Guillem Blanco November 5th, 2021

KU Leuven

Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t.

$$
P(s) \cdot f^{s+1} = b_{f,P}(s) f^s \qquad (*)
$$

Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(S) \cdot f^{S+1} = b_{f,P}(s) f^S$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (∗) is the Bernstein-Sato polynomial *^b^f* (*s*) of *^f*.

Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(S) \cdot f^{S+1} = b_{f,P}(s) f^S$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (∗) is the Bernstein-Sato polynomial *^b^f* (*s*) of *^f*.

Theorem (Kashiwara '76, Lichtin '89)

$$
b_f^{-1}(0) \subseteq \{-(k_i+1+\nu)/N_i \mid \nu \in \mathbb{Z}_+, i=1,\ldots,r\}
$$

Let $f \in \mathbb{C}[x_0, \ldots, x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(S) \cdot f^{S+1} = b_{f,P}(s) f^S$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (∗) is the Bernstein-Sato polynomial *^b^f* (*s*) of *^f*.

Theorem (Kashiwara '76, Lichtin '89)

$$
b_f^{-1}(0) \subseteq \{-(k_i+1+\nu)/N_i \mid \nu \in \mathbb{Z}_+, i=1,\ldots,r\}
$$

Similarly for the local case: $f \in \mathbb{C}\{x_0, \ldots, x_n\}$, then $\exists b_f \rho(s)$.

Brieskorn lattice

Let *f* : (Cⁿ⁺¹, 0) → (C, 0) defining an isolated singularity. **The Brieskorn lattice:** $''H^n := Ω_{X,0}^{n+1}/(d f ∆ dΩ_{X,0}^{n-1}) ∅ ∂_t$ free $\mathbb{C}{t}$ -module of rank μ (Milnor number).

Brieskorn lattice

Let *f* : (Cⁿ⁺¹, 0) → (C, 0) defining an isolated singularity.

The Brieskorn lattice: $''H^n := Ω_{X,0}^{n+1}/(d f ∆ dΩ_{X,0}^{n-1}) ∅ ∂_t$ free $\mathbb{C}{t}$ -module of rank μ (Milnor number).

Theorem (Malgrange '75)

The reduced Bernstein-Sato poly. $\ddot{b}_{f,0}(s) := b_{f,0}(s)/(s+1)$ *of f is the minimal polynomial of the endomorphism*

$$
-\overline{\partial_t t} : \sqrt[n]{H}^n / t \sqrt[n]{H}^n \longrightarrow \sqrt[n]{H}^n / t \sqrt[n]{H}^n \quad (**),
$$

 W *here* $\lq\lq H^n := \sum_{k \geq 0} (\partial_t t)^k (\lq H^n)$ is the saturation of $\lq H^n$.

Brieskorn lattice

Let *f* : (Cⁿ⁺¹, 0) → (C, 0) defining an isolated singularity.

The Brieskorn lattice: $''H^n := Ω_{X,0}^{n+1}/(d f ∆ dΩ_{X,0}^{n-1}) ∅ ∂_t$ free $\mathbb{C}{t}$ -module of rank μ (Milnor number).

Theorem (Malgrange '75)

The reduced Bernstein-Sato poly. $\tilde{b}_{f,0}(s) := b_{f,0}(s)/(s+1)$ *of f is the minimal polynomial of the endomorphism*

$$
-\overline{\partial_t t} : \n\raisebox{1ex}{$\scriptstyle\bullet$} \widetilde{H}^n / t \n\raisebox{1ex}{$\scriptstyle\bullet$} \widetilde{H}^n \longrightarrow \n\raisebox{1ex}{$\scriptstyle\bullet$} \widetilde{H}^n / t \n\raisebox{1ex}{$\scriptstyle\bullet$} \widetilde{H}^n \quad (**),
$$

 W *here* $\lq\lq H^n := \sum_{k \geq 0} (\partial_t t)^k (\lq H^n)$ is the saturation of $\lq H^n$.

