Guillem Blanco November 5th, 2021

KU Leuven

Let $f \in \mathbb{C}[x_0, ..., x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t.

$$P(s) \cdot f^{s+1} = b_{f,P}(s)f^s$$
 (*)

Let $f \in \mathbb{C}[x_0, ..., x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(s) \cdot f^{s+1} = b_{f,P}(s)f^s$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (*) is the Bernstein-Sato polynomial $b_f(s)$ of f.

Let $f \in \mathbb{C}[x_0, ..., x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(s) \cdot f^{s+1} = b_{f,P}(s)f^s$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (*) is the Bernstein-Sato polynomial $b_f(s)$ of f.

Theorem (Kashiwara '76, Lichtin '89)

$$b_f^{-1}(0) \subseteq \{-(k_i + 1 + \nu)/N_i \mid \nu \in \mathbb{Z}_+, i = 1, \dots, r\}$$

Let $f \in \mathbb{C}[x_0, ..., x_n]$ a non-constant polynomial. There exists a differential operator $P(s) \in D_{\mathbb{C}^n} \otimes \mathbb{C}[s]$ and $b_{f,P}(s) \in \mathbb{C}[s]$ s.t. $P(s) \cdot f^{s+1} = b_{f,P}(s)f^s$ (*)

Definition

The monic generator of the ideal in $\mathbb{C}[s]$ generated by $b_{f,P}(s)$ fulfilling (*) is the Bernstein-Sato polynomial $b_f(s)$ of f.

Theorem (Kashiwara '76, Lichtin '89)

$$b_f^{-1}(0) \subseteq \{-(k_i + 1 + \nu)/N_i \mid \nu \in \mathbb{Z}_+, i = 1, \dots, r\}$$

Similarly for the local case: $f \in \mathbb{C}\{x_0, \ldots, x_n\}$, then $\exists b_{f,0}(s)$.

Brieskorn lattice

Let $f : (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ defining an isolated singularity. **The Brieskorn lattice:** ${}^{\prime\prime}H^n := \Omega_{X,\mathbf{0}}^{n+1}/(\mathrm{d}f \wedge \mathrm{d}\Omega_{X,\mathbf{0}}^{n-1}) \bigcirc \partial_t$ free $\mathbb{C}\{t\}$ -module of rank μ (Milnor number). Let $f: (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ defining an isolated singularity.

The Brieskorn lattice: " $H^n := \Omega_{X,0}^{n+1}/(\mathrm{d}f \wedge \mathrm{d}\Omega_{X,0}^{n-1}) \bigcirc \partial_t$ free $\mathbb{C}\{t\}$ -module of rank μ (Milnor number).

Theorem (Malgrange '75)

The reduced Bernstein-Sato poly. $\tilde{b}_{f,0}(s) := b_{f,0}(s)/(s+1)$ of f is the minimal polynomial of the endomorphism

$$-\overline{\partial_t t}: {''\widetilde{H}}^n \big/ t{'''\widetilde{H}}^n \longrightarrow {''\widetilde{H}}^n \big/ t{'''\widetilde{H}}^n \quad (**),$$

where ${}^{\prime\prime}\widetilde{H}^n := \sum_{k\geq 0} (\partial_t t)^k ({}^{\prime\prime}H^n)$ is the saturation of ${}^{\prime\prime}H^n$.

Let $f: (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ defining an isolated singularity.

The Brieskorn lattice: " $H^n := \Omega_{X,0}^{n+1}/(\mathrm{d}f \wedge \mathrm{d}\Omega_{X,0}^{n-1}) \bigcirc \partial_t$ free $\mathbb{C}\{t\}$ -module of rank μ (Milnor number).

Theorem (Malgrange '75)

The reduced Bernstein-Sato poly. $\tilde{b}_{f,0}(s) := b_{f,0}(s)/(s+1)$ of f is the minimal polynomial of the endomorphism

$$-\overline{\partial_t t}: {''\widetilde{H}^n}/{t\,''\widetilde{H}^n} \longrightarrow {''\widetilde{H}^n}/{t\,''\widetilde{H}^n} \quad (**),$$

where ${}^{\prime\prime}\widetilde{H}^n := \sum_{k\geq 0} (\partial_t t)^k ({}^{\prime\prime}H^n)$ is the saturation of ${}^{\prime\prime}H^n$.

The *b*-exponents: roots of the characteristic polynomial of the endomorphism $\overline{\partial_t t}$ (**).

