
Yano’s conjecture

Guillem Blanco
November 5th, 2021

KU Leuven



Bernstein-Sato polynomial

Let f ∈ C[x0, . . . , xn] a non-constant polynomial. There exists a
differential operator P(s) ∈ DCn ⊗C[s] and bf ,P(s) ∈ C[s] s.t.

P(s) ⋅ f s+1 = bf ,P(s)f s (∗)

Definition

The monic generator of the ideal in C[s] generated by bf ,P(s)
fulfilling (∗) is the Bernstein-Sato polynomial bf (s) of f .

Theorem (Kashiwara ’76, Lichtin ’89)

b−1f (0) ⊆ {−(ki + 1 + ν)/Ni ∣ ν ∈ Z+, i = 1, . . . , r}

Similarly for the local case: f ∈ C{x0, . . . , xn}, then ∃bf ,0(s).
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Brieskorn lattice

Let f ∶ (Cn+1,0)Ð→ (C,0) defining an isolated singularity.

The Brieskorn lattice: ′′Hn ∶= Ωn+1X,0 /(df ∧ dΩn−1X,0 )⟲ ∂t free
C{t}-module of rank µ (Milnor number).

Theorem (Malgrange ’75)

The reduced Bernstein-Sato poly. b̃f ,0(s) ∶= bf ,0(s)/(s + 1) of f
is the minimal polynomial of the endomorphism

−∂tt ∶ ′′H̃n/t ′′H̃n Ð→ ′′H̃n/t ′′H̃n (∗∗),

where ′′H̃n ∶= ∑k≥0(∂tt)k(′′Hn) is the saturation of ′′Hn.

The b-exponents: roots of the characteristic polynomial of the
endomorphism ∂tt (∗∗).
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Motivating example

Let f = y4 − x9, µ = 24. The roots of bf ,0(s) are { − 4α+9β
36 ∣ 0<α<9,0<β<4}.

− 13
36

,− 17
36

, . . . ,−50
36

,−54
36

,−55
36

,−59
36

Consider ft, µ-constant deformations of f :

• ft = f + t1 x7y2 ∶ − 5936 Ð→ −
59
36 − 1 = −

23
36 , if t1 ≠ 0.

• ft = f + t2 x6y2 + t1 x7y2 ∶ − 2336 ,−
55
36 Ð→ −

19
36 , if t2 ≠ 0.

• ft = f + t4x7y+ t3x5y2 ∶ − 2336 ,−
19
36 ,−

50
36 Ð→ −

14
36 , if t3+3t24 ≠ 0.

Finally, if ft = f + t4x7y + t3x5y2 + t2x6y2 + t1x7y2, in a Zariski open
set of the base of the deformation:

• The roots of bft(s) are between −lct(f ) = −
13
36 and −

13
36 − 1.
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Yano’s conjecture

Let f ∶ (C2,0)Ð→ (C,0) be a plane branch with characteristic
sequence (n;β0, . . . , β1). Define ei ∶= gcd(n, β1, . . . , βi),

ri ∶=
βi + n
ei

, Ri ∶=
βiei−1 + βi−1(ei−2 − ei−1) +⋯ + β1(e0 − e1)

ei
,

r′0 ∶= 2, r′i ∶= ri−1 + ⌊
βi − βi−1
ei−1

⌋ + 1 = ⌊ riei
ei−1
⌋ + 1,

R′0 ∶= n, R′i ∶= Ri−1 + βi − βi−1 =
Riei
ei−1

.

Consider:

R((n, β1, . . . , βg), t) ∶=
g
∑
i=1
t
ri
Ri
1 − t

1 − t
1
Ri

−
g
∑
i=0
t
r′i
R′i
1 − t

1 − t
1
R′i

+ t,
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Yano’s conjecture (II)

Conjecture (Yano (’82))

For generic curves in some µ-constant deformation of f , the
b-exponents {α1, α2, . . . , αµ} are

µ

∑
i=1
tαi = R((n, β1, . . . , βg), t).
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Resolution of singularities

Let π ∶ (X,E)Ð→ (C2,0) be a proper birational morphism such
that

• Fπ = Div(π∗f ) = ∑mi=1NiEi is a normal crossing divisor.
• Kπ = Div(π∗dx ∧ dy) = ∑mi=1 kiEi is the canonical divisor.

where E = E1 +⋯ + Em is the exceptional locus.

