Gröbner's problem and the geometry of GT−varieties.

Liena Colarte Gómez

Jornada de jóvenes doctores en geometría algebraica, Barcelona 2021

Joint work with R. M. Miró Roig

Universitat de Barcelona

御き メミメ メミメー

 \equiv Ω

Content.

1 New contributions to Gröbner's problem.

- Gröbner's problem and monomial projections.
- Invariants of finite abelian groups.
- $\overline{G}-$ varieties and the Lefschetz properties: GT −varieties.

- **2** The geometry of \overline{G} –varieties.
	- **A** Hilbert function and Hilbert series.
	- The homogeneous ideal.
	- The canonical module.
	- The Castelnuovo-Mumford regularity.

化重新化重新

E. Ω

- \bullet \mathbb{K} , algebraically closed field of characteristic zero.
- $R = \mathbb{K}[x_0, \ldots, x_n]$, the polynomial ring.

$$
R=\bigoplus_{t\geq 0}R_t,\quad \dim_{\mathbb{K}}R_t=\binom{n+t}{n}=:N_{n,t}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 めんぴ

- $GL(n+1, \mathbb{K})$, the group of invertible $(n+1)$ -square matrices over K.
- R^{Λ} , the ring of invariants of a finite group $\Lambda \in GL(n+1, \mathbb{K})$.
- CM, Cohen-Macaulay and
- aCM, arithmetically Cohen-Macaulay.

Gröbner's problem.

The *Veronese variety* $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ *of* \mathbb{P}^n *is the <i>n*−dimensional projective variety parameterized by the set of all monomials of degree d in R^1

$$
\mathcal{M}_{n,d} = \{x_0^{a_0} \cdots x_n^{a_n} \in R \mid a_0 + \cdots + a_n = d\}.
$$

Definition

A *monomial projection* $Y_{n,d} \subset \mathbb{P}^{\mu_{n,d}-1}$ *of* $X_{n,d}$ *is a projective variety* parameterized by a subset $\Omega_{n,d} \subset \mathcal{M}_{n,d}$ of $\mu_{n,d} \leq N_{n,d}$ monomials.

- For $N_{n,d} \mu_{n,d} = 1, 2, 3, Y_{n,d}$ is called, respectively, a simple, double, triple monomial projection of the Veronese variety $X_{n,d}$.
- \bullet For $N_{n,d} \mu_{n,d} \geq 4$, $Y_{n,d}$ is called a *multiple* monomial projection of the Veronese variety $X_{n,d}$.

KOD KAP KED KED E VAA

Gröbner's problem.

$$
\Omega_{n,d}=\{m_{i_1},\ldots,m_{i_{\mu_{n,d}}}\}\subset\mathcal{M}_{n,d}=\{m_1,\ldots,m_{N_{n,d}}\}
$$

(1967) Gröbner proved that the Veronese variety $X_{n,d}\subset \mathbb P^{N_{n,d}-1}$ is an aCM variety.

The *simple* monomial projection $Y_{n,d} \subset \mathbb{P}^{N_{n,d}-2}$ of $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ parameterized by $\Omega_{n,d} = \mathcal{M}_{n,d} \setminus \{x_i^{d-2}x_j^2\}$ is a **non aCM** variety.

The *simple* monomial projection $Y_{n,d} \subset \mathbb{P}^{N_{n,d}-2}$ of $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$ parameterized by $\Omega_{n,d} = \mathcal{M}_{n,d} \setminus \{\mathsf{x}_i^d\}$ is an aCM variety.

Problem (Gröbner's problem)

To determine when a monomial projection Yn*,*^d of the Veronese variety Xn*,*^d is an aCM variety.

イロメ イ部メ イをメ イをメー 巻

 Ω

Gröbner's problem.

