Gröbner's problem and the geometry of GT-varieties.

Liena Colarte Gómez

Jornada de jóvenes doctores en geometría algebraica, Barcelona 2021

Joint work with R. M. Miró Roig

Universitat de Barcelona

Content.

New contributions to Gröbner's problem.

- Gröbner's problem and monomial projections.
- Invariants of finite abelian groups.
- \overline{G} -varieties and the Lefschetz properties: GT-varieties.

- **2** The geometry of \overline{G} -varieties.
 - Hilbert function and Hilbert series.
 - The homogeneous ideal.
 - The canonical module.
 - The Castelnuovo–Mumford regularity.

- $\bullet~\mathbb{K},$ algebraically closed field of characteristic zero.
- $R = \mathbb{K}[x_0, \ldots, x_n]$, the polynomial ring.

$$R = \bigoplus_{t \ge 0} R_t$$
, dim_K $R_t = \binom{n+t}{n} =: N_{n,t}$

GL(n+1, 𝔅), the group of invertible (n+1)-square matrices over 𝔅.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

- R^{Λ} , the ring of invariants of a finite group $\Lambda \in GL(n+1,\mathbb{K})$.
- CM, Cohen-Macaulay and
- *aCM*, arithmetically Cohen-Macaulay.

Gröbner's problem.

The Veronese variety $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ of \mathbb{P}^n is the *n*-dimensional projective variety parameterized by the set of all monomials of degree *d* in *R*:

$$\mathcal{M}_{n,d} = \{x_0^{a_0} \cdots x_n^{a_n} \in R \mid a_0 + \cdots + a_n = d\}.$$

Definition

A monomial projection $Y_{n,d} \subset \mathbb{P}^{\mu_{n,d}-1}$ of $X_{n,d}$ is a projective variety parameterized by a subset $\Omega_{n,d} \subset \mathcal{M}_{n,d}$ of $\mu_{n,d} \leq N_{n,d}$ monomials.

- For N_{n,d} μ_{n,d} = 1,2,3, Y_{n,d} is called, respectively, a simple, double, triple monomial projection of the Veronese variety X_{n,d}.
- For N_{n,d} − μ_{n,d} ≥ 4, Y_{n,d} is called a *multiple* monomial projection of the Veronese variety X_{n,d}.

Gröbner's problem.

$$\Omega_{n,d} = \{m_{i_1}, \ldots, m_{i_{\mu_{n,d}}}\} \subset \mathcal{M}_{n,d} = \{m_1, \ldots, m_{N_{n,d}}\}$$

イロン 不同 とくほう イヨン しほう

(1967) Gröbner proved that the Veronese variety $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ is an aCM variety.

The simple monomial projection $Y_{n,d} \subset \mathbb{P}^{N_{n,d}-2}$ of $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ parameterized by $\Omega_{n,d} = \mathcal{M}_{n,d} \setminus \{x_i^{d-2}x_j^2\}$ is a **non aCM** variety.

The simple monomial projection $Y_{n,d} \subset \mathbb{P}^{N_{n,d}-2}$ of $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ parameterized by $\Omega_{n,d} = \mathcal{M}_{n,d} \setminus \{x_i^d\}$ is an **aCM** variety.

Problem (Gröbner's problem)

To determine when a monomial projection $Y_{n,d}$ of the Veronese variety $X_{n,d}$ is an aCM variety.

イロト イポト イヨト イヨト 一臣

Gröbner's problem.

The rational normal curve $X_{1,d} \subset \mathbb{P}^d$ is the Veronese curve parameterized by all monomials of degree d in $\mathbb{K}[x_0, x_1]$:

$$\mathcal{M}_{1,d} = \{x_0^d, x_0^{d-1}x_1, x_0^{d-2}x_1^2, \dots, x_0x_1^{d-1}, x_1^d\}.$$

Example

We take
$$d = 4$$
, $\mathcal{M}_{1,4} = \{x_0^4, x_0^3 x_1, x_0^2 x_1^2, x_0 x_1^3, x_1^4\}.$

$$\Omega_{1,4} = \{x_0^4, x_0^3 x_1, x_0 x_1^3, x_1^4\} = \mathcal{M}_{1,4} \setminus \{x_0^2 x_1^2\}.$$

 $\mathbb{K}[\Omega_{1,4}]$ is the first example of a non CM domain due to Macaulay, so the simple monomial projection $Y_{1,4} \subset \mathbb{P}^3$ parameterized by $\Omega_{1,4}$ is a non aCM curve. If instead of $x_0^2 x_1^2$ we delete the monomial x_0^4 , we obtain a rational twisted cubic in \mathbb{P}^3 , which is an aCM curve.