Let
$$f = y^4 - x^9$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{ -\frac{4\alpha + 9\beta}{36} \mid \substack{0 < \alpha < 9, \\ 0 < \beta < 4} \right\}$.
 $-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}$

Let
$$f = y^4 - x^9$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{ -\frac{4\alpha + 9\beta}{36} \mid \substack{0 < \alpha < 9, \\ 0 < \beta < 4} \right\}$.
 $-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}$

Consider f_t , μ -constant deformations of f:

•
$$f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}$$
, if $t_1 \neq 0$.

Let
$$f = y^4 - x^9$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{ -\frac{4\alpha + 9\beta}{36} \mid \frac{0 < \alpha < 9}{0 < \beta < 4} \right\}$.
 $-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}$

Consider f_t , μ -constant deformations of f:

•
$$f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}$$
, if $t_1 \neq 0$.
• $f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36}$, if $t_2 \neq 0$.

Let
$$f = y^4 - x^9$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{ -\frac{4\alpha + 9\beta}{36} \mid \substack{0 < \alpha < 9, \\ 0 < \beta < 4} \right\}$.
 $-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}$

Consider f_t , μ -constant deformations of f:

$$\begin{array}{l} \cdot \ f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}, \quad \text{if} \quad t_1 \neq 0. \\ \cdot \ f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36}, \quad \text{if} \quad t_2 \neq 0. \\ \cdot \ f_t = f + t_4 x^7 y + t_3 x^5 y^2 : -\frac{23}{36}, -\frac{19}{36}, -\frac{50}{36} \longrightarrow -\frac{14}{36}, \quad \text{if} \quad t_3 + 3t_4^2 \neq 0. \end{array}$$

Let
$$f = y^4 - x^9$$
, $\mu = 24$. The roots of $b_{f,0}(s)$ are $\left\{ -\frac{4\alpha + 9\beta}{36} \mid \substack{0 < \alpha < 9, \\ 0 < \beta < 4} \right\}$.
 $-\frac{13}{36}, -\frac{17}{36}, \dots, -\frac{50}{36}, -\frac{54}{36}, -\frac{55}{36}, -\frac{59}{36}$

Consider f_t , μ -constant deformations of f:

$$\begin{array}{l} \cdot \ f_t = f + t_1 x^7 y^2 : -\frac{59}{36} \longrightarrow -\frac{59}{36} - 1 = -\frac{23}{36}, \quad \text{if} \quad t_1 \neq 0. \\ \cdot \ f_t = f + t_2 x^6 y^2 + t_1 x^7 y^2 : -\frac{23}{36}, -\frac{55}{36} \longrightarrow -\frac{19}{36}, \quad \text{if} \quad t_2 \neq 0. \\ \cdot \ f_t = f + t_4 x^7 y + t_3 x^5 y^2 : -\frac{23}{36}, -\frac{19}{36}, -\frac{50}{36} \longrightarrow -\frac{14}{36}, \quad \text{if} \quad t_3 + 3t_4^2 \neq 0. \end{array}$$

Finally, if $f_t = f + t_4x^7y + t_3x^5y^2 + t_2x^6y^2 + t_1x^7y^2$, in a Zariski open set of the base of the deformation:

• The roots of $b_{f_t}(s)$ are between $-\operatorname{lct}(f) = -\frac{13}{36}$ and $-\frac{13}{36} - 1$.

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ be a plane branch with characteristic sequence $(n; \beta_0, \dots, \beta_1)$. Define $e_i := \operatorname{gcd}(n, \beta_1, \dots, \beta_i)$,

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ be a plane branch with characteristic sequence $(n; \beta_0, \dots, \beta_1)$. Define $e_i := \operatorname{gcd}(n, \beta_1, \dots, \beta_i)$,

$$\begin{split} r_{i} &\coloneqq \frac{\beta_{i} + n}{e_{i}}, \quad R_{i} \coloneqq \frac{\beta_{i}e_{i-1} + \beta_{i-1}(e_{i-2} - e_{i-1}) + \dots + \beta_{1}(e_{0} - e_{1})}{e_{i}}, \\ r'_{0} &\coloneqq 2, \quad r'_{i} \coloneqq r_{i-1} + \left\lfloor \frac{\beta_{i} - \beta_{i-1}}{e_{i-1}} \right\rfloor + 1 = \left\lfloor \frac{r_{i}e_{i}}{e_{i-1}} \right\rfloor + 1, \\ R'_{0} &\coloneqq n, \quad R'_{i} \coloneqq R_{i-1} + \beta_{i} - \beta_{i-1} = \frac{R_{i}e_{i}}{e_{i-1}}. \end{split}$$