The *rational normal curve* $X_{1,d}\subset \mathbb{P}^d$ is the Veronese curve parameterized by all monomials of degree d in $\mathbb{K}[x_0, x_1]$:

$$
\mathcal{M}_{1,d} = \{x_0^d, x_0^{d-1}x_1, x_0^{d-2}x_1^2, \dots, x_0x_1^{d-1}, x_1^d\}.
$$

Example

We take
$$
d = 4
$$
, $\mathcal{M}_{1,4} = \{x_0^4, x_0^3x_1, x_0^2x_1^2, x_0x_1^3, x_1^4\}$.

$$
\Omega_{1,4}=\{x_0^4,x_0^3x_1,x_0x_1^3,x_1^4\}=\mathcal{M}_{1,4}\setminus\{x_0^2x_1^2\}.
$$

 $\mathbb{K}[\Omega_{1,4}]$ is the first example of a non CM domain due to Macaulay, so the simple monomial projection $Y_{1,4} \subset \mathbb{P}^3$ parameterized by $\Omega_{1,4}$ is a non aCM curve. If instead of $x_0^2x_1^2$ we delete the monomial x_0^4 , we obtain a rational twisted cubic in \mathbb{P}^3 , which is an aCM curve.

KOD KAP KED KED E VAA

Gröbner's problem.

 $\mathsf{Consider}$ a monomial projection $\mathsf{Y}_{n,d}\subset\mathbb{P}^{\mu_{n,d}-1}$ of $\mathsf{X}_{n,d}$ parameterized by $\Omega_{n,d} = \{m_1, \ldots, m_{\mu_{n,d}}\}.$

We take $w_1, \ldots, w_{\mu_{n,d}}$ new variables and we set $S = \mathbb{K}[w_1, \ldots, w_{\mu_{n,d}}]$.

 $I(Y_{n,d})$ is the kernel of the morphism

$$
\rho: S \to \mathbb{K}[m_1,\ldots,m_{\mu_{n,d}}] =: \mathbb{K}[\Omega_{n,d}], \quad \rho(w_i) = m_i
$$

 $A(Y_{n,d}) \cong \mathbb{K}[\Omega_{n,d}]$, i.e the semigroup ring of the affine semigroup

$$
\mathsf{H}(\Omega_{n,d})=\langle (a_0,\ldots,a_n) \mid x_0^{a_0}\ldots x_n^{a_n}\in \Omega_{n,d}\rangle\subset \mathbb{Z}_{\geq 0}^{n+1}.
$$

 $I(Y_{n,d})$ is the binomial prime ideal generated by

$$
\left\{\prod_{i=1}^{\mu_{n,d}}w_i^{\alpha_i}-\prod_{i=1}^{\mu_{n,d}}w_i^{\beta_i}\;\middle|\;\prod_{i=1}^{\mu_{n,d}}m_i^{\alpha_i}=\prod_{i=1}^{\mu_{n,d}}m_i^{\beta_i},\alpha_i,\beta_i\in\mathbb{Z}_{\geq0}\right\}.
$$

イロト イ押 トイヨ トイヨ トーヨー

 Ω

Gröbner's problem. Techniques

Normal affine semigroups $H \subset \mathbb{Z}_{\geq 0}^{n+1}$, i.e. if $h_1, h_2, h_3 \in H$ and $zh_1 = zh_2 + h_3$ for some $z \in \mathbb{Z}_{\geq 0}$, then there exists $h \in H$ such that $h_3 = zh.$

Theorem (Hochster)

If H is normal, then $\mathbb{K}[H]$ is a CM ring.

 S implicial affine semigroups $H\subset \mathbb{Z}_{\geq 0}^{n+1}$, i.e. there are $\mathbb{Q}-$ linearly independent elements $e_0, \ldots, e_n \in \overline{H}$ and $z \in \mathbb{Z}_{\geq 0}$ such that zH is contained in the affine semigroup $\langle e_0, \ldots, e_n \rangle$.

Theorem (Goto, Suzuki, Watanabe, Hoa, Trung)

Set $H_1 := \{h \in \overline{H} \mid h + e_i \in H \text{ and } h + e_i \in H \text{ for some } 0 \leq i \neq j \leq n\}.$ Then, $\mathbb{K}[H]$ is a CM ring if and only if $H = H_1$.

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q

Gröbner's problem in terms of the deleted monomials.

- (Schenzel) Simple monomial projections.
- (Trung) Double monomial projections.
- (Hoa) Triple monomial projections.

