The moduli space of principal bundles with formal trivializations over algebraic curves

Jesús Martín Ovejero

Universidad de Salamanca

Barcelona, 2021

< □ > < 同 > < 回 > < 回 >

1 A. Ramanathan, Moduli for principal bundles over algebraic curves: I, II

 A. Ramanathan, Moduli for principal bundles over algebraic curves: I, II
A. H. W. Schmitt, Singular principal bundles over higher dimensional manifolds and their moduli spaces,

- 1 A. Ramanathan, Moduli for principal bundles over algebraic curves: I, II
- A. H. W. Schmitt, Singular principal bundles over higher dimensional manifolds and their moduli spaces,
- 3 T. L. Gómez e I. Sols, Stable tensors and moduli space of orthogonal sheaves,

- 1 A. Ramanathan, Moduli for principal bundles over algebraic curves: I, II
- A. H. W. Schmitt, Singular principal bundles over higher dimensional manifolds and their moduli spaces,
- 3 T. L. Gómez e I. Sols, Stable tensors and moduli space of orthogonal sheaves,
- ④ A. Langer, T. L. Gómez, A. H. W. Schmitt, I. Sols, Moduli spaces for principal bundles in large characteristic

Contents

Goals

- **2** The moduli space $\operatorname{Bun}_{G,C}^{\infty}$
- 3 The uniformization theorem
- Projective immersion and Pgg-algebras

Goals •		

Goals

• Construction of a fine moduli space for principal bundles over algebraic curves.

Goals		
•		

Goals

- Construction of a fine moduli space for principal bundles over algebraic curves.
- Relations with the stack of principal bundles.

イロン イロン イヨン イヨン

Goals			
•	000000000000000000000000000000000000000	0000	0000000

Goals

- Construction of a fine moduli space for principal bundles over algebraic curves.
- Relations with the stack of principal bundles.
- Immersion of the moduli space in the scheme of sections of a projective bundle.

Contents

Goals

2 The moduli space $\operatorname{Bun}_{G,C}^{\infty}$

3 The uniformization theorem

Projective immersion and Pgg-algebras

The moduli space $\operatorname{Bun}^{\infty}_{C}$	
•00000000000000000	

▲□▶ ▲圖▶ ▲国▶ ▲国▶

The moduli space Bun <i>∝</i> ●000000000000000000000000000000000000	

1 k denotes an algebraically closed field of characteristic zero and G is an affine connected semisimple algebraic group.

• • • • • • • • • • • •

- **1** \Bbbk denotes an algebraically closed field of characteristic zero and G is an affine connected semisimple algebraic group.
- We need to give a notion of principal bundle valid over an arbitrary scheme. We don't assumme that schemes are noetherian, quasi-compact or quasi-separated.

< □ > < 同 > < 回 > < 回 >

- **1** \Bbbk denotes an algebraically closed field of characteristic zero and G is an affine connected semisimple algebraic group.
- We need to give a notion of principal bundle valid over an arbitrary scheme. We don't assumme that schemes are noetherian, quasi-compact or quasi-separated.
- Orincipal bundles have automorphisms, so we add extra data (rigidification of the problem).

- **1** \Bbbk denotes an algebraically closed field of characteristic zero and G is an affine connected semisimple algebraic group.
- We need to give a notion of principal bundle valid over an arbitrary scheme. We don't assumme that schemes are noetherian, quasi-compact or quasi-separated.
- Orincipal bundles have automorphisms, so we add extra data (rigidification of the problem).
- We translate the problem of principal bundles with formal trivializations to a problem concerning vector bundles with a formal trivialization of the vector bundle.

The moduli space $\operatorname{Bun}_{C}^{\infty}$	
0000000000000000000	

Definition

A *G*-bundle over *X* with respect to the Zariski topology (resp. étale, fppf, fpqc) is a *G*-system (P, π) over *X* such that π is quasi-compact, quasi-separated and such that there exists a covering $\{f : U_i \to X\}_{i \in I}$ of *X* with respect to the Zariski topology (resp. étale, fppf, fpqc) such that for each index $i \in I$ there exists an isomorphism of *G*-systems over U_i

< ロ > < 同 > < 回 > < 回 >

The moduli space $\operatorname{Bun}_{C}^{\infty}$	
0000000000000000000	

Theorem

Let $\pi : P \to X$ a G-system over X, with π being qc and qs. The following conditions are equivalent

1 $P \rightarrow X$ is a G-bundle with respect to the étale topology,

Theorem

Let $\pi : P \to X$ a G-system over X, with π being qc and qs. The following conditions are equivalent

- 1 $P \rightarrow X$ is a G-bundle with respect to the étale topology,
- **2** π is smooth, surjective, and the G-action on P is free and transitive, that is, the following natural map

$$egin{aligned} \mathsf{P} imes_\Bbbk & \mathsf{G} o \mathsf{P} imes_X \mathsf{P} \ & (p,g) \mapsto (p,p \cdot g) \end{aligned}$$

is an isomorphism of X-schemes.

• The structural map $\pi: P \to X$ is affine.

イロト イヨト イヨト イヨト

- The structural map $\pi: P \to X$ is affine.
- A morphism of *G*-bundles with respect to the étale topology is an isomorphism.

イロト イヨト イヨト イヨト

- The structural map $\pi: P \to X$ is affine.
- A morphism of *G*-bundles with respect to the étale topology is an isomorphism.
- If the *G*-bundle admits a section, then, it is isomorphic to the trivial bundle.

< □ > < 同 > < 回 > < 回 >

- The structural map $\pi: P \to X$ is affine.
- A morphism of *G*-bundles with respect to the étale topology is an isomorphism.
- If the *G*-bundle admits a section, then, it is isomorphic to the trivial bundle.
- A principal *G*-bundle with respect to the étale topology is a universal geometric quotient.

- The structural map $\pi: P \to X$ is affine.
- A morphism of *G*-bundles with respect to the étale topology is an isomorphism.
- If the *G*-bundle admits a section, then, it is isomorphic to the trivial bundle.
- A principal *G*-bundle with respect to the étale topology is a universal geometric quotient.
- If F is a quasi-projective scheme equipped with a G-action, then there exists the associated fiber space P×^G F := (P×F)/G → X, which is the fiber space over X with typical fibre F.

- The structural map $\pi: P \to X$ is affine.
- A morphism of *G*-bundles with respect to the étale topology is an isomorphism.
- If the *G*-bundle admits a section, then, it is isomorphic to the trivial bundle.
- A principal *G*-bundle with respect to the étale topology is a universal geometric quotient.
- If F is a quasi-projective scheme equipped with a G-action, then there exists the associated fiber space P×^G F := (P×F)/G → X, which is the fiber space over X with typical fibre F.
- Extension and reduction of the structure group.

• We want to **linearize** the moduli problem. From principal bundles to vector bundles.