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ be a plane branch with characteristic sequence $(n; \beta_0, \dots, \beta_1)$. Define $e_i := \operatorname{gcd}(n, \beta_1, \dots, \beta_i)$,

$$\begin{split} r_{i} &\coloneqq \frac{\beta_{i} + n}{e_{i}}, \quad R_{i} \coloneqq \frac{\beta_{i}e_{i-1} + \beta_{i-1}(e_{i-2} - e_{i-1}) + \dots + \beta_{1}(e_{0} - e_{1})}{e_{i}}, \\ r_{0}' &\coloneqq 2, \quad r_{i}' \coloneqq r_{i-1} + \left\lfloor \frac{\beta_{i} - \beta_{i-1}}{e_{i-1}} \right\rfloor + 1 = \left\lfloor \frac{r_{i}e_{i}}{e_{i-1}} \right\rfloor + 1, \\ R_{0}' &\coloneqq n, \quad R_{i}' \coloneqq R_{i-1} + \beta_{i} - \beta_{i-1} = \frac{R_{i}e_{i}}{e_{i-1}}. \end{split}$$

Consider:

$$R((n,\beta_1,\ldots,\beta_g),t) := \sum_{i=1}^{g} t^{\frac{r_i}{R_i}} \frac{1-t}{1-t^{\frac{1}{R_i}}} - \sum_{i=0}^{g} t^{\frac{r'_i}{R'_i}} \frac{1-t}{1-t^{\frac{1}{R'_i}}} + t,$$

Conjecture (Yano ('82))

For generic curves in some μ -constant deformation of f, the b-exponents $\{\alpha_1, \alpha_2, \dots, \alpha_{\mu}\}$ are

$$\sum_{i=1}^{\mu} t^{\alpha_i} = R\bigl((n,\beta_1,\ldots,\beta_g),t\bigr).$$

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

• $F_{\pi} = \text{Div}(\pi^* f) = \sum_{i=1}^{m} N_i E_i$ is a normal crossing divisor.

• $K_{\pi} = \text{Div}(\pi^* dx \wedge dy) = \sum_{i=1}^{m} k_i E_i$ is the canonical divisor.

where $E = E_1 + \dots + E_m$ is the exceptional locus.

Let $\pi: (X, E) \longrightarrow (\mathbb{C}^2, \mathbf{0})$ be a proper birational morphism such that

• $F_{\pi} = \text{Div}(\pi^* f) = \sum_{i=1}^{m} N_i E_i$ is a normal crossing divisor.

• $K_{\pi} = \text{Div}(\pi^* dx \wedge dy) = \sum_{i=1}^{m} k_i E_i$ is the canonical divisor.

where $E = E_1 + \dots + E_m$ is the exceptional locus.

Alternatively, if E_i , i = 1, ..., g rupture divisors of f:

$$\{\alpha_1, \dots, \alpha_{\mu}\} = \bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| 0 < \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

where $E_i^{(j)} \in \text{Supp}(F_{\pi})$ crossing E_i (i.e., $E_i^{(j)} \cap E_i \neq \emptyset$).

• Yano's conjecture was proved for *g* = 1 by Cassou-Nogués in 1988.

- Yano's conjecture was proved for *g* = 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for g = 2 & assuming that the monodromy eigenvalues are pair-wise different.

- Yano's conjecture was proved for *g* = 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for g = 2 & assuming that the monodromy eigenvalues are pair-wise different.
- Using analytic continuation of the complex zeta function:
 We give a prove for any g > 0 & assuming that the monodromy eigenvalues are pair-wise different.

- Yano's conjecture was proved for *g* = 1 by Cassou-Nogués in 1988.
- More recently, Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández ('16) proved it for g = 2 & assuming that the monodromy eigenvalues are pair-wise different.
- Using analytic continuation of the complex zeta function:
 We give a prove for any g > 0 & assuming that the monodromy eigenvalues are pair-wise different.
- We give a prove for the general case using periods of integrals in the Milnor fiber (solutions of the Gauss-Manin connection).

