

subscheme of the scheme of sections of Proj(AU [T ])→ U∞,trivC × C .
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Thank you for your attention.
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