- We want to **linearize** the moduli problem. From principal bundles to vector bundles.
- In the classical setting Serre proves the following

- We want to **linearize** the moduli problem. From principal bundles to vector bundles.
- In the classical setting Serre proves the following

Theorem

Let X be an algebraic variety X over \Bbbk , and let $H \subset G$ be an algebraic closed subgroup of G. To give the data of an H-bundle is equivalent to give a G-bundle together with a section s of the associated fiber space of typical fiber G/H

$$P \times^{G} (G/H) = P/H \longrightarrow X$$

• We fix a k-vector space V and a faithful representation $\rho: G \hookrightarrow SL(V)$.

- We fix a k-vector space V and a faithful representation $\rho: G \hookrightarrow SL(V)$.
- The associated fiber space E_P := P ×^G V is a vector bundle with trivial determinant and we have the following commutative diagram

- We fix a k-vector space V and a faithful representation $\rho: G \hookrightarrow SL(V)$.
- The associated fiber space $E_P := P \times^G V$ is a vector bundle with trivial determinant and we have the following commutative diagram

• Conversely, given a G-reduction (E, s), we have a G-bundle

 $\det \mathfrak{h}: \mathfrak{O}_{H} \to \wedge V_{\mathbb{H}}^{\vee} \otimes_{\mathfrak{O}_{\mathbb{H}}} \wedge \mathcal{E}_{\mathbb{H}}$

$$\det \mathfrak{h} : \mathfrak{O}_H o \wedge V^{ee}_{\mathbb{H}} \otimes_{\mathfrak{O}_{\mathbb{H}}} \wedge \mathcal{E}_{\mathbb{H}}$$

 The line sheaf ∧V[∨]_H ⊗_{O_H} ∧E_H is known as determinant line sheaf over H, and det h is the determinant section.

$$\mathsf{det}\,\mathfrak{h}:\mathfrak{O}_H\to\wedge V^\vee_\mathbb{H}\otimes_{\mathfrak{O}_\mathbb{H}}\wedge\mathcal{E}_\mathbb{H}$$

- The line sheaf ∧V[∨]_H ⊗_{O_H} ∧E_H is known as determinant line sheaf over H, and det h is the determinant section.
- The determinant line sheaf is equipped with a *G*-linearization and the determinant section is *G*-invariant.

 $\det \mathfrak{h}: \mathfrak{O}_H \to \wedge V_{\mathbb{H}}^{\vee} \otimes_{\mathfrak{O}_{\mathbb{H}}} \wedge \mathcal{E}_{\mathbb{H}}$

- The line sheaf ∧ V[∨]_H ⊗_{O_H} ∧ E_H is known as determinant line sheaf over H, and det h is the determinant section.
- The determinant line sheaf is equipped with a *G*-linearization and the determinant section is *G*-invariant.
- \mathbb{I} is characterized as the open subscheme of \mathbb{H} where det \mathfrak{h} does not vanish.

イロト イヨト イヨト イヨト

 $\det \mathfrak{h}: \mathfrak{O}_H \to \wedge V_{\mathbb{H}}^{\vee} \otimes_{\mathfrak{O}_{\mathbb{H}}} \wedge \mathcal{E}_{\mathbb{H}}$

- The line sheaf ∧ V[∨]_H ⊗_{O_H} ∧ E_H is known as determinant line sheaf over H, and det h is the determinant section.
- The determinant line sheaf is equipped with a *G*-linearization and the determinant section is *G*-invariant.
- \mathbb{I} is characterized as the open subscheme of \mathbb{H} where det \mathfrak{h} does not vanish.
- Since G is reductive, ℍ → ℍ//G := Spec(S[•]_{O_X}(V[∨] ⊗ E)^G) is a universal good quotient. The determinant line sheaf descends to the quotient, as well as the determinant section. The descent of the determinant section is denoted by ∂et.

The moduli space $\operatorname{Bun}_{G,C}^{\infty}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
• In $\mathbb{H} := \underline{\text{Hom}}(V_X, E)$ we have the universal map $\mathfrak{h} : V_{\mathbb{H}} \to \mathcal{E}_{\mathbb{H}}$ which induces $\wedge V_{\mathbb{H}} \to \wedge \mathcal{E}_{\mathbb{H}}$ This latter one can be expressed as

 $\det \mathfrak{h}: \mathfrak{O}_{H} \to \wedge V_{\mathbb{H}}^{\vee} \otimes_{\mathfrak{O}_{\mathbb{H}}} \wedge \mathcal{E}_{\mathbb{H}}$

- The line sheaf ∧V[∨]_H ⊗_{O_H} ∧E_H is known as determinant line sheaf over H, and det h is the determinant section.
- The determinant line sheaf is equipped with a *G*-linearization and the determinant section is *G*-invariant.
- \mathbb{I} is characterized as the open subscheme of \mathbb{H} where det \mathfrak{h} does not vanish.
- Since G is reductive, ℍ → ℍ//G := Spec(S[•]_{O_X}(V[∨] ⊗ E)^G) is a universal good quotient. The determinant line sheaf descends to the quotient, as well as the determinant section. The descent of the determinant section is denoted by ∂et.
- Since ρ lands in SL(V), I/G → H//G is an open subscheme and it is characterized as the complement of the vanishing locus of ∂et.

Theorem

Let X be a k-scheme and let G be a linear algebraic semisimple group equipped with a faithful representation $\rho : G \hookrightarrow SL(V)$, with V an n-dimensional k-vector space. There exists an equivalence of groupoids

$$\left\{ G\text{-bundles over }X
ight\} \simeq \left\{ G\text{-reductions over }X
ight\}$$

we send each *G*-bundle to (E_P, s_P) , and, conversely, each *G*-reduction (E, s) is mapped to the *G*-bundle $P_E := s^*(\underline{\text{Isom}}(V_X, E))$.

The above correspondence is functorial in X: given a morphism of schemes $f: S \to X$, it holds that $(E_{f^*P}, s_{f^*P}) = (f^*E_P, f^*s_P)$ y $P_{f^*E} = f^*P_E$.

イロト イヨト イヨト イヨト

1 We have removed all the hypotheses on the base scheme.

イロン イロン イヨン イヨン

- 1 We have removed all the hypotheses on the base scheme.
- 2 We have proved that the correspondence is well behaved under base change.