Asymptotic expansion of periods of integrals

Milnor fiber

Let $f : (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$X := B_{\epsilon} \cap f^{-1}(T), \quad X' := X \smallsetminus f^{-1}(0), \quad X_t := B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t, \mathbb{C}) = \mathbb{C}^{\mu}$ and zero otherwise.

Milnor fiber

Let $f : (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, \mathbf{0})$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$X \coloneqq B_{\epsilon} \cap f^{-1}(T), \quad X' \coloneqq X \smallsetminus f^{-1}(0), \quad X_t \coloneqq B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t, \mathbb{C}) = \mathbb{C}^{\mu}$ and zero otherwise.

(Co)homological Milnor fibration:

$$f^*: H^n := \bigcup_{t \in T^*} H^n(X_t, \mathbb{C}) \longrightarrow T'$$

a locally constant vector bundle.

Milnor fiber

Let $f : (\mathbb{C}^{n+1}, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a germ of a holomorphic function defining an isolated singularity. For $0 < \delta \ll \epsilon \ll 1$,

$$X \coloneqq B_{\epsilon} \cap f^{-1}(T), \quad X' \coloneqq X \smallsetminus f^{-1}(0), \quad X_t \coloneqq B_{\epsilon} \cap f^{-1}(t), \quad t \in T_{\delta}.$$

where X_t is the Milnor fiber and $\widetilde{H}^n(X_t, \mathbb{C}) = \mathbb{C}^{\mu}$ and zero otherwise.

(Co)homological Milnor fibration:

$$f^*: H^n := \bigcup_{t \in T^*} H^n(X_t, \mathbb{C}) \longrightarrow T'$$

a locally constant vector bundle.

Gauss-Manin connection: $\nabla^n : \mathcal{H}^n \longrightarrow \Omega^1_{\mathcal{T}'} \otimes_{\mathcal{T}'} \mathcal{H}^n.$

Let $\eta \in \Gamma(X, \Omega_X^n)$ be a holomorphic form, $\gamma(t)$ locally constant section of H_n ,

Let $\eta \in \Gamma(X, \Omega_X^n)$ be a holomorphic form, $\gamma(t)$ locally constant section of H_n ,

$$I(t) \coloneqq \int_{\gamma(t)} \eta, \qquad I'(t) \coloneqq \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{dt}$$

Let $\eta \in \Gamma(X, \Omega_X^n)$ be a holomorphic form, $\gamma(t)$ locally constant section of H_n ,

$$I(t) \coloneqq \int_{\gamma(t)} \eta, \qquad I'(t) \coloneqq \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{dt}$$

which are solutions to the homological Gauss-Manin connection and $d\omega/df$ is the Gel'fand-Leray form.

Let $\eta \in \Gamma(X, \Omega_X^n)$ be a holomorphic form, $\gamma(t)$ locally constant section of H_n ,

$$I(t) \coloneqq \int_{\gamma(t)} \eta, \qquad I'(t) \coloneqq \frac{d}{dt} \int_{\gamma(t)} \eta = \int_{\gamma(t)} \frac{d\eta}{dt}$$

which are solutions to the homological Gauss-Manin connection and $d\omega/df$ is the Gel'fand-Leray form.

Since the Gauss-Manin connection has regular singularities (Brieskorn '70), for any $\omega \in \Gamma(X, \Omega_X^{n+1})$ (Malgrange '74)

$$\int_{\gamma(t)} \frac{\omega}{\mathrm{d}f} = \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\lambda)} \sum_{0 \le k \le n} a_{\alpha-1,k} t^{\alpha-1} (\ln t)^k,$$

Λ eigenvalues monodromy, and $L(λ) := Q_{≥0} ∩ (2πi)^{-1} \log Λ$.

Geometric sections

- The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A^{\omega}_{\alpha-1,k}(t)$ via

Geometric sections

- The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A^{\omega}_{\alpha-1,k}(t)$ via

$$\langle A^{\omega}_{\alpha-1,k}(t), \gamma(t) \rangle \coloneqq a_{\alpha-1,k},$$

called locally constant geometric sections.

· Geometric sections:

$$S[\omega] \coloneqq \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\alpha)} \sum_{0 \le k \le n} A^{\omega}_{\alpha-1,k} t^{\alpha-1} (\ln t)^k,$$

for $\omega \in \Gamma(X, \Omega_X^{n+1})$.