The *b*-exponents: roots of the characteristic polynomial of the endomorphism [∂]*t^t* (∗∗).

Let
$$
f = y^4 - x^9
$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{-\frac{4\alpha + 9\beta}{36} | \begin{array}{l} 0 < \alpha < 9, \\ 0 < \beta < 4 \end{array}\right\}$.

$$
-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}
$$

Let
$$
f = y^4 - x^9
$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{-\frac{4\alpha + 9\beta}{36} | \begin{array}{c} 0 < \alpha < 9, \\ 0 < \beta < 4 \end{array}\right\}$.

$$
-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}
$$

Consider f_t , μ -constant deformations of f :

•
$$
f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}
$$
, if $t_1 \neq 0$.

Let
$$
f = y^4 - x^9
$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{-\frac{4\alpha + 9\beta}{36} | \begin{array}{c} 0 < \alpha < 9, \\ 0 < \beta < 4 \end{array}\right\}$.

$$
-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}
$$

Consider f_t , μ -constant deformations of f :

•
$$
f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36},
$$
 if $t_1 \neq 0$.
\n• $f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36},$ if $t_2 \neq 0$.

Let
$$
f = y^4 - x^9
$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{-\frac{4\alpha + 9\beta}{36} | \begin{array}{l} 0 < \alpha < 9, \\ 0 < \beta < 4 \end{array}\right\}$.

$$
-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}
$$

Consider f_t , μ -constant deformations of f :

•
$$
f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}
$$
, if $t_1 \neq 0$.
\n• $f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36}$, if $t_2 \neq 0$.
\n• $f_t = f + t_4 x^7 y + t_3 x^5 y^2 : -\frac{23}{36}, -\frac{19}{36}, -\frac{50}{36} \longrightarrow -\frac{14}{36}$, if $t_3 + 3t_4^2 \neq 0$.

Let
$$
f = y^4 - x^9
$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{-\frac{4\alpha + 9\beta}{36} | \begin{array}{c} 0 < \alpha < 9, \\ 0 < \beta < 4 \end{array}\right\}$.

$$
-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}
$$

Consider f_t , μ -constant deformations of f :

•
$$
f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}
$$
, if $t_1 \neq 0$.
\n• $f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36}$, if $t_2 \neq 0$.
\n• $f_t = f + t_4 x^7 y + t_3 x^5 y^2 : -\frac{23}{36}, -\frac{19}{36}, -\frac{50}{36} \longrightarrow -\frac{14}{36}$, if $t_3 + 3t_4^2 \neq 0$.

Finally, if $f_t = f + t_4 x^7 y + t_3 x^5 y^2 + t_2 x^6 y^2 + t_1 x^7 y^2$, in a Zariski open set of the base of the deformation:

• The roots of $b_{f_t}(s)$ are between $-\text{lct}(f) = -\frac{13}{36}$ and $-\frac{13}{36}$ – 1.

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with characteristic sequence $(n; \beta_0, \ldots, \beta_1)$. Define $e_i := \gcd(n, \beta_1, \ldots, \beta_i)$,

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with characteristic sequence $(n; \beta_0, \ldots, \beta_1)$. Define $e_i := \gcd(n, \beta_1, \ldots, \beta_i)$,

$$
r_{i} := \frac{\beta_{i} + n}{e_{i}}, \quad R_{i} := \frac{\beta_{i}e_{i-1} + \beta_{i-1}(e_{i-2} - e_{i-1}) + \dots + \beta_{1}(e_{0} - e_{1})}{e_{i}},
$$

\n
$$
r'_{0} := 2, \quad r'_{i} := r_{i-1} + \left[\frac{\beta_{i} - \beta_{i-1}}{e_{i-1}}\right] + 1 = \left[\frac{r_{i}e_{i}}{e_{i-1}}\right] + 1,
$$

\n
$$
R'_{0} := n, \quad R'_{i} := R_{i-1} + \beta_{i} - \beta_{i-1} = \frac{R_{i}e_{i}}{e_{i-1}}.
$$