イロン イロン イヨン イヨン

- 1 We have removed all the hypotheses on the base scheme.
- 2 We have proved that the correspondence is well behaved under base change.
- On The extra data we want to introduce must be compatible with the Serre Correspondence

イロト イヨト イヨト イヨト

Definition

Let \mathfrak{X} a formal scheme and let $G = \operatorname{Spec}(\Bbbk[G])$ a linear algebraic group. A *G*-bundle over \mathfrak{X} is a formal scheme \mathfrak{P} over \mathfrak{X} equipped with a *G*-action together with a morphism of formal schemes $\pi : \mathfrak{P} \to \mathfrak{X}$ which is *G*-invariant, qc, faithfully flat, and there exists an isomorphism of formal schemes

 $\mathfrak{P} \times_{\mathsf{Spf}(\Bbbk)} \times G \simeq \mathfrak{P} \times_{\mathfrak{X}} \mathfrak{P}$

Definition

Let \mathfrak{X} a formal scheme and let $G = \operatorname{Spec}(\Bbbk[G])$ a linear algebraic group. A *G*-bundle over \mathfrak{X} is a formal scheme \mathfrak{P} over \mathfrak{X} equipped with a *G*-action together with a morphism of formal schemes $\pi : \mathfrak{P} \to \mathfrak{X}$ which is *G*-invariant, qc, faithfully flat, and there exists an isomorphism of formal schemes

$$\mathfrak{P} imes_{\mathsf{Spf}(\Bbbk)} imes \mathsf{G} \simeq \mathfrak{P} imes_{\mathfrak{X}} \mathfrak{P}$$

In this setting, the trivial *G*-bundle over \mathfrak{X} is defined as the formal scheme $\mathfrak{X} \times_{\mathsf{Spf}(\Bbbk)} G$ equipped with the *G*-action given by the multiplication of *G*. The map $\pi : \mathfrak{X} \times_{\mathsf{Spf}(\Bbbk)} G \to \mathfrak{X}$ is the projection on the first factor.

イロト イヨト イヨト イヨト

Definition

Let X be a k-scheme and let $Z \subset X$ be a closed subscheme defined by an ideal \mathcal{J} . Let us use the notation $Z_n := \operatorname{Spec}(\mathcal{O}_X/\mathcal{J}^{n+1})$. The **completion** of X along Z is defined as the formal scheme \mathfrak{Z} whose underlying topological space is |Z|, and the sheaf of rings is $\mathcal{O}_3 := \varprojlim \mathcal{O}_{Z_n}$.

Definition

Let X be a k-scheme and let $Z \subset X$ be a closed subscheme defined by an ideal \mathcal{J} . Let us use the notation $Z_n := \operatorname{Spec}(\mathcal{O}_X/\mathcal{J}^{n+1})$. The **completion** of X along Z is defined as the formal scheme \mathfrak{Z} whose underlying topological space is |Z|, and the sheaf of rings is $\mathcal{O}_3 := \varprojlim \mathcal{O}_{Z_n}$.

Definition

Let $P \to X$ be a *G*-bundle over *X* and let *Z* be a closed subscheme. We define *G*-formal bundle associated to *P* over the completion of *X* along *Z* as the pair $(\mathfrak{P}, \mathfrak{O}_{\mathfrak{P}})$ being \mathfrak{P} the underlying topological space of the pullback of *P* to *Z*, and $\mathfrak{O}_{\mathfrak{P}}$ the sheaf of rings obtained as the projective limit of the sheaves \mathfrak{O}_{P_n} , being *P*_n the pullback of *P* to *Z*_n.

イロト イヨト イヨト

Theorem

Let $Z \subseteq X$ be a closed subscheme and let $P \rightarrow X$ a G-bundle.

1 The G-bundle associated to P on the completion of X along Z is a G-bundle.

Theorem

Let $Z \subseteq X$ be a closed subscheme and let $P \rightarrow X$ a *G*-bundle.

- **1** The G-bundle associated to P on the completion of X along Z is a G-bundle.
- 2 The following conditions are equivalent

Theorem

- Let $Z \subseteq X$ be a closed subscheme and let $P \rightarrow X$ a *G*-bundle.
 - **1** The G-bundle associated to P on the completion of X along Z is a G-bundle.
 - 2 The following conditions are equivalent
 - **1** The associated formal G-bundle $\mathfrak{P} \to \mathfrak{Z}$ is isomorphic to $\mathfrak{Z} \times G$.

Theorem

Let $Z \subseteq X$ be a closed subscheme and let $P \rightarrow X$ a *G*-bundle.

- **1** The G-bundle associated to P on the completion of X along Z is a G-bundle.
- 2 The following conditions are equivalent
 - **1** The associated formal G-bundle $\mathfrak{P} \to \mathfrak{Z}$ is isomorphic to $\mathfrak{Z} \times G$.
 - 2 For each n ≥ 1, we have G-equivariant isomorphisms P_n ≃ Z_n × G compatibles with the inductive systems defined by (Z_n) and (P_n).

Theorem

Let $Z \subseteq X$ be a closed subscheme and let $P \rightarrow X$ a *G*-bundle.

- **1** The G-bundle associated to P on the completion of X along Z is a G-bundle.
- 2 The following conditions are equivalent
 - **1** The associated formal G-bundle $\mathfrak{P} \to \mathfrak{Z}$ is isomorphic to $\mathfrak{Z} \times G$.
 - 2 For each n ≥ 1, we have G-equivariant isomorphisms P_n ≃ Z_n × G compatibles with the inductive systems defined by (Z_n) and (P_n).
 - **3** For some n, P_n is trivializable.

● From now on C denotes an algebraic projective smooth curve, p ∈ C is a fixed closed point and Ô_{C,p} ≃ k[[t]] is a fixed isomorphism.

- From now on C denotes an algebraic projective smooth curve, p ∈ C is a fixed closed point and Ô_{C,p} ≃ k[[t]] is a fixed isomorphism.
- **2** Let *S* be a \Bbbk -scheme and let $P \to C \times S$ be a *G*-bundle.

- From now on C denotes an algebraic projective smooth curve, p ∈ C is a fixed closed point and Ô_{C,p} ≃ k[[t]] is a fixed isomorphism.
- ② Let S be a k-scheme and let P → C × S be a G-bundle. P induces a formal G-bundle over the completion of C × S along {p} × S.

イロト イヨト イヨト

- From now on C denotes an algebraic projective smooth curve, p ∈ C is a fixed closed point and Ô_{C,p} ≃ k[[t]] is a fixed isomorphism.
- ② Let S be a k-scheme and let P → C × S be a G-bundle. P induces a formal G-bundle over the completion of C × S along {p} × S.
- **3** There exists a bijection between the set of formal trivializations of P and the set of formal trivializations of the associated vector bundle E_P .

イロト イヨト イヨト

- From now on C denotes an algebraic projective smooth curve, p ∈ C is a fixed closed point and Ô_{C,p} ≃ k[[t]] is a fixed isomorphism.
- ② Let S be a k-scheme and let P → C × S be a G-bundle. P induces a formal G-bundle over the completion of C × S along {p} × S.

Definition

Let (E, s) be a *G*-reduction over $C \times S$. A formal trivialization of (E, s) is an isomorphism of sheaves $\widehat{\mathcal{E}}_{p \times S} \simeq \mathcal{O}_{S}[[t]]^{\oplus n}$.