イロト イヨト イヨト イヨト

Gröbner's problem.

Consider a monomial projection $Y_{n,d} \subset \mathbb{P}^{\mu_{n,d}-1}$ of $X_{n,d}$ parameterized by $\Omega_{n,d} = \{m_1, \ldots, m_{\mu_{n,d}}\}.$

We take $w_1, \ldots, w_{\mu_{n,d}}$ new variables and we set $S = \mathbb{K}[w_1, \ldots, w_{\mu_{n,d}}]$.

 $I(Y_{n,d})$ is the kernel of the morphism

$$\rho: S \to \mathbb{K}[m_1, \ldots, m_{\mu_{n,d}}] =: \mathbb{K}[\Omega_{n,d}], \quad \rho(w_i) = m_i$$

 $A(Y_{n,d}) \cong \mathbb{K}[\Omega_{n,d}]$, i.e the semigroup ring of the affine semigroup

$$\mathsf{H}(\Omega_{n,d}) = \langle (a_0,\ldots,a_n) \mid x_0^{a_0} \ldots x_n^{a_n} \in \Omega_{n,d} \rangle \subset \mathbb{Z}_{\geq 0}^{n+1}.$$

 $I(Y_{n,d})$ is the binomial prime ideal generated by

$$\left\{\prod_{i=1}^{\mu_{n,d}} w_i^{\alpha_i} - \prod_{i=1}^{\mu_{n,d}} w_i^{\beta_i} \mid \prod_{i=1}^{\mu_{n,d}} m_i^{\alpha_i} = \prod_{i=1}^{\mu_{n,d}} m_i^{\beta_i}, \alpha_i, \beta_i \in \mathbb{Z}_{\geq 0}\right\}.$$

イロト 不得 トイヨト イヨト 二日

Gröbner's problem. Techniques

• Normal affine semigroups $H \subset \mathbb{Z}_{\geq 0}^{n+1}$, i.e. if $h_1, h_2, h_3 \in H$ and $zh_1 = zh_2 + h_3$ for some $z \in \mathbb{Z}_{\geq 0}$, then there exists $h \in H$ such that $h_3 = zh$.

Theorem (Hochster)

If H is normal, then $\mathbb{K}[H]$ is a CM ring.

• Simplicial affine semigroups $H \subset \mathbb{Z}_{\geq 0}^{n+1}$, i.e. there are \mathbb{Q} -linearly independent elements $e_0, \ldots, e_n \in \overline{H}$ and $z \in \mathbb{Z}_{\geq 0}$ such that zH is contained in the affine semigroup $\langle e_0, \ldots, e_n \rangle$.

Theorem (Goto, Suzuki, Watanabe, Hoa, Trung)

Set $H_1 := \{h \in \overline{H} \mid h + e_i \in H \text{ and } h + e_j \in H \text{ for some } 0 \le i \ne j \le n\}$. Then, $\mathbb{K}[H]$ is a CM ring if and only if $H = H_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Gröbner's problem in terms of the deleted monomials.

- (Schenzel) Simple monomial projections.
- (Trung) Double monomial projections.
- (Hoa) Triple monomial projections.

Monomial projections of the rational normal curve $X_{1,d} \subset \mathbb{P}^d$

- (Cavaliere, Niesi) Simplicial case.
- (Trung) In general.

Gröbner's problem for multiple monomial projections of the Veronese varieties remains barely known.