Monomial projections of the rational normal curve $X_{1,d}\subset \mathbb{P}^d$

- (Cavaliere, Niesi) Simplicial case.
- (Trung) In general.

Gröbner's problem for multiple monomial projections of the Veronese varieties remains barely known.

何 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 209

Let $G \subset GL(n+1, \mathbb{K})$ be a finite abelian group of order $d = d_1 \cdots d_s$.

$$
G=\Gamma_1\oplus\cdots\oplus\Gamma_s\subset GL(n+1,\mathbb{K})
$$

where each $\mathsf{\Gamma}_i$ is a cyclic group of order d_i with $d_i|d_i+1$ and it is generated by a diagonal matrix of the form $M_{d_i;\gamma_0,\ldots,\gamma_n} := \text{diag}(e_i^{\gamma_0},\ldots,e_i^{\gamma_n}),$ i.e.

$$
\left(\begin{array}{cccc} e_i^{\gamma_0} & 0 & \cdots & 0 \\ 0 & e_i^{\gamma_1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_i^{\gamma_n} \end{array}\right)
$$

K ロ) K (@) K (할) K (할) () 할)

 QQQ

with e_i a d_i th primitive root of $1 \in \mathbb{K}$ and $GCD(d_i, \gamma_0, \ldots, \gamma_n) = 1$.

The ring of invariants of G

$$
R^G = \{p \in R \mid g(p) = p, \forall g \in G\} = \oplus_{t \geq 0} R_t^G, R_t^G = R_t \cap R^G.
$$

 R^G has a minimal set $\{m_1, \ldots, m_N\}$ of monomial generators of degree at most ord $(G)=d$, i.e. $R^{\tilde{G}}=\mathbb{K}[m_1,\ldots,m_N].$ ${m_1, \ldots, m_N}$ is called a minimal set of fundamental invariants of G.

Theorem (Eagon, Hochster)

The ring R^{Λ} of invariants of a finite group $\Lambda \subset GL(n+1, \mathbb{K})$ is a CM ring.

イロト イ押 トイヨ トイヨ トー

 Ω

Example

 $\mathsf{W\acute{e}}$ take $\mathsf{G} = \langle \mathsf{M}_{3;0,1,2} = \mathsf{diag}(1,\mathsf{e},\mathsf{e}^2) \rangle \subset \mathsf{GL}(3,\mathbb{K}).$ A minimal set of generators of \mathcal{R}^{G} consists of monomials of degree 1, 2 and 3:

 $\{x_0, x_1x_2, x_1^3, x_2^3\}.$

We consider the d th Veronese subalgebra R^{G} of R^{G} :

$$
R^{\overline{G}} = \bigoplus_{t \geq 0} R_t^{\overline{G}} = \bigoplus_{t \geq 0} R_{td}^G \subset \bigoplus_{t \geq 0} R_t^G.
$$

 $R^{\overline{G}}$ is the ring of invariants of the abelian group $\overline{G} \subset \mathsf{GL}(n+1,\mathbb{K})$ generated by the generators of G and the diagonal matrix diag(e*, . . . ,* e), where e is a dth primitive root of $1 \in \mathbb{K}$. \overline{G} is called the cyclic extension of G.

 \exists (\exists) (\exists) (\exists) (\exists)

 QQQ

Example (Last example)

 $\mathsf{W\acute{e}}$ take $\mathsf{G} = \langle \mathsf{M}_{3;0,1,2} = \mathsf{diag}(1,\mathsf{e},\mathsf{e}^2) \rangle \subset \mathsf{GL}(3,\mathbb{K}).$ A minimal set of generators of \mathcal{R}^{G} consists of monomials of degree 1, 2 and 3:

 $\{x_0, x_1x_2, x_1^3, x_2^3\}.$

Example (Taking the cyclic extension)

We take the cyclic extension $\overline{G} = \langle M_{3,0,1,2}, M_{3,1,1,1} \rangle \subset GL(3, \mathbb{K})$, an abelian group of order 9. A minimal set of generators of R^G consist of monomials of the same degree 3:

$$
\{x_0^3, x_1^3, x_2^3, x_1x_2x_3\}.
$$

イロト イ押 トイヨ トイヨ トー

 209

They parameterize an aCM monomial projection $\varUpsilon_{2,3}\subset \mathbb{P}^3$ of the Veronese surface $X_{2,3} \subset \mathbb{P}^9$.