イロト イヨト イヨト イヨト

Let $(P, \psi)(P', \psi')$ be two *G*-bundles over $C \times S$ equipped with formal trivializations. A morphism of pairs $(P, \psi) \rightarrow (P', \psi')$ is a morphism of *G*-bundles $f: P \rightarrow P'$, such that the induced map between the associated formal bundles $\widehat{f}: \mathfrak{P} \rightarrow \mathfrak{P}'$, is compatible with the given formal trivializations

Let $(P, \psi)(P', \psi')$ be two *G*-bundles over $C \times S$ equipped with formal trivializations. A morphism of pairs $(P, \psi) \rightarrow (P', \psi')$ is a morphism of *G*-bundles $f: P \rightarrow P'$, such that the induced map between the associated formal bundles $\widehat{f}: \mathfrak{P} \rightarrow \mathfrak{P}'$, is compatible with the given formal trivializations

Definition

Let (E, s, ψ) , and (E', s', ψ') be two *G*-reductions equipped with a formal trivialization of the vector bundles. A morphism of those objects is a morphism of *G*-reductions $f : (E, s) \rightarrow (E', s')$ such that the induced map between the compeltions of *E* and *E'* along $p \times S$ is compatible with ψ and ψ' .

Theorem

There exists an equivalence of groupoids which is functorial on S

$$\left\{\begin{array}{c} G\text{-bundles over } C \times S \\ \text{with formal trivializations} \\ \text{along } \{p\} \times S\end{array}\right\} \simeq \left\{\begin{array}{c} G\text{-reductions over } C \times S \text{ with} \\ \text{formal trivializations} \\ \text{along } \{p\} \times S\end{array}\right\}$$

イロト イヨト イヨト イヨト

The moduli space $Bun_{G,C}^{\infty}$

Let us consider the moduli space U[∞]_C. A point of this moduli space is a pair (E, ψ) being E a vector bundle of rank n over C × S, and ψ a formal trivialization of E along {p} × S. The moduli space is a closed subscheme of the infinite Grassmannian Gr(k((t))^{⊕n}).

The moduli space $Bun_{G,C}^{\infty}$

Let us consider the moduli space U[∞]_C. A point of this moduli space is a pair (E, ψ) being E a vector bundle of rank n over C × S, and ψ a formal trivialization of E along {p} × S. The moduli space is a closed subscheme of the infinite Grassmannian Gr(k((t))^{⊕n}).

Definition

We define the determinant morphism \det^∞ as the map between functors

$$\det^{\infty} : \mathcal{U}^{\infty}_{\mathcal{C}}(S) o \operatorname{Pic}^{ullet}_{\mathcal{C}}(S)$$

 $(\mathcal{E}, \psi) \mapsto \det \mathcal{E} := \wedge^{n} \mathcal{E}$

The moduli space $Bun_{G,C}^{\infty}$

Let us consider the moduli space U[∞]_C. A point of this moduli space is a pair (E, ψ) being E a vector bundle of rank n over C × S, and ψ a formal trivialization of E along {p} × S. The moduli space is a closed subscheme of the infinite Grassmannian Gr(k((t))^{⊕n}).

Definition

We define the determinant morphism det^∞ as the map between functors

$$\det^{\infty} : \mathcal{U}^{\infty}_{\mathcal{C}}(S) o \operatorname{Pic}^{ullet}_{\mathcal{C}}(S)$$

 $(\mathcal{E}, \psi) \mapsto \det \mathcal{E} := \wedge^{n} \mathcal{E}$

• We define the moduli space of vector bundles with formal trivialization and trivial determinant as $\mathcal{U}_{C}^{\infty,triv} := \mathcal{U}_{C}^{\infty} \times_{\operatorname{Pic}_{C}} \{[\mathcal{O}_{C}]\}$

We define the functor $\operatorname{Bun}_{G,C}^{\infty}$ as

 $\mathbf{Sch}_{\Bbbk}
ightarrow \mathbf{Sets}$ $S \mapsto [P, \psi]$

<ロ> (日) (日) (日) (日) (日)

We define the functor $\operatorname{Bun}_{G,C}^{\infty}$ as

 $\mathbf{Sch}_{\Bbbk} o \mathbf{Sets}$ $S \mapsto [P, \psi]$

1 *P* is a *G*-bundle over $C \times S$ (with respect to the étale topology),

We define the functor $\operatorname{Bun}_{G,C}^{\infty}$ as

 $\mathbf{Sch}_{\Bbbk} o \mathbf{Sets}$ $S \mapsto [P, \psi]$

- **1** *P* is a *G*-bundle over $C \times S$ (with respect to the étale topology),
- **2** ψ is a formal trivialization of *P*,that is, an *G*-equivariant isomorphism over $\mathbb{D} \times S, \ \psi : \mathfrak{P} \simeq \mathbb{D} \times S \times G$

We define the functor $\operatorname{Bun}_{G,C}^{\infty}$ as

 $\mathbf{Sch}_{\Bbbk} o \mathbf{Sets}$ $S \mapsto [P, \psi]$

- **1** *P* is a *G*-bundle over $C \times S$ (with respect to the étale topology),
- **2** ψ is a formal trivialization of *P*,that is, an *G*-equivariant isomorphism over $\mathbb{D} \times S$, $\psi : \mathfrak{P} \simeq \mathbb{D} \times S \times G$
- two pairs (P, ψ), (P', ψ') are equivalent if there exists an isomorphism of G-bundles over C × S such that f is compatible with ψ and ψ'

We define the functor $\operatorname{Bun}_{G,C}^{\infty}$ as

 $\mathbf{Sch}_{\Bbbk} \to \mathbf{Sets}$ $S \mapsto [P, \psi]$

- **1** *P* is a *G*-bundle over $C \times S$ (with respect to the étale topology),
- **2** ψ is a formal trivialization of *P*,that is, an *G*-equivariant isomorphism over $\mathbb{D} \times S$, $\psi : \mathfrak{P} \simeq \mathbb{D} \times S \times G$
- two pairs (P, ψ), (P', ψ') are equivalent if there exists an isomorphism of G-bundles over C × S such that f is compatible with ψ and ψ'

The universal pair of $\mathcal{U}_{C}^{\infty,triv}$ is denoted by $(\mathcal{E}_{\mathcal{U}},\psi_{\mathcal{U}})$. We use the notation $\mathcal{A}_{\mathcal{U}} := \left(S_{\mathcal{O}_{C\times\mathcal{U}_{C}^{\infty,triv}}}^{\bullet}(V_{\mathcal{U}}\otimes\mathcal{E}_{\mathcal{U}}^{\vee})\right)^{G}$ where $V_{\mathcal{U}} := V \otimes_{\mathbb{k}} \mathcal{O}_{C\times\mathcal{U}_{C}^{\infty,triv}}$.

イロト イヨト イヨト イヨト

	ls

Theorem

The functor $Bun_{G,C}^{\infty}$ is representable.

<ロ> (日) (日) (日) (日) (日)

Theorem

The functor $Bun_{G,C}^{\infty}$ is representable.

Proof.

Let us consider the scheme $(\operatorname{Spec}(\mathcal{A}_{\mathcal{U}}))_{\mathfrak{det}_{\mathcal{U}}}$, where $\mathfrak{det}_{\mathcal{U}}$ is the descent of the determinant section attached to $\mathcal{E}_{\mathcal{U}}$ y $V_{\mathcal{U}}$. $(\operatorname{Spec}(\mathcal{A}_{\mathcal{U}}))_{\mathfrak{det}_{\mathcal{U}}}$ denotes the open subscheme of $\operatorname{Spec}(\mathcal{A}_{\mathcal{U}})$ where the section $\mathfrak{det}_{\mathcal{U}}$ does not vanish.