Let $G \subset \mathsf{GL}(n+1,\mathbb{K})$ be a finite abelian group of order $d = d_1 \cdots d_s$.

$$G = \Gamma_1 \oplus \cdots \oplus \Gamma_s \subset GL(n+1,\mathbb{K})$$

where each Γ_i is a cyclic group of order d_i with $d_i|d_i + 1$ and it is generated by a diagonal matrix of the form $M_{d_i;\gamma_0,\ldots,\gamma_n} := \text{diag}(e_i^{\gamma_0},\ldots,e_i^{\gamma_n})$, i.e.

$$\left(\begin{array}{ccccc} e_{i}^{\gamma_{0}} & 0 & \cdots & 0 \\ 0 & e_{i}^{\gamma_{1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_{i}^{\gamma_{n}} \end{array}\right)$$

with e_i a d_i th primitive root of $1 \in \mathbb{K}$ and $\text{GCD}(d_i, \gamma_0, \dots, \gamma_n) = 1$.

The ring of invariants of G

$$R^G = \{p \in R \mid g(p) = p, \forall g \in G\} = \oplus_{t \ge 0} R^G_t, R^G_t = R_t \cap R^G.$$

R^G has a minimal set {m₁,..., m_N} of monomial generators of degree at most ord(G) = d, i.e. R^G = K[m₁,..., m_N]. {m₁,..., m_N} is called a *minimal set of fundamental invariants of G*.

Theorem (Eagon, Hochster)

The ring \mathbb{R}^{Λ} of invariants of a finite group $\Lambda \subset GL(n+1, \mathbb{K})$ is a CM ring.

イロト 不得 トイヨト イヨト

Example

We take $G = \langle M_{3;0,1,2} = \text{diag}(1, e, e^2) \rangle \subset \text{GL}(3, \mathbb{K})$. A minimal set of generators of R^G consists of monomials of degree 1, 2 and 3:

 $\{x_0, x_1x_2, x_1^3, x_2^3\}.$

We consider the *d*th Veronese subalgebra $R^{\overline{G}}$ of R^{G} :

$$R^{\overline{G}} = igoplus_{t\geq 0} R^{\overline{G}}_t = igoplus_{t\geq 0} R^G_{td} \subset igoplus_{t\geq 0} R^G_t.$$

 $R^{\overline{G}}$ is the ring of invariants of the abelian group $\overline{G} \subset GL(n+1, \mathbb{K})$ generated by the generators of G and the diagonal matrix diag (e, \ldots, e) , where e is a dth primitive root of $1 \in \mathbb{K}$. \overline{G} is called the *cyclic extension* of G.

・ロト ・日ト ・ヨト ・ヨト ・ヨ

Example (Last example)

We take $G = \langle M_{3;0,1,2} = \text{diag}(1, e, e^2) \rangle \subset \text{GL}(3, \mathbb{K})$. A minimal set of generators of R^G consists of monomials of degree 1, 2 and 3:

 $\{x_0, x_1x_2, x_1^3, x_2^3\}.$

Example (Taking the cyclic extension)

We take the cyclic extension $\overline{G} = \langle M_{3;0,1,2}, M_{3;1,1,1} \rangle \subset GL(3, \mathbb{K})$, an abelian group of order 9. A minimal set of generators of $R^{\overline{G}}$ consist of monomials of the same degree 3:

$$\{x_0^3, x_1^3, x_2^3, x_1x_2x_3\}.$$

イロト イポト イヨト イヨト

They parameterize an aCM monomial projection $Y_{2,3} \subset \mathbb{P}^3$ of the Veronese surface $X_{2,3} \subset \mathbb{P}^9$.

Theorem

The set \mathcal{B}_1 of all monomial invariants of G of degree d is a minimal set of generators of $R^{\overline{G}}$, i.e $R^{\overline{G}} = \mathbb{K}[\mathcal{B}_1]$.

$$\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\} \subset R ext{ with } |\mathcal{B}_1| = \mu_d.$$

Theorem

 \mathcal{B}_1 parameterizes an aCM monomial projection $X_d \subset \mathbb{P}^{\mu_d-1}$ of the Veronese variety $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$. We call X_d a \overline{G} -variety with group $G \subset GL(n+1,\mathbb{K})$.