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with characteristic sequence $(n; \beta_0, \ldots, \beta_1)$. Define $e_i := \gcd(n, \beta_1, \ldots, \beta_i)$,

$$
r_{i} := \frac{\beta_{i} + n}{e_{i}}, \quad R_{i} := \frac{\beta_{i}e_{i-1} + \beta_{i-1}(e_{i-2} - e_{i-1}) + \dots + \beta_{1}(e_{0} - e_{1})}{e_{i}},
$$

\n
$$
r'_{0} := 2, \quad r'_{i} := r_{i-1} + \left[\frac{\beta_{i} - \beta_{i-1}}{e_{i-1}}\right] + 1 = \left[\frac{r_{i}e_{i}}{e_{i-1}}\right] + 1,
$$

\n
$$
R'_{0} := n, \quad R'_{i} := R_{i-1} + \beta_{i} - \beta_{i-1} = \frac{R_{i}e_{i}}{e_{i-1}}.
$$

Consider:

$$
R\big((n,\beta_1,\ldots,\beta_g),t\big):=\sum_{i=1}^g t^{\frac{r_i}{R_i}}\frac{1-t}{1-t^{\frac{1}{R_i}}} - \sum_{i=0}^g t^{\frac{r'_i}{R'_i}}\frac{1-t}{1-t^{\frac{1}{R'_i}}}+t,
$$

Conjecture (Yano ('82))

For generic curves in some μ *-constant deformation of f, the b*-exponents $\{\alpha_1, \alpha_2, \ldots, \alpha_\mu\}$ are

$$
\sum_{i=1}^{\mu} t^{\alpha_i} = R\big((n,\beta_1,\ldots,\beta_g),t\big).
$$

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

 \cdot F_{π} = Div $(\pi^* f)$ = $\sum_{i=1}^{m} N_i E_i$ is a normal crossing divisor.

 \cdot *K*_{π} = Div(π^* d*x* ∧ d*y*) = $\sum_{i=1}^{m} k_i E_i$ is the canonical divisor.

where $E = E_1 + \cdots + E_m$ is the exceptional locus.

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

 \cdot F_{π} = Div $(\pi^* f)$ = $\sum_{i=1}^{m} N_i E_i$ is a normal crossing divisor.

 \cdot *K*_{π} = Div(π^* d*x* ∧ d*y*) = $\sum_{i=1}^{m} k_i E_i$ is the canonical divisor.

where $E = E_1 + \cdots + E_m$ is the exceptional locus.

Alternatively, if E_i , $i = 1, \ldots, g$ rupture divisors of f :

$$
\{\alpha_1, \dots, \alpha_{\mu}\} = \bigcup_{i=1}^g \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \middle| 0 < \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

where $E_i^{(j)}$ $\binom{0}{i}$ ∈ Supp(F_{π}) crossing E_i (i.e., $E_i^{(j)}$) $i_j^{(j)}$ ∩ $E_i \neq \emptyset$).

• Yano's conjecture was proved for *^g* ⁼ 1 by Cassou-Nogués in 1988.

- Yano's conjecture was proved for *^g* ⁼ 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for *^g* ⁼ 2 & assuming that the monodromy eigenvalues are pair-wise different.

- Yano's conjecture was proved for *^g* ⁼ 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for *^g* ⁼ 2 & assuming that the monodromy eigenvalues are pair-wise different.
- Using analytic continuation of the complex zeta function: We give a prove for any *^g* > 0 & assuming that the monodromy eigenvalues are pair-wise different.

- Yano's conjecture was proved for *^g* ⁼ 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for *^g* ⁼ 2 & assuming that the monodromy eigenvalues are pair-wise different.
- Using analytic continuation of the complex zeta function: We give a prove for any *^g* > 0 & assuming that the monodromy eigenvalues are pair-wise different.
- We give a prove for the general case using periods of integrals in the Milnor fiber (solutions of the Gauss-Manin connection).