Theorem

The functor $\operatorname{Bun}_{G,C}^{\infty}$ is representable.

Proof.

Let us consider the scheme $(\operatorname{Spec}(\mathcal{A}_{\mathcal{U}}))_{\mathfrak{det}_{\mathcal{U}}}$, where $\mathfrak{det}_{\mathcal{U}}$ is the descent of the determinant section attached to $\mathcal{E}_{\mathcal{U}}$ y $V_{\mathcal{U}}$. $(\operatorname{Spec}(\mathcal{A}_{\mathcal{U}}))_{\mathfrak{det}_{\mathcal{U}}}$ denotes the open subscheme of $\operatorname{Spec}(\mathcal{A}_{\mathcal{U}})$ where the section $\mathfrak{det}_{\mathcal{U}}$ does not vanish. Since the representation $\rho: G \hookrightarrow SL(V)$ is fixed, through the Serre correspondence, we have defined a forgetful map from $\operatorname{Bun}_{G,C}^{\infty,triv}$ to the functor of points of $\mathcal{U}_{C}^{\infty,triv}$:

$$\mathsf{Bun}^{\infty}_{G,C} o \left(\mathcal{U}^{\infty,\mathit{triv}}_{C}\right)^{ullet}$$

Proof.

To prove the representability of $\operatorname{Bun}_{G,C}^{\infty}$ is equivalent to prove that the forgetful map is representable, which is equivalent to prove the representability of the scheme of sections of the map

$$\mathsf{Spec}(\mathcal{A}_{\mathcal{U}})_{\mathfrak{det}}
ightarrow \mathcal{U}^{\infty,\mathit{triv}}_{\mathcal{C}} imes \mathcal{C}$$

イロト イヨト イヨト イヨー

Proof.

To prove the representability of $\operatorname{Bun}_{G,C}^{\infty}$ is equivalent to prove that the forgetful map is representable, which is equivalent to prove the representability of the scheme of sections of the map

$$\mathsf{Spec}(\mathcal{A}_{\mathcal{U}})_{\mathfrak{det}}
ightarrow \mathcal{U}^{\infty,\mathit{triv}}_{\mathcal{C}} imes \mathcal{C}$$

The scheme of sections is representable due to the good properties of $\mathcal{A}_{\mathcal{U}} = \left(S^{\bullet}_{\mathcal{O}_{C \times \mathcal{U}^{\infty, triv}_{C}}}(V_{\mathcal{U}} \otimes \mathcal{E}^{\vee}_{\mathcal{U}})\right)^{G}$

< □ > < 同 > < 回 > < 回 >

Contents

1 Goals

2 The moduli space $\operatorname{Bun}_{G,C}^{\infty}$

3 The uniformization theorem

Projective immersion and Pgg-algebras
• ¿How are relate $Bun_{G,C}^{\infty}$ and $Bun_{G,C}$?

We can assign To each \Bbbk -scheme X a stack SX over **Sch** $_{\Bbbk}$ in a canonical way.

• ¿How are relate $Bun_{G,C}^{\infty}$ and $Bun_{G,C}$?

We can assign To each k-scheme X a stack SX over \mathbf{Sch}_{\Bbbk} in a canonical way. The objects of the stack are pairs (S, f) being S a k-scheme and $f : S \to X$ a morphism of k-schemes.

• ¿How are relate $Bun_{G,C}^{\infty}$ and $Bun_{G,C}$?

We can assign To each k-scheme X a stack SX over \mathbf{Sch}_{k} in a canonical way. The objects of the stack are pairs (S, f) being S a k-scheme and $f : S \to X$ a morphism of k-schemes. A morphism of objects $(S, f) \to (S', g)$ is a morphism of k-schemes $h : S \to S'$ making the following diagram commutative

イロト 不得 トイヨト イヨト

• ¿How are relate $Bun_{G,C}^{\infty}$ and $Bun_{G,C}$?

We can assign To each k-scheme X a stack SX over $\mathbf{Sch}_{\mathbb{k}}$ in a canonical way. The objects of the stack are pairs (S, f) being S a k-scheme and $f : S \to X$ a morphism of k-schemes. A morphism of objects $(S, f) \to (S', g)$ is a morphism of k-schemes $h : S \to S'$ making the following diagram commutative

Definition

We define the forgetful map $\pi^{\infty} : S \operatorname{Bun}_{G,C}^{\infty} \to \operatorname{Bun}_{G,C}$ by sending each triple (S, P, ψ) , to the pair (S, P).

Definition

A group G is said to be special if every G-bundle with respect to the étale topology, is a G-bundle with respect to the Zariski topology.

Definition

A group G is said to be special if every G-bundle with respect to the étale topology, is a G-bundle with respect to the Zariski topology.

Theorem

If $\mathbf{Sch}_{\mathbb{k}}$ is equipped with the Zariski topology, then π^{∞} is surjective when G is special.

Definition

A group G is said to be special if every G-bundle with respect to the étale topology, is a G-bundle with respect to the Zariski topology.

Theorem

If $\mathbf{Sch}_{\mathbb{k}}$ is equipped with the Zariski topology, then π^{∞} is surjective when G is special.

If we replace the Zariski topology by the fppf topology or the étale topology, then π^{∞} is surjective for every group G.

Loop Group

Definition

Given a group G, we define the positive Loop group of G, L^+G , as the representative of the functor that assign to each affine \Bbbk -scheme Spec(R), the group Hom($\Bbbk[G], R[[z]]$).

Loop Group

Definition

Given a group G, we define the positive Loop group of G, L^+G , as the representative of the functor that assign to each affine \Bbbk -scheme Spec(R), the group Hom($\Bbbk[G], R[[z]]$).

Let us give a geometric interpretation. Let us consider the functor

$$\operatorname{Aut}_G : \operatorname{\mathbf{Sch}}_{\Bbbk} \to \operatorname{\mathbf{Groups}}$$

assigning to each k-scheme S, the automorphism group of the trivial G-bundle over $\mathbb{D} \times S$, this is

$$\operatorname{Aut}_G(S) := \operatorname{Aut}_{\mathbb{D} \times S}(\mathbb{D} \times S \times G)$$

Loop Group

Definition

Given a group G, we define the positive Loop group of G, L^+G , as the representative of the functor that assign to each affine \Bbbk -scheme Spec(R), the group Hom($\Bbbk[G], R[[z]]$).

Let us give a geometric interpretation. Let us consider the functor

$$\operatorname{Aut}_G : \operatorname{\mathbf{Sch}}_{\Bbbk} \to \operatorname{\mathbf{Groups}}$$

assigning to each k-scheme S, the automorphism group of the trivial G-bundle over $\mathbb{D} \times S$, this is

$$\operatorname{Aut}_G(S) := \operatorname{Aut}_{\mathbb{D} \times S}(\mathbb{D} \times S \times G)$$

Theorem

The sheafification of Aut_G is canonically isomorphic to L^+G .