通 ト イ ヨ ト イ ヨ ト ー

Invariants of finite abelian groups from Combinatorics.

The set of monomial invariants of *G* of degree *td* is a \mathbb{K} -basis of R_{td}^{G} , we denote it by \mathcal{B}_t . They are univocally determined by the set of $\mathbb{Z}_{>0}^{n+1}$ -solutions of the system of congruences $(*)_{\mathcal{A};t,r_1,\ldots,r_s}$:

$$\begin{cases} y_{0} + y_{1} + \cdots + y_{n} = td \\ \alpha^{1}_{\sigma_{1}(0)}y_{0} + \alpha^{1}_{\sigma_{1}(1)}y_{1} + \cdots + \alpha^{1}_{\sigma_{1}(n)}y_{n} = r_{1}d_{1} \\ \vdots \\ \alpha^{s}_{\sigma_{s}(0)}y_{0} + \alpha^{s}_{\sigma_{s}(1)}y_{1} + \cdots + \alpha^{s}_{\sigma_{s}(n)}y_{n} = r_{s}d_{s} \end{cases}$$

 $0 \leq r_i \leq \frac{\alpha_n^i t d}{d_i}, \ i=1,\ldots,s.$

Remark

$$(td, 0, ..., 0), ..., (0, ..., 0, td)$$
 are solutions of $(*)_{A;t;r_1,...,r_s}$.

The set of all these points forms a *normal simplicial affine semigroup* $H_A \subset \mathbb{Z}_{\geq 0}^{n+1}$. By Hochster's result, we obtain that $\mathbb{K}[H_A]$ is a CM ring.

\overline{G} -varieties and the Lefschetz properties. GT-varieties.

We denote by $I_d \subset R$ the monomial artinian ideal generated by the set $\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\}$ of fundamental invariants of \overline{G} .

Definition

An artinian ideal $J \subset R$ fails the weak Lefschetz property, shortly WLP, in degree i_0 if for any linear form $L \in (R/L)_1$ the multiplication map

 $\times L: (R/J)_{i_0} \to (R/J)_{i_0+1}$

does not have maximal rank, i.e. it is neither injective nor surjective.

Example

We take $J = \langle x_0^3, x_1^3, x_2^3, x_0 x_1 x_2 \rangle$. The ideal J fails the WLP in degree 2 since the multiplication map $\times L : (R/J)_2 \to (R/J)_3$ is not injective for any $L \in R_1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Togliatti systems

A connection between artinian ideals failing the WLP and the existence of projective varieties satisfying at least one Laplace equation:

Theorem (Mezzetti, Miró-Roig, Ottaviani (Tea Theorem))

Let $J \subset R$ be an artinian ideal generated by r forms F_1, \ldots, F_r of degree d and let J^{-1} be its Macaulay's inverse system. If $r \leq N_{n-1,d} = \binom{n-1+d}{n-1}$, then the following conditions are equivalent.

- (i) J fails the WLP in degree d 1.
- (ii) F_1, \ldots, F_r become \mathbb{K} -linearly dependent on a general hyperplane $H \subset \mathbb{P}^n$.
- (iii) The n-dimensional variety $Y := \overline{\varphi(\mathbb{P}^n)}$ satisfies at least one Laplace equation of order d 1, where $\varphi = \mathbb{P}^n \dashrightarrow \mathbb{P}^{N_{n,d}-r-1}$ is the rational map associated to J_d^{-1} .

They called a *Togliatti system* to any ideal J satisfying the equivalent conditions (i),(ii) and (iii).

Definition (*GT*-systems and *GT*-varieties)

Let $\Lambda \subset \operatorname{GL}(n+1,\mathbb{K})$ be a finite group of order d with $2 \leq n < d$. A Togliatti system $J \subset R$ generated by $r \leq N_{n-1,d}$ forms F_1, \ldots, F_r of degree d is said to be a GT-system with group Λ if the associated morphism $\varphi_J : \mathbb{P}^n \longrightarrow \mathbb{P}^{r-1}$ is a Galois covering with group Λ . In this case, $X = \varphi_J(\mathbb{P}^n)$ is called a GT-variety with group Λ .