Geometric sections

• The numbers $a_{\alpha-1,k}$ define locally constant cohomological classes $A^{\omega}_{\alpha-1,k}(t)$ via

$$\langle A^{\omega}_{\alpha-1,k}(t), \gamma(t) \rangle \coloneqq a_{\alpha-1,k},$$

called locally constant geometric sections.

• Geometric sections:

$$S[\omega] \coloneqq \sum_{\lambda \in \Lambda} \sum_{\alpha \in L(\alpha)} \sum_{0 \le k \le n} A^{\omega}_{\alpha-1,k} t^{\alpha-1} (\ln t)^k,$$

for $\omega \in \Gamma(X, \Omega_X^{n+1})$.

After a result of Varchenko ('80), having A^ω_{α,k} ≠ 0 and α in (0,1) implies that α + 1 is a *b*-exponent.

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities,

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities, $\sigma: \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$, $e := \operatorname{lcm}(N_1, \ldots, N_r)$.

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities, $\sigma: \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$, $e := \operatorname{lcm}(N_1, \ldots, N_r)$. Finally, \widetilde{X} normalization of $\overline{X} \times_T \widetilde{T}$:

$$\begin{array}{cccc} \widetilde{X} & \stackrel{\rho}{\longrightarrow} & \overline{X} & \stackrel{\pi}{\longrightarrow} & X \\ & & & \downarrow^{\widetilde{f}} & & \downarrow^{\pi^*f} & \downarrow^f \\ & \widetilde{T} & \stackrel{\sigma}{\longrightarrow} & T & = & T. \end{array}$$

• We had
$$\pi^* f =_{loc.} x_0^{N_i}$$
 around $E_i^\circ = E_i \smallsetminus \cup_{j \neq i} E_j$.

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities, $\sigma: \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$. $e := \operatorname{lcm}(N_1, \ldots, N_r)$. Finally, \widetilde{X} normalization of $\overline{X} \times_T \widetilde{T}$:

$$\begin{array}{cccc} \widetilde{X} & \stackrel{\rho}{\longrightarrow} & \overline{X} & \stackrel{\pi}{\longrightarrow} & X \\ & & & \downarrow^{\widetilde{f}} & & \downarrow^{\pi^*f} & \downarrow^f \\ & \widetilde{T} & \stackrel{\sigma}{\longrightarrow} & T & = & T. \end{array}$$

- We had $\pi^* f =_{loc.} x_0^{N_i}$ around $E_i^\circ = E_i \setminus \bigcup_{i \neq i} E_i$.
- Then, $\tilde{f} =_{loc} \tilde{x}$, that is \tilde{F}_{π} is reduced.

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities, $\sigma: \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$, $e := \operatorname{lcm}(N_1, \ldots, N_r)$. Finally, \widetilde{X} normalization of $\overline{X} \times_T \widetilde{T}$:

$$\begin{array}{cccc} \widetilde{X} & \stackrel{\rho}{\longrightarrow} \overline{X} & \stackrel{\pi}{\longrightarrow} X \\ & & \downarrow^{\widetilde{f}} & & \downarrow^{\pi^*f} & \downarrow^{f} \\ \widetilde{T} & \stackrel{\sigma}{\longrightarrow} T & = & T. \end{array}$$

- We had $\pi^* f =_{loc.} x_0^{N_i}$ around $E_i^\circ = E_i \smallsetminus \cup_{j \neq i} E_j$.
- Then, $\tilde{f} =_{loc.} \tilde{x}$, that is \tilde{F}_{π} is reduced.
- Hence, $\widetilde{\omega}/d\widetilde{f}$ is well-defined on \widetilde{E}_i° , where $\widetilde{\omega} := (\pi \rho)^* \omega$.

Let $\pi: \overline{X} \longrightarrow X$ resolution of singularities, $\sigma: \widetilde{T} \longrightarrow T, \sigma(\widetilde{t}) = \widetilde{t}^e$, $e := \operatorname{lcm}(N_1, \ldots, N_r)$. Finally, \widetilde{X} normalization of $\overline{X} \times_T \widetilde{T}$:

$$\begin{array}{cccc} \widetilde{X} & \stackrel{\rho}{\longrightarrow} \overline{X} & \stackrel{\pi}{\longrightarrow} X \\ & & \downarrow^{\widetilde{f}} & & \downarrow^{\pi^*f} & \downarrow^{f} \\ \widetilde{T} & \stackrel{\sigma}{\longrightarrow} T & = & T. \end{array}$$

- We had $\pi^* f =_{loc.} X_0^{N_i}$ around $E_i^\circ = E_i \smallsetminus \cup_{j \neq i} E_j$.
- Then, $\tilde{f} =_{loc.} \tilde{x}$, that is \tilde{F}_{π} is reduced.
- Hence, $\widetilde{\omega}/d\widetilde{f}$ is well-defined on \widetilde{E}_i° , where $\widetilde{\omega} := (\pi \rho)^* \omega$.
- However, \widetilde{X} is an orbifold (mild singularities).