• The group Aut_G acts on the moduli space $\operatorname{Bun}_{G,C}^{\infty}$.

イロン イロン イヨン イヨン

- The group Aut_G acts on the moduli space $\operatorname{Bun}_{G,C}^{\infty}$.
- Let P → C × S be a G-bundle, ψ : 𝔅 ≃ 𝔅 × S × G a formal trivialization, and γ ∈ Aut_G(S) = Aut_{𝔅×S}(𝔅 × S × G) an automorphism. The action is given by the following formula

$$(P,\psi)\cdot\gamma:=(P,\gamma^{-1}\circ\psi)$$

- The group Aut_G acts on the moduli space $\operatorname{Bun}_{G,C}^\infty$.
- Let P → C × S be a G-bundle, ψ : 𝔅 ≃ 𝔅 × S × G a formal trivialization, and γ ∈ Aut_G(S) = Aut_{𝔅×S}(𝔅 × S × G) an automorphism. The action is given by the following formula

$$(P,\psi)\cdot\gamma:=(P,\gamma^{-1}\circ\psi)$$

Theorem

Let G be a linear semisimple special algebraic group. There exists an isomorphism of stacks over \mathbf{Sch}_{\Bbbk} (equipped with the Zariski topology).

 $[\mathsf{Bun}_{{\mathsf{G}},{\mathsf{C}}}^\infty \,/\, \mathsf{Aut}_{{\mathsf{G}}}] \simeq \mathsf{Bun}_{{\mathsf{G}},{\mathsf{C}}}$

- The group Aut_G acts on the moduli space $\operatorname{Bun}_{G,C}^\infty$.
- Let P → C × S be a G-bundle, ψ : 𝔅 ≃ 𝔅 × S × G a formal trivialization, and γ ∈ Aut_G(S) = Aut_{𝔅×S}(𝔅 × S × G) an automorphism. The action is given by the following formula

$$(P,\psi)\cdot\gamma:=(P,\gamma^{-1}\circ\psi)$$

Theorem

Let G be a linear semisimple special algebraic group. There exists an isomorphism of stacks over \mathbf{Sch}_{\Bbbk} (equipped with the Zariski topology).

 $[\mathsf{Bun}_{{\mathsf{G}},{\mathsf{C}}}^\infty \,/\, \mathsf{Aut}_{{\mathsf{G}}}] \simeq \mathsf{Bun}_{{\mathsf{G}},{\mathsf{C}}}$

The theorem is true for any linear semisimple group G if we consider the étale topology on \mathbf{Sch}_{\Bbbk} .

Contents

1 Goals

- **2** The moduli space $\operatorname{Bun}_{G,C}^{\infty}$
- 3 The uniformization theorem
- **4** Projective immersion and Pgg-algebras

	Projective immersion and Pgg-algebras
	•00000000

$$\mathsf{Bun}_{G,C}^{\infty} \subset \mathsf{Sect}(\mathsf{Spec}(S^{\bullet}(\mathcal{A}_U)^G) \to \mathcal{U}_C^{\infty,triv} \times C)$$

3

・ロト ・日 ・ ・ ヨト ・

			Projective immersion and Pgg-algebras
0	0000000000000000	0000	•00000000

$$\mathsf{Bun}^{\infty}_{G,C} \hookrightarrow \mathsf{Sect}(\mathsf{Spec}(S^{\bullet}(\mathcal{A}_U)^G) \to \mathcal{U}^{\infty,triv}_C \times C)$$

We prove that Sect(Spec(S[•]A_U)) → U_C^{∞,triv} × C) admits a natural immersion in the scheme of sections of a projective bundle.

• • • • • • • • • • • •

$$\mathsf{Bun}_{G,C}^{\infty} \hookrightarrow \mathsf{Sect}(\mathsf{Spec}(S^{\bullet}(\mathcal{A}_U)^G) \to \mathcal{U}_C^{\infty,triv} \times C)$$

- We prove that Sect(Spec(S[•]A_U)) → U_C^{∞,triv} × C) admits a natural immersion in the scheme of sections of a projective bundle.
- We prove that there exists a canonical immersion of Spec(A_U) in a projective bundle.

イロト イヨト イヨト

$$\mathsf{Bun}_{G,C}^{\infty} \subset \mathsf{Sect}(\mathsf{Spec}(S^{\bullet}(\mathcal{A}_U)^G) \to \mathcal{U}_C^{\infty,triv} \times C)$$

- We prove that Sect(Spec(S[•]A_U)) → U_C^{∞,triv} × C) admits a natural immersion in the scheme of sections of a projective bundle.
- We prove that there exists a canonical immersion of Spec(A_U) in a projective bundle.
- To obtain the above results we need to study the algebra of invariants $\mathcal{A}_U = S^{\bullet}(V_{\mathcal{U}} \otimes \mathcal{E}_{\mathcal{U}})^{\mathcal{G}}.$

イロト イヨト イヨト

Pgg-algebras and properties

Definition

Let *R* be a ring. A **partial algebra** over *R* with support *I* is to give $\{A_i, m_{ij}\}_{i,j\in I}$ where each A_i is an *R*-module, and each m_{ij} is a bilinear map of *R*-modules, which is known as the multiplication map

$$m_{ij}: A_i \times A_j \rightarrow A_{i+j}$$
 para todo $i, j \in I$ con $i+j \in I$

Pgg-algebras and properties

Definition

Let *R* be a ring. A **partial algebra** over *R* with support *I* is to give $\{A_i, m_{ij}\}_{i,j\in I}$ where each A_i is an *R*-module, and each m_{ij} is a bilinear map of *R*-modules, which is known as the multiplication map

$$m_{ij}: A_i \times A_j \rightarrow A_{i+j}$$
 para todo $i, j \in I$ con $i+j \in I$

The multiplication maps must satisfy the commutative property $m_{ij}(a_i, a_j) = m_{ji}(a_j, a_i)$ for every $a_i \in A_i$, $a_j \in A_j$ and every pair of index i, j with $i, j, i + j \in I$; The multiplication maps must verify the associative property (when it makes sense)

$$m_{i+j,k} \circ (m_{ij},1) = m_{i,j+k} \circ (1,m_{jk})$$

イロト イヨト イヨト イヨト

Let Alg_R be the category of *R*-algebras. Given a natural number t > 0 and a graded *R*-algebra $A = \bigoplus_{n \ge 0} A_n$, there exists a natural transformation of functors on Alg_R

Let Alg_R be the category of *R*-algebras. Given a natural number t > 0 and a graded *R*-algebra $A = \bigoplus_{n>0} A_n$, there exists a natural transformation of functors on \mathbf{Alg}_{R}

$$\Phi_{\leq t}: \operatorname{Hom}_{R\operatorname{-alg}}(A, -) \longrightarrow \operatorname{Hom}_{R\operatorname{-alg-parcial}}(A_{\leq t}, -)$$