Proposition (The Galois covering condition)

Let $\Lambda \subset GL(n + 1, \mathbb{K})$ be a finite group of order $|\Lambda|$ and $\mathcal{B} = \{g_1, \ldots, g_r\}$ a minimal set of homogeneous fundamental invariants of Λ with $\deg(g_1) = \cdots = \deg(g_r) =: d$. Let $\varphi_{\mathcal{B}} : \mathbb{P}^n \longrightarrow \mathbb{P}^{r-1}$ be the morphism defined by $(g_1 : \cdots : g_r)$. It holds:

 (i) R^Λ is the homogeneous coordinate ring of the projective variety X := φ_B(ℙⁿ) ⊂ ℙ^{r-1}. Thus X is the quotient variety ℙⁿ/Λ and it is an aCM variety.

・ロト ・回ト ・ヨト ・ヨト

э

(ii)
$$\varphi_{\mathcal{B}}: \mathbb{P}^n \longrightarrow \mathbb{P}^{r-1}$$
 is a Galois covering of \mathbb{P}^n with group Λ .

\overline{G} -varieties and GT-varieties.

Let $G \subset GL(n+1, \mathbb{K})$ an abelian group of order d, $\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\}$ the set of fundamental invariants of \overline{G} and $I_d = (\mathcal{B}_1) \subset R$.

Proposition

If $\mu_d \leq N_{n-1,d}$, then I_d is a GT-system with group $G \subset GL(n+1,\mathbb{K})$.

- Let $L \in (R/I_d)_1$ be a linear form.
- We set $F := \prod_{g \in G \setminus \{Id\}} g(L)$, which is a form of degree d 1.
- $L \cdot F = \prod_{g \in G} g(L)$ is a form of degree d. By construction, $L \cdot F$ is an invariant of G of degree d, thus $L \cdot F \in I_d$.
- The multiplication map $\times L : (R/I_d)_i \to (R/I_d)_{i+1}$ has maximal rank for any $0 \le i \le d-2$.
- Since $\mu_d \leq N_{n-1,d}$, $\times L : (R/I_d)_{d-1} \rightarrow (R/I_d)_d$ is neither injective nor surjective. So I_d fails the WLP in degree d 1.

The geometry of \overline{G} -varieties

Goals

- Hilbert function, Hilbert polynomial and Hilbert series.
- Degree.
- A minimal set of generators of the homogeneous ideal.
- Canonical module, Cohen-Macaulay type and Castelnuovo–Mumford regularity.

A minimal free resolution

We set $c := \operatorname{codim}(X_d) = \mu_d - n - 1$. A minimal graded free *S*-resolution F_{\bullet} of $A(X_d)$:

$$F_{\bullet}: \quad 0 \longrightarrow F_c \longrightarrow \cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow S \longrightarrow A(X_d) \longrightarrow 0,$$

where

$$F_i \cong \bigoplus_{j\geq 1}^{f_i} S(-j-i)^{\beta_{i,j}}$$

and $\beta_{i,f_i} > 0$, $1 \leq i \leq c$.

Hilbert function and Hilbert series

Hilbert function

$$\mathsf{HF}(A(X_d), t) = \dim_{\mathbb{K}}(S/I(X_d))_t = \dim_{\mathbb{K}} R_t^{\overline{G}}.$$

Proposition

For any $t \in \mathbb{Z}_{\geq 0}$, $HF(A(X_d), t)$ equals to the number of monomial invariants of G of degree td. Equivalently, it is the number of $\mathbb{Z}_{\geq 0}^{n+1}$ -solutions of the linear system of congruences:

$$\begin{cases} y_0 + y_1 + \cdots + y_n &= td \\ \alpha^1_{\sigma_1(0)} y_0 + \alpha^1_{\sigma_1(1)} y_1 + \cdots + \alpha^1_{\sigma_1(n)} y_n &\equiv 0 \mod d_1 \\ \vdots \\ \alpha^s_{\sigma_s(0)} y_0 + \alpha^s_{\sigma_s(1)} y_1 + \cdots + \alpha^s_{\sigma_s(n)} y_n &\equiv 0 \mod d_s \end{cases}$$

It provides a method to effectively compute $HF(A(X_d), t)$ in low dimension.