Asymptotic expansion of periods of integrals

Milnor fiber

Let $f: (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$
X := B_{\epsilon} \cap f^{-1}(T), \quad X' := X \setminus f^{-1}(0), \quad X_t := B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.
$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t,\mathbb{C}) = \mathbb{C}^\mu$ and zero otherwise.

Milnor fiber

Let $f: (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$
X := B_{\epsilon} \cap f^{-1}(T), \quad X' := X \setminus f^{-1}(0), \quad X_t := B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.
$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t,\mathbb{C}) = \mathbb{C}^\mu$ and zero otherwise.

(Co)homological Milnor fibration:

$$
f^*:H^n:=\bigcup_{t\in T^*}H^n(X_t,\mathbb{C})\longrightarrow T'
$$

a locally constant vector bundle.

Milnor fiber

Let $f: (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$
X := B_{\epsilon} \cap f^{-1}(T), \quad X' := X \setminus f^{-1}(0), \quad X_t := B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.
$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t,\mathbb{C}) = \mathbb{C}^\mu$ and zero otherwise.

(Co)homological Milnor fibration:

$$
f^*: H^n := \bigcup_{t \in T^*} H^n(X_t, \mathbb{C}) \longrightarrow T'
$$

a locally constant vector bundle.

Gauss-Manin connection: $\nabla^n : \mathcal{H}^n \longrightarrow \Omega_{\mathcal{T}'}^1 \otimes_{\mathcal{T}'} \mathcal{H}^n.$

Let $η ∈ Γ(X, Ωⁿ_X)$ be a holomorphic form, $γ(t)$ locally constant section of *Hn*,

Let $η ∈ Γ(X, Ωⁿ_X)$ be a holomorphic form, $γ(t)$ locally constant section of *Hn*,

$$
I(t) := \int_{\gamma(t)} \eta, \qquad I'(t) := \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{df}
$$

Let $η ∈ Γ(X, Ωⁿ_X)$ be a holomorphic form, $γ(t)$ locally constant section of *Hn*,

$$
I(t) := \int_{\gamma(t)} \eta, \qquad I'(t) := \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{df}
$$

which are solutions to the homological Gauss-Manin connection and $d\omega/df$ is the Gel'fand-Leray form.

Let $η ∈ Γ(X, Ωⁿ_X)$ be a holomorphic form, $γ(t)$ locally constant section of *Hn*,

$$
I(t) := \int_{\gamma(t)} \eta, \qquad I'(t) := \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{df}
$$

which are solutions to the homological Gauss-Manin connection and dω/d*f* is the Gel'fand-Leray form.

Since the Gauss-Manin connection has regular singularities (Brieskorn '70), for any $\omega \in \Gamma(X, \Omega_X^{n+1})$ (Malgrange '74)

$$
\int_{\gamma(t)} \frac{\omega}{\mathrm{d} f} = \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\lambda)} \sum_{0 \leq k \leq n} a_{\alpha - 1, k} t^{\alpha - 1} (\ln t)^k,
$$

 Λ eigenvalues monodromy, and *L*(λ) := $\mathbb{Q}_{\geq 0} \cap (2\pi i)^{-1}$ log Λ .

Geometric sections

• The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A_{\alpha-1,k}^{\omega}(t)$ via

Geometric sections

• The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A_{\alpha-1,k}^{\omega}(t)$ via

$$
\langle A_{\alpha-1,k}^\omega(t),\gamma(t)\rangle\coloneqq a_{\alpha-1,k},
$$

called locally constant geometric sections.

• Geometric sections:

$$
S[\omega] := \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\alpha)} \sum_{0 \le k \le n} A^{\omega}_{\alpha-1,k} t^{\alpha-1} (\ln t)^k,
$$

for $\omega \in \Gamma(X, \Omega_X^{n+1}).$

Geometric sections

• The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A_{\alpha-1,k}^{\omega}(t)$ via

$$
\langle A_{\alpha-1,k}^\omega(t),\gamma(t)\rangle\coloneqq a_{\alpha-1,k},
$$

called locally constant geometric sections.