Let Alg_R be the category of *R*-algebras. Given a natural number t > 0 and a graded *R*-algebra $A = \bigoplus_{n \ge 0} A_n$, there exists a natural transformation of functors on Alg_R

$$\Phi_{\leq t}: \mathsf{Hom}_{R\text{-}\mathsf{alg}}(A, -) \longrightarrow \mathsf{Hom}_{R\text{-}\mathsf{alg}\text{-}\mathsf{parcial}}(A_{\leq t}, -)$$

for each R-algebra B, the above transformation is defined as

$$\Phi_{\leq t}(B) : \operatorname{Hom}_{R\operatorname{-alg}}(A, B) \longrightarrow \operatorname{Hom}_{R\operatorname{-part-alg}}(A_{\leq t}, B)$$

$$f \longmapsto \Phi_{\leq t}(B)(f) := (f_i := f|_{A_i})_{i=0,\dots,t}$$

$$(1)$$

Let Alg_R be the category of R-algebras. Given a natural number t > 0 and a graded R-algebra $A = \bigoplus_{n \ge 0} A_n$, there exists a natural transformation of functors on Alg_R

$$\Phi_{\leq t}: \mathsf{Hom}_{R\text{-}\mathsf{alg}}(A, -) \longrightarrow \mathsf{Hom}_{R\text{-}\mathsf{alg}\text{-}\mathsf{parcial}}(A_{\leq t}, -)$$

for each R-algebra B, the above transformation is defined as

$$\Phi_{\leq t}(B) : \operatorname{Hom}_{R\operatorname{-alg}}(A, B) \longrightarrow \operatorname{Hom}_{R\operatorname{-part-alg}}(A_{\leq t}, B)$$

$$f \longmapsto \Phi_{\leq t}(B)(f) := (f_i := f|_{A_i})_{i=0,\dots,t}$$
(1)

Definition

Let $A = \bigoplus_{n \ge 0} A_n$ be a graded *R*-algebra. We say that *A* is a graded partially generated *R*-algebra, or for the sake of simplicity, a pgg-*R*-algebra, if $A_0 = R$ and there exists a natural number *t* such that $\Phi_{\le t}$ is an isomorphism of functors on **Alg**_{*R*}. In this case we say that *A* is a *t*-pgg-*R*-algebra.

< ロ > < 同 > < 回 > < 回 >

	Projective immersion and Pgg-algebras
	00000000

• Any graded algebra of finitely presented is a pgg-algebra.

イロト イヨト イヨト イヨト

Goals O	The moduli space $\operatorname{Bun}_{G,C}^{\infty}$	The uniformization theorem	Projective immersion and Pg 0000000000

- Any graded algebra of finitely presented is a pgg-algebra.
- Let V be k-vector space and let G be a linear algebraic semisimple group acting on V through a faithful representation ρ : G → SL(V). The ring of invariants k[V]^G := (S[•]_kV^{*})^G is a pgg-k-algebra.

< ロ > < 同 > < 回 > < 回 >

g-algebras

Goals O	The moduli space $\operatorname{Bun}_{G,C}^{\infty}$	The uniformization theorem	Projective immersion and

- Any graded algebra of finitely presented is a pgg-algebra.
- Let V be k-vector space and let G be a linear algebraic semisimple group acting on V through a faithful representation ρ : G → SL(V). The ring of invariants k[V]^G := (S[•]_kV^{*})^G is a pgg-k-algebra.
- If A is a t-pgg-R-algebra and $R \to R'$ is a ring homomorphism, then, $A_{R'} := A \otimes_R R'$ is a t-pgg-R'-algebra.

< ロ > < 同 > < 回 > < 回 >

Pgg-algebras

If $A = \bigoplus_{i \ge 0} A_i$ is a graded *R*-algebra generated by its elements of degree 1, there exists an immersion locally closed Spec $(A) \rightarrow \mathbb{P}(R \oplus A_1)$.

If $A = \bigoplus_{i \ge 0} A_i$ is a graded *R*-algebra generated by its elements of degree 1, there exists an immersion locally closed $\text{Spec}(A) \to \mathbb{P}(R \oplus A_1)$.

Theorem

Let A be a t_A -pgg-R-algebra and let $t := t_A + 1$. Then, the map

Spec $A \rightarrow$ Spec R factorizes through a locally closed immersion of Spec R-schemes

$$\operatorname{Spec} A \, \hookrightarrow \, \mathbb{P}\Big(\underset{1 \leq |\underline{d}| \leq t}{\oplus} S^{d_1} A_1 \otimes_R \cdots \otimes_R S^{d_t} A_t \Big)$$

If $A = \bigoplus_{i \ge 0} A_i$ is a graded *R*-algebra generated by its elements of degree 1, there exists an immersion locally closed $\text{Spec}(A) \to \mathbb{P}(R \oplus A_1)$.

Theorem

Let A be a t_A -pgg-R-algebra and let $t := t_A + 1$. Then, the map

Spec $A \rightarrow$ Spec R factorizes through a locally closed immersion of Spec R-schemes

$$\operatorname{Spec} A \hookrightarrow \mathbb{P} \Big(\bigoplus_{1 \leq |\underline{d}| \leq t} S^{d_1} A_1 \otimes_R \cdots \otimes_R S^{d_t} A_t \Big)$$

The closure of the image is given by $Proj(A \otimes_R R[T])$.

If $A = \bigoplus_{i \ge 0} A_i$ is a graded *R*-algebra generated by its elements of degree 1, there exists an immersion locally closed $\text{Spec}(A) \to \mathbb{P}(R \oplus A_1)$.

Theorem

Let A be a t_A -pgg-R-algebra and let $t := t_A + 1$. Then, the map

Spec $A \rightarrow$ Spec R factorizes through a locally closed immersion of Spec R-schemes

$$\operatorname{Spec} A \, \hookrightarrow \, \mathbb{P}\Big(\underset{1 \leq |\underline{d}| \leq t}{\oplus} S^{d_1} A_1 \otimes_R \cdots \otimes_R S^{d_t} A_t \Big)$$

The closure of the image is given by $\operatorname{Proj}(A \otimes_R R[T])$. Besides, there exists a natural action of $\mathcal{G} := \operatorname{Aut}_{\Bbbk-alg-grad}(A)$ over $\mathbb{P}\left(\bigoplus_{1 \leq |\underline{d}| \leq t} S^{d_1}A_1 \otimes_R \cdots \otimes_R S^{d_t}A_t \right)$ such that the above immersion is \mathcal{G} -equivariant.

イロト イヨト イヨト イヨト

Generalization of Nagata Theorem

• Nagata proves that for any finitely generated \Bbbk -algebra A and every faithful representation $\rho : G \to \operatorname{Aut}_{\Bbbk-alg}(A)$, the ring of invariants $A^G \subset A$ is a finitely generated \Bbbk -algebra when G is reductive.