Let $G = \langle M_{d;0,\alpha_1,\alpha_2} \rangle \subset GL(3,\mathbb{K})$ be a cyclic group of order $d \ge 3$ and X_d a GT-surface with group G. We consider integers:

$$\alpha'_1 = \frac{\alpha_1}{\operatorname{GCD}(\alpha_1, d)}, \ d' = \frac{d}{\operatorname{GCD}(\alpha_1, d)}$$

 μ and $0 < \lambda \leq d'$ such that $\alpha_2 = \lambda \alpha'_1 + \mu d'$.

Theorem (-, Mezzetti, Miró-Roig)

Set
$$\theta(\alpha_1, \alpha_2, d) := (\alpha_1, d) + (\lambda, d') + (\lambda - (\alpha_1, d), d')$$
. Then,
(i) $HF(X_d, t) = \frac{d}{2}t^2 + \frac{1}{2}\theta(\alpha_1, \alpha_2, d)t + 1$.

(ii)
$$HS(X_d, z) = \frac{\frac{d-\theta(\alpha_1, \alpha_2, d)+2}{2}z^2 + \frac{d+\theta(\alpha_1, \alpha_2, d)-4}{2}z + 1}{(1-z)^3}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

From Invariant Theory: Molien series

Hilbert series

$$\mathsf{HS}(A(X_d), z) = \sum_{t \ge 0} \mathsf{HF}(A(X_d), t) z^t = \frac{h_s z^s + \dots + h_1 z + 1}{(1 - z)^{n+1}}$$

Proposition (An expression only in terms of the group \overline{G})

 $HS(A(X_d), z^d)$ is the Molien series of \overline{G} :

$$\frac{1}{|\overline{G}|}\sum_{g\in\overline{G}}\frac{1}{\det(\mathit{Id}-\mathit{zg})}.$$

Example

We take $2 \le n < d$ with d prime and a cyclic group of order d $G = \langle M_{d;\alpha_0,...,\alpha_n} \rangle \subset GL(n+1,\mathbb{K})$ such that $\alpha_0 < \alpha_1 < \cdots < \alpha_n < d$. Expanding the Molien series of \overline{G} , we obtain:

$$\mathsf{HF}(A(X_d),t) = \frac{1}{d} \binom{td+n}{n} + \frac{d-1}{d}.$$

Hilbert series and secondary invariants

Proposition (Cohen-Macaulayness of R^G)

 x_0^d, \ldots, x_n^d is a h.s.o.p of $R^{\overline{G}}$ and $R^{\overline{G}}$ is a free $\mathbb{K}[x_0^d, \ldots, x_n^d]$ -module with a Hironaka decomposition

$$R^{\overline{G}} \cong \bigoplus_{i=0}^{D} \theta_i \mathbb{K}[x_0^d, \dots, x_n^d],$$

where $\theta_0, \ldots, \theta_D$ are all the monomial invariants $x_0^{a_0} \cdots x_n^{a_n}$ of G such that $a_0 < d, \ldots, a_n < d$. $\{\theta_0, \ldots, \theta_D\}$ is called a set of secondary invariants of \overline{G} .

Corollary (Hilbert series and secondary invariants)

Let $\delta_0, \ldots, \delta_n$ the sequence of multiplicities of degrees of $\theta_0, \theta_1, \ldots, \theta_D$, then

$$\mathsf{HS}(A(X_d), z) = \frac{\delta_n z^n + \dots + \delta_1 z + 1}{(1-z)^{n+1}}$$

イロン イヨン イヨン ・

э

Hilbert series and secondary invariants

Corollary

(i) Complete description of the h−vector of A(X_d) in terms of invariants of G.

(ii) The degree of
$$X_d$$
 is deg $(X_d) = \frac{d^{n+1}}{|\overline{G}|}$.

