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Let f € C[xo,.-..,Xn] @ non-constant polynomial. There exists a
differential operator P(s) € Dcn ® C[s] and by p(s) € C[s] sit.

P(s)-F = brp(s)f* (%)

Definition
The monic generator of the ideal in C[s] generated by by p(s)
fulfilling (*) is the Bernstein-Sato polynomial bg(s) of f.

Theorem (Kashiwara '76, Lichtin '89)

b7'(0) e {~(Ri+1+v)/N; | v € Zy,i=1,...,r}

Similarly for the local case: f € C{xq,...,Xn}, then 3 by o(s).
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Brieskorn lattice

Let f: (C™' 0) — (C,0) defining an isolated singularity.

The Brieskorn lattice: "H" := Qf''/(df AdQ3y) © & free
C{t}-module of rank u (Milnor number).

Theorem (Malgrange '75)

The reduced Bernstein-Sato poly. vao(s) = bro(s)/(s+1) of
Is the minimal polynomial of the endomorphism

—8_tt 5 //’H’n/t //’I:/’n _ //’Hn/t //’H’n (**)7
where "H" := 3,50 (8:t)*("H™) is the saturation of "H".

The b-exponents: roots of the characteristic polynomial of the
endomorphism Ot (*%).
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Motivating example
0<a<9,
0<pB<4 S

Let f = y* —x°, ju = 24. The roots of by o(s) are { - 2422 |

B 20 58 s 59
36" 36"7 36" 36 36 36

Consider f;, u-constant deformations of f:

Cfi=fetixy? -2 — -2 -1=-2_ if t=20.
Cfi=frtxby Xyt -2 -2 -8, if 0.
=ty +txCy? -2 -2 -0 s B i 343t # 0.

2/in a Zariski open

Finally, if f = f + tuX"y + t3x°y? + tox8y? + tix’y

set of the base of the deformation:
The roots of by, (s) are between —Ict(f) = - and —= -1
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Yano's conjecture

Let f: (C?,0) — (C,0) be a plane branch with characteristic
sequence (n; Bo, .., H1). Define e; := ged(n, B, ..., 5i),

Lo Birn o Beiat Bir(€iy — €j_1) + -+ PBr(eg — 1)
| 9 [ 9
g e

ro:=2, ri=riq+ Bi=bia ==+,
€1 €i1

Ri€;
R6 =0, R,(:: Ri_1+Bi—Bicy = — L
€i-1
Consider:
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Yano's conjecture (1)

Conjecture (Yano ('82))

For generic curves in some u-constant deformation of f, the
b-exponents {as,ay,...,a,} are

I
St =R((n,B1,...,Bg),t).
=1
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Resolution of singularities

Let : (X,E) — (C?,0) be a proper birational morphism such
that

- Fr = Div(m*f) = X7, N;E; is a normal crossing divisor.
- Kz = Div(m*dx ady) = ¥, RiE; is the canonical divisor.

where E = Ey + - + Epy IS the exceptional locus.
Alternatively, if E;,i =1,...,g rupture divisors of f:

Ri+1+wv

I )
{aq,...,au}:U{aivy— 0<u<N,,Nfa,V¢Z/_123}
i=1

i

where EIQ) e Supp(F,) crossing E; (i.e,, E,.(j) NnE; + @).
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Yano’s conjecture (I11)

- Yano's conjecture was proved for g = 1 by Cassou-Nogués
in 1988.

- More recently, Artal-Bartolo, Cassou-Nogues, Luengo and
Melle-Hernandez ("16) proved it for g = 2 & assuming that
the monodromy eigenvalues are pair-wise different.

- Using analytic continuation of the complex zeta function:
We give a prove for any g > 0 & assuming that the
monodromy eigenvalues are pair-wise different.

- We give a prove for the general case using periods of
integrals in the Milnor fiber (solutions of the Gauss-Manin
connection).
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Milnor fiber

Let f: (C"',0) — (C,0) be a germ of a holomorphic function
defining an isolated singularity. For 0 < § < e < 1,

X:=Bnf(T), X =X~f0), Xe:=Bcnf'(t), teTs.
where X; is the Milnor fiber and A" (X;,C) = C* and zero

otherwise.

(Co)homological Milnor fibration:

e H" = LTJ H"(X;,C) — T’
teT*

a locally constant vector bundle.

Gauss-Manin connection: viH! — Q}, 7 H".
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Periods of integrals

Let n e I'(X,Q}) be a holomorphic form, v(t) locally constant
section of Hy,

; d dn
I(t) := , I'(t) = — = —
® v(t)n ® dt fw(t)” -/v(t) df

which are solutions to the homological Gauss-Manin
connection and dw/df is the Gel'fand-Leray form.