イロト イヨト イヨト

Generalization of Nagata Theorem

- Nagata proves that for any finitely generated k-algebra A and every faithful representation ρ : G → Aut_{k-alg}(A), the ring of invariants A^G ⊂ A is a finitely generated k-algebra when G is reductive.
- Seshadri proves a generalization of the above Theorem. If R is a finitely generated k-algebra, G a reductive algebraic group, M finitely generated free R-module and ρ : G[•]_R → <u>Aut_{R-mod}(M)</u> a representation, then the algebra of invariants S[•]_R(M[∨])^{G_R} is finitely generated over R.

イロト イボト イヨト イヨト

Generalization of Nagata Theorem

- Nagata proves that for any finitely generated k-algebra A and every faithful representation $\rho: G \to \operatorname{Aut}_{\Bbbk-alg}(A)$, the ring of invariants $A^G \subset A$ is a finitely generated k-algebra when G is reductive.
- Seshadri proves a generalization of the above Theorem. If R is a finitely generated k-algebra, G a reductive algebraic group, M finitely generated free *R*-module and $\rho: G_R^{\bullet} \to \underline{\operatorname{Aut}}_{R-mod}(M)$ a representation, then the algebra of invariants $S_R^{\bullet}(M^{\vee})^{G_R}$ is finitely generated over R.
- We study the algebra $(S^{\bullet}_{\tau}(M^{\vee} \otimes_R N))^{G_{\tau}}$, with R an arbitrary k-algebra, M being a free finitely generated R-module, $\rho: G_R^{\bullet} \to \underline{\operatorname{Aut}}_{R-mod}(M)$ a faithful representation, T an arbitrary R-algebra and N a T-module.

イロト 不得 トイヨト イヨト 二日

Theorem

Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

イロト イヨト イヨト
Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

1 If G is a classical group, then A is a T-pgg-algebra.

Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

- **1** If G is a classical group, then A is a T-pgg-algebra.
- 2 If N is finitely presented, then A is a finitely presented T-algebra.

Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

- **1** If G is a classical group, then A is a T-pgg-algebra.
- 2 If N is finitely presented, then A is a finitely presented T-algebra.
- **3** If N is finitely generated, then A is a finitely generated T-algebra.

Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

- **1** If G is a classical group, then A is a T-pgg-algebra.
- 2 If N is finitely presented, then A is a finitely presented T-algebra.
- 3 If N is finitely generated, then A is a finitely generated T-algebra.
- (a) If the representation is $\rho : G^{\bullet} \to \underline{Aut}_{\Bbbk-mod}(V)$, being $V \ a \ \Bbbk$ -vector space, and we assume that $M := V \otimes_{\Bbbk} R$ then, if N is a flat T-module, then A is a flat T-algebra.

< □ > < □ > < □ > < □ > < □ >

Let *R* be a k-algebra, *T* a *R*-algebra, *M* a free *R*-module of finite rank, and *N* a *T*-module. Let *G* be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \operatorname{Aut}_{R-mod}(M)$. Let *A* denotes the graded *T*-algebra $(S_T^{\bullet}(M^{\vee} \otimes_R N)^{G_T})$. Then

- **1** If G is a classical group, then A is a T-pgg-algebra.
- 2 If N is finitely presented, then A is a finitely presented T-algebra.
- 3 If N is finitely generated, then A is a finitely generated T-algebra.
- **a** If the representation is $\rho : G^{\bullet} \to \underline{\operatorname{Aut}}_{\Bbbk mod}(V)$, being $V \neq \mathbb{K}$ -vector space, and we assume that $M := V \otimes_{\mathbb{K}} R$ then, if N is a flat T-module, then A is a flat T-algebra.

Besides, if $R \to T$ is a finitely presented map (resp. flat), 1), 2) (resp. 3)) are still valid if we replace T by R.

イロト イヨト イヨト イヨト

Projective immersion

Theorem

Let R be a k-algebra, T a R-algebra, M a free R-module of finite rank and N a T-module. Let G be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \underline{\operatorname{Aut}}_{R-mod}(M)$. If N is finitely presented, or G is a classical group (SI_n, SO_n, Sp_{2n}), then there exists a natural locally closed immersion

$$\Phi_{M,N,G}: \operatorname{Spec}\left(\left(S^{\bullet}_{\mathcal{T}}(M^{\vee}\otimes_{R}N)\right)^{G_{\mathcal{T}}}\right) \hookrightarrow \mathbb{P}\left(\bigoplus_{1\leq |d|\leq d} S^{d_{1}}A_{1}\otimes_{R}\cdots\otimes_{R}S^{d_{t}}A_{t}\right)$$

with $A_i = (S^i(M^{\vee} \otimes_R N))^{G_T}$, for some natural number d.

< □ > < □ > < □ > < □ > < □ >

Projective immersion

Theorem

Let R be a k-algebra, T a R-algebra, M a free R-module of finite rank and N a T-module. Let G be a linear semisimple algebraic group over k together with a faithful representation $\rho : G_R^{\bullet} \hookrightarrow \underline{\operatorname{Aut}}_{R-mod}(M)$. If N is finitely presented, or G is a classical group (SI_n, SO_n, Sp_{2n}), then there exists a natural locally closed immersion

$$\Phi_{M,N,G}: \operatorname{Spec}\left(\left(S^{\bullet}_{\mathcal{T}}(M^{\vee}\otimes_{R}N)\right)^{G_{\mathcal{T}}}\right) \hookrightarrow \mathbb{P}\left(\bigoplus_{1\leq |\underline{d}|\leq d} S^{d_{1}}A_{1}\otimes_{R}\cdots\otimes_{R}S^{d_{t}}A_{t}\right)$$

with $A_i = (S^i(M^{\vee} \otimes_R N))^{G_T}$, for some natural number d. Besides, if G is one of the classical groups, d depends on G but does not depend on N. In any case, $\Phi_{M,N,G}$ is $\operatorname{Aut}_T(N)$ -equivariant.

Let G be a linear semisimple classical algebraic group (SL_n, SO_n, Sp_{2n}) over \Bbbk equipped with a faithful representation $\rho : G^{\bullet} \hookrightarrow SL(V)$. There exists a canonical immersion of $Bun_{G,C}^{\infty}$ in the scheme of sections of the projective bundle

$$\mathbb{P}\big(\bigoplus_{1\leq |\underline{d}|\leq t} S^{d_1}A_1\otimes_R\cdots\otimes_R S^{d_t}A_t\big)\to \mathcal{U}_C^{\infty,triv}\times C$$

with $A_i = \left(S_{\mathcal{O}_{C \times \mathcal{U}_C^{\infty, triv}}}^i(V_{\mathcal{U}} \otimes \mathcal{E}_{\mathcal{U}}^{\vee})\right)^G$. Therefore, $\operatorname{Bun}_{G,C}^{\infty}$ can be described as a subscheme of the scheme of sections of $\operatorname{Proj}(\mathcal{A}_{\mathcal{U}}[T]) \to \mathcal{U}_C^{\infty, triv} \times C$.

イロト イヨト イヨト イヨト

Thank you for your attention.

イロト イロト イヨト イヨト