Example

Take $G = \langle M_{3;0,1,2} \rangle \subset \mathsf{GL}(3,\mathbb{K})$ a cyclic group of order 3.

$$\begin{array}{lll} \mathcal{B}_1 &=& \left\{ x_0^3, x_1^3, x_2^3, x_0 x_1 x_2 \right\} \\ \mathcal{B}_2 &=& \left\{ x_0^6, x_0^3 x_1^3, x_0^4 x_1 x_2, x_1^6, x_0 x_1^4 x_2, x_0^2 x_1^2 x_2^2, x_0^3 x_2^3, x_1^3 x_2^3, x_0 x_1 x_2^4, x_2^6 \right\}. \end{array}$$

 x_0^3, x_1^3, x_2^3 is a h.s.o.p of $R^{\overline{G}}$ and $\{x_0x_1x_2, x_0^2x_1^2x_2^2\}$ is a set of secondary invariants of \overline{G} . We obtain:

$$HS(A(X_3), z) = \frac{z^2 + z + 1}{(1 - z)^3}.$$

イロト 不得 トイヨト イヨト

э

Homogeneous ideal of \overline{G} -varieties.

$$\mathcal{B}_1 = \{m_1,\ldots,m_{\mu_d}\}, \ S = \mathbb{K}[w_1,\ldots,w_{\mu_d}].$$

The homogeneous ideal of X_d

 $I(X_d)$ is the binomial prime ideal kernel of the morphism

$$\rho: S \to \mathbb{K}[m_1, \ldots, m_{\mu_d}], \quad \rho(w_i) = m_i.$$

It is generated by binomials of degree at least 2:

$$\left\{\prod_{i=1}^{\mu_{n,d}} w_i^{\alpha_i} - \prod_{i=1}^{\mu_{n,d}} w_i^{\beta_i} \mid \prod_{i=1}^{\mu_{n,d}} m_i^{\alpha_i} = \prod_{i=1}^{\mu_{n,d}} m_i^{\beta_i}, \alpha_i, \beta_i \in \mathbb{Z}_{\geq 0}\right\}.$$

Main objectives

- (i) To determine a minimal set of binomial generators of $I(X_d)$.
- (ii) To characterize such generators.
- (iii) Which is the maximum degree $k \ge 2$ needed to minimally generate $I(X_d)$?

・ 同 ト ・ ヨ ト ・ ヨ ト

For each integer $k \ge 2$, $I(X_d)_k$ denotes the set of binomials in $I(X_d)$ of degree k, which we call k-binomials.

$$I(X_d) = \sum_{k\geq 2} (I(X_d)_k).$$

Theorem

 $I(X_d)$ is generated by binomials of degree at most 3, i.e.

 $\mathsf{I}(X_d) = (\mathsf{I}(X_d)_2, \mathsf{I}(X_d)_3).$

Sharpness: there are \overline{G} -varieties in any dimension with $I(X_d)$ minimally generated by 2 and 3-binomials.

イロト 不得 トイヨト イヨト 二日

The normal simplicial affine semigroup of X_d

$$A(X_d) \cong R^{\overline{G}} = \mathbb{K}[\mathcal{B}_1] = \mathbb{K}[\mathcal{H}_{\mathcal{A}}],$$

where H_A is the normal simplicial affine semigroup of the $\mathbb{Z}_{\geq 0}^{n+1}$ -solutions of the system of congruences associated to \overline{G} .

Relative interior ideal

We denote by $I(\operatorname{relint}(H_A))$ the ideal of $R^{\overline{G}}$ generated by all monomial invariants $x_0^{a_0} \cdots x_n^{a_n}$ of \overline{G} such that $a_0 > 0, \ldots, a_n > 0$, i.e. (a_0, \ldots, a_n) belongs to the relative interior of the affine semigroup $H_A \subset \mathbb{Z}_{>0}^{n+1}$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Danilov-Stanley)

 $I(relint(H_A))$ is the canonical module of $\mathbb{K}[H_A]$.