Theorem

The set B_1 of all monomial invariants of G of degree d is a minimal set of generators of $R^{\overline{G}}$, i.e $R^{\overline{G}} = \mathbb{K}[\mathcal{B}_1]$.

$$
\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\} \subset R \text{ with } |\mathcal{B}_1| = \mu_d.
$$

Theorem

 \mathcal{B}_1 parameterizes an aCM monomial projection $X_d\subset \mathbb{P}^{\mu_d-1}$ of the Veronese variety $X_{n,d} \subset \mathbb{P}^{N_{n,d}-1}$. We call X_d a \overline{G} -variety with group $G \subset GL(n+1,\mathbb{K}).$

AD > Y 3 > Y 3 >

 Ω

Invariants of finite abelian groups from Combinatorics.

The set of monomial invariants of G of degree td is a $\mathbb{K}-$ basis of R^G_{td} , we denote it by $\mathcal{B}_t.$ They are univocally determined by the set of $\mathbb{Z}_{\geq 0}^{n+1}$ –solutions of the system of congruences $(\ast)_{\mathcal{A};t,r_1,...,r_s}:$

$$
\begin{cases}\ny_0 + y_1 + \cdots + y_n = td \\
\alpha_{\sigma_1(0)}^1 y_0 + \alpha_{\sigma_1(1)}^1 y_1 + \cdots + \alpha_{\sigma_1(n)}^1 y_n = r_1 d_1 \\
\vdots \\
\alpha_{\sigma_s(0)}^s y_0 + \alpha_{\sigma_s(1)}^s y_1 + \cdots + \alpha_{\sigma_s(n)}^s y_n = r_s d_s\n\end{cases}
$$

 $0\leq r_i\leq \frac{\alpha_n^i t d}{d_i}$ $\frac{i}{d_i}$, $i = 1, \ldots, s$.

Remark

$$
(td,0,\ldots,0),\ldots,(0,\ldots,0,td) \text{ are solutions of } (*)_{\mathcal{A},t;r_1,\ldots,r_s}.
$$

The set of all these points forms a normal simplicial affine semigroup $H_{\mathcal A}\subset \mathbb Z_{\ge 0}^{n+1}.$ By Hochster's result, we obtain that $\mathbb K[H_{\mathcal A}]$ is a CM ring.

K ロ X (리 X X 통 X X 통 X X X X X X 중 X X X 중

$\overline{G}-$ varieties and the Lefschetz properties. GT −varieties.

We denote by $I_d \subset R$ the monomial artinian ideal generated by the set $\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\}$ of fundamental invariants of $G.$

Definition

An artinian ideal $J \subset R$ fails the weak Lefschetz property, shortly WLP, in degree i_0 if for any linear form $L \in (R/L)_1$ the multiplication map

 $\times L : (R/J)_i \rightarrow (R/J)_{i+1}$

does not have maximal rank, i.e. it is neither injective nor surjective.

Example

We take $J = \langle x_0^3, x_1^3, x_2^3, x_0x_1x_2 \rangle$. The ideal J fails the WLP in degree 2 since the multiplication map $\times L : (R/J)_2 \rightarrow (R/J)_3$ is not injective for any $L \in R_1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1000

Togliatti systems

A connection between artinian ideals failing the WLP and the existence of projective varieties satisfying at least one Laplace equation:

Theorem (Mezzetti, Miró-Roig, Ottaviani (Tea Theorem))

Let $J \subset R$ be an artinian ideal generated by r forms F_1, \ldots, F_r of degree d and let J^{-1} be its Macaulay's inverse system. If $r \le N_{n-1,d} = \binom{n-1+d}{n-1}$, then the following conditions are equivalent.

(i) J fails the WLP in degree $d-1$.