• Geometric sections:

$$
S[\omega] := \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\alpha)} \sum_{0 \le k \le n} A^{\omega}_{\alpha-1,k} t^{\alpha-1} (\ln t)^k,
$$

for $\omega \in \Gamma(X, \Omega_X^{n+1}).$

• After a result of Varchenko ('80), having $A^{\omega}_{\alpha,k} \neq 0$ and α in (0, 1) implies that α + 1 is a *b*-exponent.

Let $\pi : \overline{X} \longrightarrow X$ resolution of singularities,

Let $\pi : \overline{X} \longrightarrow X$ resolution of singularities, $\sigma : \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$, $e := \text{lcm}(N_1, ..., N_r).$

$$
\begin{array}{ccc}\n\widetilde{X} & \xrightarrow{\rho} & \widetilde{X} & \xrightarrow{\pi} & X \\
\downarrow \widetilde{f} & & \downarrow \pi^* f & & \downarrow f \\
\widetilde{T} & \xrightarrow{\sigma} & T & \xrightarrow{\cdots} & T.\n\end{array}
$$

We had
$$
\pi^* f =_{loc} X_0^{N_i}
$$
 around $E_i^{\circ} = E_i \setminus \cup_{j \neq i} E_j$.

$$
\begin{array}{ccc}\n\widetilde{X} & \xrightarrow{\rho} & \widetilde{X} & \xrightarrow{\pi} & X \\
\downarrow \widetilde{f} & & \downarrow \pi^* f & & \downarrow f \\
\widetilde{T} & \xrightarrow{\sigma} & T & \xrightarrow{\cdots} & T.\n\end{array}
$$

- We had $\pi^* f =_{loc.} x_0^{N_i}$ around $E_i^{\circ} = E_i \setminus \cup_{j \neq i} E_j$.
- Then, $\tilde{f} =_{loc} \tilde{x}$, that is \tilde{F}_{π} is reduced.

$$
\begin{array}{ccc}\n\widetilde{X} & \xrightarrow{\rho} & \widetilde{X} & \xrightarrow{\pi} & X \\
\downarrow \widetilde{f} & & \downarrow \pi^* f & & \downarrow f \\
\widetilde{T} & \xrightarrow{\sigma} & T & \xrightarrow{\cdots} & T.\n\end{array}
$$

- We had $\pi^* f =_{loc.} x_0^{N_i}$ around $E_i^{\circ} = E_i \setminus \cup_{j \neq i} E_j$.
- Then, $\tilde{f} =_{loc.} \tilde{x}$, that is \tilde{F}_{π} is reduced.
- Hence, $\widetilde{\omega}/d\widetilde{f}$ is well-defined on \widetilde{E}°_i , where $\widetilde{\omega} \coloneqq (\pi \rho)^* \omega$.

$$
\begin{array}{ccc}\n\widetilde{X} & \xrightarrow{\rho} & \widetilde{X} & \xrightarrow{\pi} & X \\
\downarrow \widetilde{f} & & \downarrow \pi^* f & & \downarrow f \\
\widetilde{T} & \xrightarrow{\sigma} & T & \xrightarrow{\cdots} & T.\n\end{array}
$$

- We had $\pi^* f =_{loc.} x_0^{N_i}$ around $E_i^{\circ} = E_i \setminus \cup_{j \neq i} E_j$.
- Then, $\tilde{f} =_{loc.} \tilde{x}$, that is \tilde{F}_{π} is reduced.
- Hence, $\widetilde{\omega}/d\widetilde{f}$ is well-defined on \widetilde{E}°_i , where $\widetilde{\omega} \coloneqq (\pi \rho)^* \omega$.
- \cdot However, \widetilde{X} is an orbifold (mild singularities).

Asymptotic expansion

Locally around E_i , $\overline{\omega} = \pi^* \omega = \overline{\omega}_0 + \overline{\omega}_1 + \dots + \overline{\omega}_{\nu} + \dots$ with $\overline{\omega}_{\nu}$ a section of $\Omega_{\overline{\chi}}^{n+1}$ $\frac{n+1}{\chi}(-\nu E_i)$.