For each integer $k \geq 1$, $I(\operatorname{relint}(\mathcal{H}_{\mathcal{A}}))_k$ denotes the set of monomials of degree kd in $I(\operatorname{relint}(\mathcal{H}_{\mathcal{A}})) = (x_0^{a_0} \cdots x_n^{a_n} \in R^{\overline{G}} \mid a_0 \cdots a_n \neq 0)$.

Theorem

 $l(relint(H_A))$ is generated by monomial invariants of G of degree d and 2d, i.e.

 $I(\operatorname{relint}(H_{\mathcal{A}})) = (I(\operatorname{relint}(H_{\mathcal{A}}))_1, I(\operatorname{relint}(H_{\mathcal{A}}))_2).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

• To determine when a monomial $m \in I(\operatorname{relint}(H_A)_2)$ belongs to $(I(\operatorname{relint}(H_A))_1$ depends strongly on the group G.

The canonical module

- $A(X_d)$ is a *Gorenstein* ring if $I(relint(H_A))$ is principal.
- $A(X_d)$ is a *level* ring if $l(relint(H_A)) = (l(relint(H_A))_1)$ or $l(relint(H_A))_1 = \emptyset$.

Example

(i) Take $n \ge 2$ an even integer and $G = \langle M_{n+1;0,1,2,...,n} \rangle \subset GL(n+1,\mathbb{K})$ a cyclic group of order n+1. Then $R^{\overline{G}}$ is a Gorenstein ring with

$$I(\operatorname{relint}(H_{\mathcal{A}})) = (x_0 \cdots x_n).$$

(ii) Now we take $k \ge 2$ an integer and $G_k = \langle M_{k(n+1);0,1,2,...,n} \rangle \subset GL(n+1,\mathbb{K})$ a cyclic group of order n+1. Then, $R^{\overline{G}_k}$ is a level ring with

$$I(\operatorname{relint}(H_{\mathcal{A}})) = (I(\operatorname{relint}(H_{\mathcal{A}}))_1).$$

The Castelnuovo–Mumford regularity

- (i) I(relint(H_A))₂ ≠ Ø. This assures the existence of secondary invariants of degree (n − 1)d, i.e. δ_{n−1} > 0.
- (ii) The monomials in $I(relint(H_A))_1$ uniquely determine the secondary invariants of \overline{G} of degree *nd* and vice versa.

$$HS(A(X_d), z) = \frac{\delta_n z^n + \delta_{n-1} z^{n-1} + \cdots + \delta_1 z + 1}{(1-z)^{n+1}}.$$

Theorem

For the Castelnuovo–Mumford regularity $reg(A(X_d))$ of $A(X_d)$ it holds:

$$n \leq \operatorname{reg}(A(X_d)) \leq n+1$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

with equality $\operatorname{reg}(A(X_d)) = n + 1$ if and only if $I(\operatorname{relint}(H_A))_1 \neq \emptyset$.

	0	1	2	3		<i>c</i> – 2	c-1	с
0	1	-	—	—		_	_	_
1	_	$\beta_{1,1}$	$\beta_{2,1}$	$\beta_{3,1}$	• • •	$\beta_{c-2,1}$	$\beta_{c-1,1}$	_
2	_	$\beta_{1,2}$	$\beta_{2,2}$	$\beta_{3,2}$	• • •	$\beta_{c-2,2}$	$\beta_{c-1,2}$	_
3	—	—	$\beta_{2,3}$	$\beta_{3,3}$	• • •	$\beta_{c-2,3}$	$\beta_{c-1,3}$	—
÷	:	÷	:	:		:	:	:
n-1	—	—	$\beta_{2,n-1}$	$\beta_{3,n-1}$	• • •	$\beta_{c-2,n-1}$	$\beta_{c-1,n-1}$	$\beta_{c,n-1}$
n	—	—	$\beta_{2,n}$	$\beta_{3,n}$	•••	$\beta_{c-2,n}$	$\beta_{c-1,n}$	$\beta_{c,n}$

イロン イヨン イヨン イヨン

Thanks for your attention!

イロト イロト イヨト イヨト

Ξ.