- (ii) F1*, . . . ,* F^r become K−linearly dependent on a general hyperplane $H \subset \mathbb{P}^n$.
- (iii) The n–dimensional variety Y := $\overline{\varphi(\mathbb{P}^n)}$ satisfies at least one Laplace equation of order $d-1$, where $\varphi = \mathbb{P}^n \dashrightarrow \mathbb{P}^{N_{n,d}-r-1}$ is the rational map associated to J_d^{-1} .

They called a *Togliatti system* to any ideal J satisfying the equivalent conditions (i),(ii) and (iii).

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ 「君」 めんぴ

Definition (GT–systems and GT–varieties)

Let $\Lambda \subset GL(n+1, \mathbb{K})$ be a finite group of order d with $2 \le n \le d$. A Togliatti system $J \subset R$ generated by $r \leq N_{n-1,d}$ forms F_1, \ldots, F_r of degree d is said to be a GT −system with group Λ if the associated morphism $\varphi_J: \mathbb{P}^n \longrightarrow \mathbb{P}^{r-1}$ is a Galois covering with group Λ. In this case, $X = \varphi_J(\mathbb{P}^n)$ is called a GT −v*ariety with group* Λ .

Proposition (The Galois covering condition)

Let $\Lambda \subset GL(n+1, \mathbb{K})$ be a finite group of order $|\Lambda|$ and $\mathcal{B} = \{g_1, \ldots, g_r\}$ a minimal set of homogeneous fundamental invariants of Λ with $\deg(g_1)=\cdots=\deg(g_r)=:d.$ Let $\varphi_{\mathcal{B}}:\mathbb{P}^n\longrightarrow\mathbb{P}^{r-1}$ be the morphism defined by $(g_1 : \cdots : g_r)$. It holds:

(i) R^{\wedge} is the homogeneous coordinate ring of the projective variety $X:=\varphi_{\mathcal{B}}(\mathbb{P}^n)\subset\mathbb{P}^{r-1}.$ Thus X is the quotient variety \mathbb{P}^n/Λ and it is an aCM variety.

K ロ X K @ X K 경 X K 경 X X 경 .

 299

(ii) $\varphi_B : \mathbb{P}^n \longrightarrow \mathbb{P}^{r-1}$ is a Galois covering of \mathbb{P}^n with group Λ .

$\overline{G}-$ varieties and $G\overline{T}-$ varieties.

Let $G \subset GL(n+1, \mathbb{K})$ an abelian group of order $d, B_1 = \{m_1, \ldots, m_{\mu_d}\}$ the set of fundamental invariants of \overline{G} and $I_d = (\mathcal{B}_1) \subset R$.

Proposition

If $\mu_d \leq N_{n-1,d}$, then I_d is a GT-system with group $G \subset GL(n+1,\mathbb{K})$.

- Let $L \in (R/I_d)_1$ be a linear form.
- We set $\mathcal{F}:=\prod_{\mathcal{g}\in G\backslash\{ \textit{Id} \} }\mathcal{g}(\mathcal{L}),$ which is a form of degree $d-1.$
- $L \cdot F = \prod_{g \in G} g(L)$ is a form of degree d . By construction, $L \cdot F$ is an invariant of G of degree d, thus $L \cdot F \in I_d$.
- The multiplication map $\times L$: $(R/I_d)_i \rightarrow (R/I_d)_{i+1}$ has maximal rank for any $0 \le i \le d-2$.
- \bullet Since μ_d ≤ $N_{n-1,d}$, $\times L$: $(R/I_d)_{d-1}$ \rightarrow $(R/I_d)_{d}$ is neither injective nor surjective. So I_d fails the WLP in degree $d - 1$.

The geometry of G−varieties

Goals

- Hilbert function, Hilbert polynomial and Hilbert series.
- Degree.
- A minimal set of generators of the homogeneous ideal.
- Canonical module, Cohen-Macaulay type and Castelnuovo–Mumford regularity.

A minimal free resolution

We set $c := \text{codim}(X_d) = \mu_d - n - 1$. A minimal graded free S–resolution F_{\bullet} of $A(X_{d})$:

$$
F_{\bullet}: \quad 0 \longrightarrow F_{c} \longrightarrow \cdots \longrightarrow F_{2} \longrightarrow F_{1} \longrightarrow S \longrightarrow A(X_{d}) \longrightarrow 0,
$$

where

$$
F_i \cong \bigoplus_{j\geq 1}^{f_i} S(-j-i)^{\beta_{i,j}}
$$

and $\beta_{i,f_i} > 0$, $1 \leq i \leq c$.