Locally around E_i , $\overline{\omega} = \pi^* \omega = \overline{\omega}_0 + \overline{\omega}_1 + \dots + \overline{\omega}_{\nu} + \dots$ with $\overline{\omega}_{\nu}$ a section of $\Omega_{\overline{\chi}}^{n+1}$ $\frac{n+1}{\chi}(-\nu E_i)$.

Then, one shows that

$$
\int_{\gamma(t)} \frac{\omega}{\mathrm{d} f} = \sum_{\nu \geq 0} t^{\sigma_{i,\nu}(\omega)-1} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega),
$$

where $R_{i,\nu}(\omega)$ extends to a multivalued form on E_i° and

$$
\sigma_{i,\nu}(\omega)=\frac{v_i(\omega_{\nu})+1}{N_i}=\frac{k_i+1+\nu}{N_i}.
$$

Then, as long as the integral is finite, $A^\omega_{\sigma_{i,\nu} - 1,0}(t)$ is $\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t), \gamma(t) \rangle \coloneqq \lim_{\tilde{t} \to 0} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega) \in \mathbb{C}.$

Then, as long as the integral is finite, $A^\omega_{\sigma_{i,\nu} - 1,0}(t)$ is

$$
\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t),\gamma(t)\rangle\coloneqq\lim_{\tilde{t}\to 0}\int_{\tilde{\gamma}(\tilde{t})}R_{i,\nu}(\omega)\in\mathbb{C}.
$$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$
\text{Div}(R_{i,\nu}(\omega)) = \sum_j \epsilon_{j,\nu}(\omega) D_{i,j} + \sum_k \delta_{k,\nu} x_k
$$

where $D_{i,j} = E_i^{(j)}$ $\binom{J}{i}$ ∩ E_i , D_j ∈ Supp(F_{π}) and

Then, as long as the integral is finite, $A^\omega_{\sigma_{i,\nu} - 1,0}(t)$ is

$$
\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t),\gamma(t)\rangle\coloneqq\lim_{\tilde{t}\to 0}\int_{\tilde{\gamma}(\tilde{t})}R_{i,\nu}(\omega)\in\mathbb{C}.
$$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$
\text{Div}(R_{i,\nu}(\omega)) = \sum_j \epsilon_{j,\nu}(\omega) D_{i,j} + \sum_k \delta_{k,\nu} x_k
$$

where
$$
D_{i,j} = E_i^{(j)} \cap E_i, D_j \in \text{Supp}(F_\pi)
$$
 and

$$
\epsilon_{j,\nu}(\omega) := -N_j \sigma_{i,\nu} + v_j(\overline{\omega}_{\nu}).
$$

Then, as long as the integral is finite, $A^\omega_{\sigma_{i,\nu} - 1,0}(t)$ is

$$
\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t),\gamma(t)\rangle\coloneqq\lim_{\tilde{t}\to 0}\int_{\tilde{\gamma}(\tilde{t})}R_{i,\nu}(\omega)\in\mathbb{C}.
$$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$
\text{Div}(R_{i,\nu}(\omega)) = \sum_j \epsilon_{j,\nu}(\omega) D_{i,j} + \sum_k \delta_{k,\nu} x_k
$$

where
$$
D_{i,j} = E_i^{(j)} \cap E_i, D_j \in \text{Supp}(F_\pi)
$$
 and

$$
\epsilon_{j,\nu}(\omega) := -N_j \sigma_{i,\nu} + v_j(\overline{\omega}_{\nu}).
$$

Lemma

For any plane curve singularity,

$$
\sum_{j} \epsilon_{i,\nu}(\omega) + \sum_{k} \delta_{k,\nu}(\omega) + \nu E_{i}^{2} = -2.
$$

• Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}, R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \ldots, s_r\}.$

Deligne-Mostow

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}, R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \ldots, s_r\}.$
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{i,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^{\circ}, L)$.