Alternatively, if Ei, i = 1, . . . ,g rupture divisors of f :

{α1, . . . , αµ} =
g
⋃
i=1
{ σi,ν =

ki + 1 + ν
Ni

∣ 0 < ν < Ni,N
(j)
i σi,ν /∈ Z, j = 1, 2, 3}

where E(j)i ∈ Supp(Fπ) crossing Ei (i.e., E
(j)
i ∩ Ei ≠ ∅).
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Yano’s conjecture (III)

• Yano’s conjecture was proved for g = 1 by Cassou-Nogués
in 1988.

• More recently, Artal-Bartolo, Cassou-Noguès, Luengo and
Melle-Hernández (’16) proved it for g = 2 & assuming that
the monodromy eigenvalues are pair-wise different.

• Using analytic continuation of the complex zeta function:
We give a prove for any g > 0 & assuming that the
monodromy eigenvalues are pair-wise different.

• We give a prove for the general case using periods of
integrals in the Milnor fiber (solutions of the Gauss-Manin
connection).
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Asymptotic expansion of periods of integrals
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Milnor fiber

Let f ∶ (Cn+1,0)Ð→ (C,0) be a germ of a holomorphic function
defining an isolated singularity. For 0 < δ ≪ ε≪ 1,

X ∶= Bε ∩ f −1(T), X′ ∶= X ∖ f −1(0), Xt ∶= Bε ∩ f −1(t), t ∈ Tδ.

where Xt is the Milnor fiber and H̃n(Xt,C) = Cµ and zero
otherwise.

(Co)homological Milnor fibration:

f ∗ ∶ Hn ∶= ⋃
t∈T∗

Hn(Xt,C)Ð→ T′

a locally constant vector bundle.

Gauss-Manin connection: ∇n ∶Hn Ð→ Ω1T′ ⊗T′ Hn.
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Periods of integrals

Let η ∈ Γ(X,ΩnX) be a holomorphic form, γ(t) locally constant
section of Hn,

I(t) ∶= ∫
γ(t)

η, I′(t) ∶= d
dt ∫γ(t)

η = ∫
γ(t)

dη
df

which are solutions to the homological Gauss-Manin
connection and dω/df is the Gel’fand-Leray form.

Since the Gauss-Manin connection has regular singularities
(Brieskorn ’70), for any ω ∈ Γ(X,Ωn+1X ) (Malgrange ’74)

∫
γ(t)

ω

df
= ∑

λ∈Λ

∑
α∈L(λ)

∑
0≤k≤n

aα−1,ktα−1(ln t)k,

Λ eigenvalues monodromy, and L(λ) ∶= Q≥0 ∩ (2πi)−1 log Λ.
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Geometric sections

• The numbers aα−1,k define locally constant cohomological
classes Aωα−1,k(t) via

⟨Aωα−1,k(t), γ(t)⟩ ∶= aα−1,k,

called locally constant geometric sections.
• Geometric sections:

s[ω] ∶= ∑
λ∈Λ

∑
α∈L(α)

∑
0≤k≤n

Aωα−1,kt
α−1(ln t)k,

for ω ∈ Γ(X,Ωn+1X ).
• After a result of Varchenko (’80), having Aωα,k ≠ 0 and α in
(0, 1) implies that α + 1 is a b-exponent.
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Resolution of singularities

Let π ∶ X Ð→ X resolution of singularities,

σ ∶ T̃ Ð→ T, σ(̃t) = t̃e,
e ∶= lcm(N1, . . . ,Nr). Finally, X̃ normalization of X ×T T̃ :

X̃ X X

T̃ T T.

f̃

ρ

π∗f

π

f

σ

• We had π∗f =loc. x
Ni
0 around E○i = Ei ∖ ∪j≠iEj.

• Then, f̃ =loc. x̃, that is F̃π is reduced.
• Hence, ω̃/df̃ is well-defined on Ẽ○i , where ω̃ ∶= (πρ)∗ω.
• However, X̃ is an orbifold (mild singularities).

12



Resolution of singularities

Let π ∶ X Ð→ X resolution of singularities, σ ∶ T̃ Ð→ T, σ(̃t) = t̃e,
e ∶= lcm(N1, . . . ,Nr).

Finally, X̃ normalization of X ×T T̃ :

X̃ X X

T̃ T T.

f̃

ρ

π∗f

π

f

σ

• We had π∗f =loc. x
Ni
0 around E○i = Ei ∖ ∪j≠iEj.