Hilbert function and Hilbert series

Hilbert function

$$
\mathsf{HF}(A(X_d),t)=\dim_{\mathbb{K}}(S/I(X_d))_t=\dim_{\mathbb{K}}R_t^G.
$$

Proposition

For any $t \in \mathbb{Z}_{\geq 0}$, HF($A(X_d)$, t) equals to the number of monomial invariants of G of degree td. Equivalently, it is the number of $\mathbb{Z}_{\geq 0}^{n+1}$ —solutions of the linear system of congruences:

$$
\begin{cases}\ny_0 + y_1 + \cdots + y_n = td \\
\alpha_{\sigma_1(0)}^1 y_0 + \alpha_{\sigma_1(1)}^1 y_1 + \cdots + \alpha_{\sigma_1(n)}^1 y_n \equiv 0 \mod d_1 \\
\vdots \\
\alpha_{\sigma_s(0)}^s y_0 + \alpha_{\sigma_s(1)}^s y_1 + \cdots + \alpha_{\sigma_s(n)}^s y_n \equiv 0 \mod d_s\n\end{cases}
$$

K ロ ▶ K @ ▶ K 결 ▶ K 결 ▶ ○ 결 ..

 Ω

It provides a method to effectively compute $HF(A(X_d), t)$ in low dimension.

Let $G = \langle M_{d;0,\alpha_1,\alpha_2} \rangle \subset \mathsf{GL}(3,\mathbb{K})$ be a cyclic group of order $d \geq 3$ and X_d a GT-surface with group G. We consider integers:

$$
\alpha'_1 = \frac{\alpha_1}{\text{GCD}(\alpha_1, d)}, \ d' = \frac{d}{\text{GCD}(\alpha_1, d)}
$$

 μ and $0 < \lambda \leq d'$ such that $\alpha_2 = \lambda \alpha'_1 + \mu d'$.

Theorem (–, Mezzetti, Miró-Roig)

Set
$$
\theta(\alpha_1, \alpha_2, d) := (\alpha_1, d) + (\lambda, d') + (\lambda - (\alpha_1, d), d')
$$
. Then,
(i) HF $(X_d, t) = \frac{d}{2}t^2 + \frac{1}{2}\theta(\alpha_1, \alpha_2, d)t + 1$.

(ii) HS(X_d, z) =
$$
\frac{\frac{d-\theta(\alpha_1, \alpha_2, d)+2}{2}z^2 + \frac{d+\theta(\alpha_1, \alpha_2, d)-4}{2}z + 1}{(1-z)^3}.
$$

KED KAP KED KED E VAR

From Invariant Theory: Molien series

Hilbert series

$$
HS(A(X_d), z) = \sum_{t \geq 0} HF(A(X_d), t) z^t = \frac{h_s z^s + \cdots + h_1 z + 1}{(1 - z)^{n+1}}.
$$

Proposition (An expression only in terms of the group \overline{G})

 ${\sf HS}(A(X_d),z^d)$ is the Molien series of $\overline{{\sf G}}$:

$$
\frac{1}{|\overline{G}|}\sum_{g\in \overline{G}}\frac{1}{\det\left(d-zg\right)}.
$$

Example

We take $2 \le n < d$ with d prime and a cyclic group of order d $G = \langle M_{d; \alpha_0, ..., \alpha_n} \rangle \subset GL(n+1, \mathbb{K})$ such that $\alpha_0 < \alpha_1 < \cdots < \alpha_n < d$. Expanding the Molien series of \overline{G} , we obtain:

$$
HF(A(X_d), t) = \frac{1}{d}\binom{td+n}{n} + \frac{d-1}{d}.
$$

Hilbert series and secondary invariants

Proposition (Cohen-Macaulayness of R^G)

 x_0^d, \ldots, x_n^d is a h.s.o.p of R^G and R^G is a free $\mathbb{K}[x_0^d, \ldots, x_n^d]-$ module with a Hironaka decomposition

$$
R^{\overline{G}} \cong \bigoplus_{i=0}^D \theta_i \mathbb{K}[x_0^d, \ldots, x_n^d],
$$

where $\theta_0, \ldots, \theta_D$ are all the monomial invariants $x_0^{a_0} \cdots x_n^{a_n}$ of G such that $a_0 < d, \ldots, a_n < d$. $\{\theta_0, \ldots, \theta_D\}$ is called a **set of secondary invariants of** G**.**