Deligne-Mostow

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}, R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \ldots, s_r\}.$
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{i,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^{\circ}, L)$.
- If $S := s_1 + \cdots + s_r$ and since E_i° is affine

 $H^1(E_i^{\circ}, L) \cong H^1\Gamma(\mathbb{P}_{\mathbb{C}}^1, \Omega^{\bullet}(L)(*S)).$

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}, R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \ldots, s_r\}.$
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{i,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^{\circ}, L)$.
- If $S := s_1 + \cdots + s_r$ and since E_i° is affine

$$
H^1(E_i^{\circ}, L) \cong H^1\Gamma(\mathbb{P}_\mathbb{C}^1, \Omega^\bullet(L)(*S)).
$$

Proposition (Deligne-Mostow '86)

Let ω ∈ Γ($\mathbb{P}^1_\mathbb{C}, \Omega^1$ (− ∑ $\epsilon_{j,\nu}(\omega)s_j$ − ∑ $\delta_{k,\nu}(\omega)x_k$)(*L*))*.* Assume that $\sum_{s \in S} \epsilon_{j,\nu}(\omega) \ge r - 1$ *and that* $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$ for all $s \in S$. Then, ω defines a non-zero cohomology class in H¹($\mathbb{P}^1_{\mathbb{C}}$ ৲ S, L).

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \ldots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \ldots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $\Gamma: u_i = t^{\beta_i}, i = 1, \ldots, g.$

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \ldots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $C^{\Gamma}: u_i = t^{\beta_i}, i = 1, \ldots, g.$

(Teissier '86) The monomial curve *C* ^Γ of a plane branch is a quasi-homogeneous complete intersection such that any plane branch with semigroup Γ is isomorphic to a fiber of the miniversal semigroup constant deformation of *C* Γ

Let $f: (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \ldots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $\Gamma: u_i = t^{\beta_i}, i = 1, \ldots, g.$

(Teissier '86) The monomial curve *C* ^Γ of a plane branch is a quasi-homogeneous complete intersection such that any plane branch with semigroup Γ is isomorphic to a fiber of the miniversal semigroup constant deformation of *C* Γ

Proposition (B.)

Let Eⁱ be a rupture divisor of the minimal resolution of f with divisorial valuation vⁱ . Then, for any v > *^Nⁱ there exists a one-parameter* µ*-constant deformation of f of the form* $f + tq_t$ *such that* $v_i(q_t) = v$, for all values of the parameter t.

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

Recall, Yano's candidates:

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

 \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i,\nu}(\omega) \notin \mathbb{Z}$.

Recall, Yano's candidates:

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

 \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i,\nu}(\omega) \notin \mathbb{Z}$.

• Set
$$
\omega = dx \wedge dy
$$
, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

- \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

- \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- \cdot Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^{\circ}, L)$, hence $A^{\omega}_{\sigma_{i,\nu}-1,0} \neq 0$.

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

- \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- \cdot Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^{\circ}, L)$, hence $A^{\omega}_{\sigma_{i,\nu}-1,0} \neq 0$.
- Since $0 \le \nu < N_i$, by Varchenko's theorem, $\sigma_{i,\nu}$ is a *b*-exponent of the generic fibers.

$$
\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{R_i + 1 + \nu}{N_i} \middle| 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}
$$

- \cdot Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{i\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- \cdot Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^{\circ}, L)$, hence $A^{\omega}_{\sigma_{i,\nu}-1,0} \neq 0$.
- Since $0 \le \nu < N_i$, by Varchenko's theorem, $\sigma_{i,\nu}$ is a *b*-exponent of the generic fibers.
- Generalizing a result of Varchenko: the *b*-exponents are semicontinuous under μ -constant deformations. Hence, we can apply this argument to all the candidates. 17

Theorem (B.)

For any irreducible plane curve singularity, Yano's conjecture holds true.

• B., *Yano's conjecture*, Invent. Math., 226 (2021), 421-465.

Thank you!