Asymptotic expansion

Locally around E_i , $\overline{\omega} = \pi^* \omega = \overline{\omega}_0 + \overline{\omega}_1 + \dots + \overline{\omega}_{\nu} + \dots$ with $\overline{\omega}_{\nu}$ a section of $\Omega_{\overline{\chi}}^{n+1}(-\nu E_i)$. Locally around E_i , $\overline{\omega} = \pi^* \omega = \overline{\omega}_0 + \overline{\omega}_1 + \dots + \overline{\omega}_{\nu} + \dots$ with $\overline{\omega}_{\nu}$ a section of $\Omega_{\overline{\chi}}^{n+1}(-\nu E_i)$.

Then, one shows that

$$\int_{\gamma(t)} \frac{\omega}{\mathrm{d}f} = \sum_{\nu \geq 0} t^{\sigma_{i,\nu}(\omega)-1} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega),$$

where $R_{i,\nu}(\omega)$ extends to a multivalued form on E_i° and

$$\sigma_{i,\nu}(\omega) = \frac{V_i(\omega_\nu) + 1}{N_i} = \frac{k_i + 1 + \nu}{N_i}.$$

Then, as long as the integral is finite, $A^{\omega}_{\sigma_{i,\nu}-1,0}(t)$ is $\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t), \gamma(t) \rangle \coloneqq \lim_{\tilde{t} \to 0} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega) \in \mathbb{C}.$

Then, as long as the integral is finite, $A^{\omega}_{\sigma_{i,\nu}-1,0}(t)$ is $\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t), \gamma(t) \rangle \coloneqq \lim_{\tilde{t} \to 0} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega) \in \mathbb{C}.$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$\mathsf{Div}(\mathsf{R}_{i,\nu}(\omega)) = \sum_{j} \epsilon_{j,\nu}(\omega) \mathsf{D}_{i,j} + \sum_{k} \delta_{k,\nu} \mathsf{x}_{k}$$

where $D_{i,j} = E_i^{(j)} \cap E_i, D_j \in \text{Supp}(F_{\pi})$ and

Then, as long as the integral is finite, $A^{\omega}_{\sigma_{i,\nu}-1,0}(t)$ is $\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t), \gamma(t) \rangle \coloneqq \lim_{\tilde{t} \to 0} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega) \in \mathbb{C}.$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$\mathsf{Div}(\mathsf{R}_{i,\nu}(\omega)) = \sum_{j} \epsilon_{j,\nu}(\omega) \mathsf{D}_{i,j} + \sum_{k} \delta_{k,\nu} \mathsf{x}_{k}$$

where $D_{i,j} = E_i^{(j)} \cap E_i, D_j \in \text{Supp}(F_{\pi})$ and $\epsilon_{j,\nu}(\omega) \coloneqq -N_j \sigma_{i,\nu} + v_j(\overline{\omega}_{\nu}).$

Then, as long as the integral is finite, $A^{\omega}_{\sigma_{i,\nu}-1,0}(t)$ is $\langle A^{\omega}_{\sigma_{i,\nu}-1,0}(t), \gamma(t) \rangle \coloneqq \lim_{\tilde{t} \to 0} \int_{\tilde{\gamma}(\tilde{t})} R_{i,\nu}(\omega) \in \mathbb{C}.$

On the other hand, the form $R_{i,\nu}(\omega)$ defines a \mathbb{Q} -divisors on E_i°

$$\mathsf{Div}(\mathsf{R}_{i,\nu}(\omega)) = \sum_{j} \epsilon_{j,\nu}(\omega) \mathsf{D}_{i,j} + \sum_{k} \delta_{k,\nu} \mathsf{x}_{k}$$

where
$$D_{i,j} = E_i^{(j)} \cap E_i, D_j \in \text{Supp}(F_{\pi})$$
 and
 $\epsilon_{j,\nu}(\omega) \coloneqq -N_j \sigma_{i,\nu} + V_j(\overline{\omega}_{\nu}).$

Lemma

For any plane curve singularity,

$$\sum_{j} \epsilon_{i,\nu}(\omega) + \sum_{k} \delta_{k,\nu}(\omega) + \nu E_{i}^{2} = -2.$$

• Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}$, $R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \ldots, s_r\}$.