Corollary (Hilbert series and secondary invariants)

Let $\delta_0, \ldots, \delta_n$ the sequence of multiplicities of degrees of $\theta_0, \theta_1, \ldots, \theta_D$, then

$$
HS(A(X_d), z) = \frac{\delta_n z^n + \dots + \delta_1 z + 1}{(1 - z)^{n+1}}
$$

.

イロト イ押 トイヨ トイヨ トー

 \equiv

 299

Hilbert series and secondary invariants

Corollary

(i) Complete description of the h–vector of $A(X_d)$ in terms of invariants of \overline{G} .

(ii) The degree of
$$
X_d
$$
 is deg $(X_d) = \frac{d^{n+1}}{|\overline{G}|}$.

Example

Take $G = \langle M_{3:0,1,2} \rangle \subset GL(3, \mathbb{K})$ a cyclic group of order 3.

$$
\begin{array}{lll}\n\mathcal{B}_1 & = & \{x_0^3, x_1^3, x_2^3, x_0x_1x_2\} \\
\mathcal{B}_2 & = & \{x_0^6, x_0^3x_1^3, x_0^4x_1x_2, x_1^6, x_0x_1^4x_2, x_0^2x_1^2x_2^2, x_0^3x_2^3, x_1^3x_2^3, x_0x_1x_2^4, x_2^6\} \,.\n\end{array}
$$

 x_0^3, x_1^3, x_2^3 is a h.s.o.p of R^G and $\{x_0x_1x_2, x_0^2x_1^2x_2^2\}$ is a set of secondary invariants of \overline{G} . We obtain:

$$
HS(A(X_3), z) = \frac{z^2 + z + 1}{(1 - z)^3}.
$$

イロト イ押 トイヨ トイヨ トー

 \equiv

 299

Homogeneous ideal of $\overline{G}-$ varieties.

$$
\mathcal{B}_1 = \{m_1, \ldots, m_{\mu_d}\}, \ S = \mathbb{K}[w_1, \ldots, w_{\mu_d}].
$$

The homogeneous ideal of X_d

 $I(X_d)$ is the binomial prime ideal kernel of the morphism

$$
\rho: S \to \mathbb{K}[m_1,\ldots,m_{\mu_d}], \quad \rho(w_i)=m_i.
$$

It is generated by binomials of degree at least 2:

$$
\left\{\prod_{i=1}^{\mu_{n,d}}w_i^{\alpha_i}-\prod_{i=1}^{\mu_{n,d}}w_i^{\beta_i}\;\middle|\;\prod_{i=1}^{\mu_{n,d}}m_i^{\alpha_i}=\prod_{i=1}^{\mu_{n,d}}m_i^{\beta_i},\alpha_i,\beta_i\in\mathbb{Z}_{\geq0}\right\}.
$$

Main objectives

- (i) To determine a minimal set of binomial generators of $I(X_d)$.
- (ii) To characterize such generators.
- (iii) Which is the maximum degree $k \geq 2$ needed to minimally generate $I(X_d)$?

メ御 トメ ミト メモト

 QQ

For each integer $k \geq 2$, $I(X_d)_k$ denotes the set of binomials in $I(X_d)$ of degree k , which we call $k-binomials$.

$$
I(X_d)=\sum_{k\geq 2}(I(X_d)_k).
$$

Theorem

 $I(X_d)$ is generated by binomials of degree at most 3, i.e.

 $I(X_d) = (I(X_d)_2, I(X_d)_3).$

Sharpness: there are \overline{G} -varieties in any dimension with $I(X_d)$ minimally generated by 2 and 3−binomials.