Since the Gauss-Manin connection has regular singularities
(Brieskorn '70), for any w e I(X,Q5*") (Malgrange '74)

w . )
‘[y\(t)ﬁ_ Z Z Z A1kt 1(lnt) ]

AeN ael (X) 0<k<n

A eigenvalues monodromy, and L()) = Qsq n (27i) ™" log A.

10
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Geometric sections

- The numbers a,_;\ define locally constant cohomological
classes A¥ . (t) via

<Ag—1,k(t)7 ’V(t» = Aa—1k;

called locally constant geometric sections.

- Geometric sections:

slwl=3 X X Al (In0),

AeA ael (ar) 0<k<n

for w e F(X, QF™).
- After a result of Varchenko ('80), having A , # 0 and a in
(0,7) implies that o+ 1 is a b-exponent.

n
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Resolution of singularities

Let 7 : X —> X resolution of singularities, o: T — T, (%) = &,
= lem(N4,...,N;). Finally, X normalization of X x7 T:

lf lf

X 25 X —Z5 X
T — T ——

- We had 7*f =o¢. xé” around E? = E; N UjiE;.

- Then, f =pc. % that is F is reduced.

- Hence, @/df is well-defined on E?,  where & := (7p)*w
- However, X is an orbifold  (mild singularities).

12
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Asymptotic expansion

Locally around E;, W=mw=Wo+W|+ - +Wy +

with @, a section of Q*'(~vE)).

Then, one shows that

where R; ,(w) extends to a multivalued form on E? and

Vilwy) +1 _ Ri+1+v
NN

Ui,y(w) =

13
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Then, as long as the integral is finite, A7, ,(t) is

A% o(1), (1)) = i _Rj,(w)eC.
(85,0, (@) = lim [ R ()
On the other hand, the form R; ,(w) defines a Q-divisors on E?

DIV(Rjp (w)) = 3 €1, ()Dij + 3 B Xe
j k

where D;; = E¥ n £}, D; € Supp(F») and

ew(w) = —NjO',"V + vj(w,,).

14



Asymptotic expansion (II)

Then, as long as the integral is finite, Ay _; o(t) is

(4 100 7(®) s=lim [ R () eC.
’ t~0J9(D)
On the other hand, the form R; , (w) defines a Q-divisors on E?
DiV(Ri,zx(w)) = Zej,u(w)Di,j + de,uxk
j k
where D;; = El.(j) nE;, D; e Supp(Fr) and
Ej,y(w) = —NjO',"V + Vj(wy).

Lemma

For any plane curve singularity,

S i) + ¥ b () + vER = 2
j )
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Deligne-Mostow

- Since for plane curves E; =z P, R; ,(w) defines a
multivalued form on E? 2 Pi N {s1,..., 5/}

- If Lis a local system with monodromies exp (-27iej , (w)),
Ri,(w) defines a cohomology class in H'(E?, L).

* If S:=s1+ -+ and since E} is affine
H'(E?, L) = H'T (PG, Q°(L)(#S)).

Proposition (Deligne-Mostow '86)

Let w e T(PL, Q'(- L€, (w)Sj = X 0k (w)xe)(L)). Assume that
Yses€(w) 2r—"Tand thate;,(w) ¢Z for all s € S. Then, w
defines a non-zero cohomology class in H' (P~ S, L).

15
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Teissier's monomial curve

Let f: (C2,0) — (C,0) be a plane branch with semigroup
r:(5077ﬁg>gZ+

Define the monomial curve Ch:uj=thii=1,...,q.

(Teissier '86) The monomial curve C" of a plane branch is a
quasi-homogeneous complete intersection such that any
plane branch with semigroup I is isomorphic to a fiber of the
miniversal semigroup constant deformation of C"

Proposition (B. )

Let E; be a rupture divisor of the minimal resolution of f with
divisorial valuation v;. Then, for any v > N; there exists a
one-parameter p-constant deformation of f of the form

f +tg: such that vi(gt) = v, for all values of the parameter t.
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Overview of the proof

Recall, Yano's candidates:
g Ri+1+v

U{ Ojy =

|o<y</\/,,/\/()a,y¢z;_1,2,3}
i=1

- Fix a candidate ¢;,, associated to E;. The candidates are
non-resonant, thatis ¢; , (w) ¢ Z.

- Setw=dxady, then g; ,(w) =0;,.

- Generically in the deformation, @, is non-zero.

- Since g;, is non-resonant and E; is rupture, by Deligne-
Mostow, R; ,(w) is non-zero in H'(E?, L), hence Ay _10%0.

- Since 0 < v < N;, by Varchenko's theorem, o, is a 7
b-exponent of the generic fibers.

- Generalizing a result of Varchenko: the b-exponents are
semicontinuous under u-constant deformations. Hence,
we can apply this argument to all the candidates. 17



Yano's conjecture

Theorem (B.)

For any irreducible plane curve singularity, Yano’s conjecture
holds true.
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