• Then, f̃ =loc. x̃, that is F̃π is reduced.
• Hence, ω̃/df̃ is well-defined on Ẽ○i , where ω̃ ∶= (πρ)∗ω.
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Asymptotic expansion

Locally around Ei, ω = π∗ω = ω0 + ω1 +⋯ + ων +⋯

with ων a section of Ωn+1X (−νEi).

Then, one shows that

∫
γ(t)

ω

df
= ∑

ν≥0
tσi,ν(ω)−1∫

γ̃(̃t)
Ri,ν(ω),

where Ri,ν(ω) extends to a multivalued form on E○i and

σi,ν(ω) =
vi(ων) + 1

Ni
= ki + 1 + ν

Ni
.
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Asymptotic expansion (II)

Then, as long as the integral is finite, Aωσi,ν−1,0(t) is

⟨Aωσi,ν−1,0(t), γ(t)⟩ ∶= limt̃→0∫γ̃(̃t)
Ri,ν(ω) ∈ C.

On the other hand, the form Ri,ν(ω) defines a Q-divisors on E○i
Div(Ri,ν(ω)) =∑

j
εj,ν(ω)Di,j +∑

k
δk,νxk

where Di,j = E
(j)
i ∩ Ei,Dj ∈ Supp(Fπ) and

εj,ν(ω) ∶= −Njσi,ν + vj(ων).

Lemma

For any plane curve singularity,

∑
j
εi,ν(ω) +∑

k
δk,ν(ω) + νE2i = −2.
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Deligne-Mostow

• Since for plane curves Ei ≅ P1C, Ri,ν(ω) defines a
multivalued form on E○i ≅ P

1
C ∖ {s1, . . . , sr}.

• If L is a local system with monodromies exp (−2πiεj,ν(ω)),
Ri,ν(ω) defines a cohomology class in H1(E○i , L).

• If S ∶= s1 +⋯ + sr and since E○i is affine

H1(E○i , L) ≅ H
1Γ(P1C,Ω

●(L)(∗S)).

Proposition (Deligne-Mostow ’86)

Let ω ∈ Γ(P1C,Ω1(−∑ εj,ν(ω)sj −∑ δk,ν(ω)xk)(L)). Assume that
∑s∈S εj,ν(ω) ≥ r − 1 and that εj,ν(ω) /∈ Z for all s ∈ S. Then, ω
defines a non-zero cohomology class in H1(P1C ∖ S, L).
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Teissier’s monomial curve

Let f ∶ (C2,0)Ð→ (C,0) be a plane branch with semigroup
Γ = ⟨β0, . . . , βg⟩ ⊆ Z+.

Define the monomial curve CΓ ∶ ui = tβi , i = 1, . . . ,g.

(Teissier ’86) The monomial curve CΓ of a plane branch is a
quasi-homogeneous complete intersection such that any
plane branch with semigroup Γ is isomorphic to a fiber of the
miniversal semigroup constant deformation of CΓ

Proposition (B. )

Let Ei be a rupture divisor of the minimal resolution of f with
divisorial valuation vi. Then, for any v > Ni there exists a
one-parameter µ-constant deformation of f of the form
f + tgt such that vi(gt) = v, for all values of the parameter t.
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Overview of the proof

Recall, Yano’s candidates:
g
⋃
i=1
{ σi,ν =

ki + 1 + ν
Ni

∣ 0 ≤ ν < Ni,N
(j)
i σi,ν /∈ Z, j = 1, 2, 3}

• Fix a candidate σi,ν associated to Ei. The candidates are
non-resonant, that is εj,ν(ω) /∈ Z.

• Set ω = dx ∧ dy, then σi,ν(ω) = σi,ν .
• Generically in the deformation, ων is non-zero.
• Since σi,ν is non-resonant and Ei is rupture, by Deligne-
Mostow, Ri,ν(ω) is non-zero in H1(E○i , L), hence A

ω
σi,ν−1,0 ≠ 0.

• Since 0 ≤ ν < Ni, by Varchenko’s theorem, σi,ν is a
b-exponent of the generic fibers.

• Generalizing a result of Varchenko: the b-exponents are
semicontinuous under µ-constant deformations. Hence,
we can apply this argument to all the candidates.
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Yano’s conjecture

Theorem (B.)

For any irreducible plane curve singularity, Yano’s conjecture
holds true.
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