イロト イ押 トイヨ トイヨ トーヨー

 Ω

The normal simplicial affine semigroup of X_d

$$
A(X_d) \cong R^{\overline{G}} = \mathbb{K}[\mathcal{B}_1] = \mathbb{K}[H_{\mathcal{A}}],
$$

where $H_{\mathcal{A}}$ is the normal simplicial affine semigroup of the $\mathbb{Z}_{\geq 0}^{n+1}$ —solutions of the system of congruences associated to \overline{G} .

Relative interior ideal

We denote by l(relint $(\mathcal{H}_\mathcal{A}))$ the ideal of $\mathcal{R}^\mathcal{G}$ generated by all monomial invariants $x_0^{a_0}\cdots x_n^{a_n}$ of \overline{G} such that $a_0>0,\ldots,a_n>0$, i.e. (a_0,\ldots,a_n) belongs to the relative interior of the affine semigroup $H_{\mathcal{A}} \subset \mathbb{Z}_{\geq 0}^{n+1}.$

イロト イ押 トイヨ トイヨト

 209

Theorem (Danilov-Stanley)

I(relint(H_A)) is the canonical module of $\mathbb{K}[H_A]$.

For each integer $k \geq 1$, I(relint $(H_A))_k$ denotes the set of monomials of degree kd in $I(\text{relint}(H_{\mathcal{A}})) = (x_0^{a_0} \cdots x_n^{a_n} \in R^G \mid a_0 \cdots a_n \neq 0).$

Theorem

 $I(\text{relint}(H_A))$ is generated by monomial invariants of G of degree d and 2d, i.e.

 $I(\text{relint}(H_A)) = (I(\text{relint}(H_A))_1, I(\text{relint}(H_A))_2).$

KED KAP KED KED E VAA

• To determine when a monomial $m \in I$ (relint $(H_A)_2$ belongs to $(I(\text{relint}(H_A))_1$ depends strongly on the group G.

The canonical module

- $A(X_d)$ is a *Gorenstein* ring if $I(\text{relint}(H_A))$ is principal.
- \bullet $A(X_d)$ is a level ring if $I(\text{relint}(H_A)) = (I(\text{relint}(H_A))_1)$ or $I(\text{relint}(H_A))_1 = \emptyset.$

Example

(i) Take *n* ≥ 2 an even integer and $G = \langle M_{n+1;0,1,2,...,n} \rangle$ ⊂ GL(*n* + 1*,* K) a cyclic group of order $n+1$. Then R^G is a Gorenstein ring with

$$
I(\text{relint}(H_{\mathcal{A}}))=(x_0\cdots x_n).
$$

(ii) Now we take $k \geq 2$ an integer and $G_k = \langle M_{k(n+1);0,1,2,...,n} \rangle \subset GL(n+1,\mathbb{K})$ a cyclic group of order $n+1$. Then, R^{G_k} is a level ring with

$$
I(\text{relint}(H_{\mathcal{A}})) = (I(\text{relint}(H_{\mathcal{A}}))_1).
$$

イロト イ何 トイヨ トイヨ トーヨー

 Ω

The Castelnuovo–Mumford regularity

- (i) I(relint (H_A))₂ \neq \emptyset . This assures the existence of secondary invariants of degree $(n - 1)d$, i.e. $\delta_{n-1} > 0$.
- (ii) The monomials in $I(\text{relint}(H_A))_1$ uniquely determine the secondary invariants of \overline{G} of degree *nd* and vice versa.

$$
HS(A(X_d), z) = \frac{\delta_n z^n + \delta_{n-1} z^{n-1} + \cdots + \delta_1 z + 1}{(1-z)^{n+1}}.
$$

Theorem

For the Castelnuovo–Mumford regularity reg($A(X_d)$) of $A(X_d)$ it holds:

$$
n \leq \text{reg}(A(X_d)) \leq n+1
$$

イロト イ押 トイヨ トイヨ トー

 209

with equality reg $(A(X_d)) = n + 1$ if and only if $I(\text{relint}(H_A))_1 \neq \emptyset$.

メロメメ 御 メメ きょく きょう

 E Ω

Thanks for your attention!

メロメメ 御 メメ きょく きょう

 $E = \Omega Q$