Deligne-Mostow

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}$, $R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \smallsetminus \{s_1, \dots, s_r\}$.
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{j,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^\circ, L)$.

Deligne-Mostow

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}$, $R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \smallsetminus \{s_1, \dots, s_r\}$.
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{j,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^{\circ}, L)$.
- If $S := s_1 + \dots + s_r$ and since E_i° is affine

 $H^1(E_i^\circ,L)\cong H^1\Gamma(\mathbb{P}^1_{\mathbb{C}},\Omega^{\bullet}(L)(*S)).$

- Since for plane curves $E_i \cong \mathbb{P}^1_{\mathbb{C}}$, $R_{i,\nu}(\omega)$ defines a multivalued form on $E_i^{\circ} \cong \mathbb{P}^1_{\mathbb{C}} \setminus \{s_1, \dots, s_r\}$.
- If *L* is a local system with monodromies $\exp(-2\pi i \epsilon_{j,\nu}(\omega))$, $R_{i,\nu}(\omega)$ defines a cohomology class in $H^1(E_i^\circ, L)$.
- If $S := s_1 + \dots + s_r$ and since E_i° is affine

$$H^1(E_i^\circ,L)\cong H^1\Gamma(\mathbb{P}^1_{\mathbb{C}},\Omega^{\bullet}(L)(*S)).$$

Proposition (Deligne-Mostow '86)

Let $\omega \in \Gamma(\mathbb{P}^{1}_{\mathbb{C}}, \Omega^{1}(-\sum \epsilon_{j,\nu}(\omega)s_{j} - \sum \delta_{k,\nu}(\omega)x_{k})(L))$. Assume that $\sum_{s \in S} \epsilon_{j,\nu}(\omega) \ge r - 1$ and that $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$ for all $s \in S$. Then, ω defines a non-zero cohomology class in $H^{1}(\mathbb{P}^{1}_{\mathbb{C}} \setminus S, L)$.

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \dots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \dots, \overline{\beta}_q \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $C^{\Gamma}: u_i = t^{\overline{\beta}_i}, i = 1, \dots, g.$

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \dots, \overline{\beta}_q \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $C^{\Gamma}: u_i = t^{\overline{\beta}_i}, i = 1, \dots, g.$

(Teissier '86) The monomial curve C^{Γ} of a plane branch is a quasi-homogeneous complete intersection such that any plane branch with semigroup Γ is isomorphic to a fiber of the miniversal semigroup constant deformation of C^{Γ}

Let $f : (\mathbb{C}^2, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$ be a plane branch with semigroup $\Gamma = \langle \overline{\beta}_0, \dots, \overline{\beta}_g \rangle \subseteq \mathbb{Z}_+.$

Define the monomial curve $C^{\Gamma}: u_i = t^{\overline{\beta}_i}, i = 1, \dots, g.$

(Teissier '86) The monomial curve C^{Γ} of a plane branch is a quasi-homogeneous complete intersection such that any plane branch with semigroup Γ is isomorphic to a fiber of the miniversal semigroup constant deformation of C^{Γ}

Proposition (B.)

Let E_i be a rupture divisor of the minimal resolution of f with divisorial valuation v_i . Then, for any $v > N_i$ there exists a one-parameter μ -constant deformation of f of the form $f + tg_t$ such that $v_i(g_t) = v$, for all values of the parameter t.

$$\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

Recall, Yano's candidates:

$$\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

• Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.

$$\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

- Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.

$$\bigcup_{i=1}^{g} \left\{ \left| \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

- Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.

$$\bigcup_{i=1}^{g} \left\{ \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

- Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^\circ, L)$, hence $A_{\sigma_i,\nu-1,0}^\omega \neq 0$.

$$\bigcup_{i=1}^{g} \left\{ \left| \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

- Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^\circ, L)$, hence $A_{\sigma_{i,\nu}-1,0}^\omega \neq 0$.
- Since $0 \le \nu < N_i$, by Varchenko's theorem, $\sigma_{i,\nu}$ is a *b*-exponent of the generic fibers.

$$\bigcup_{i=1}^{g} \left\{ \left| \sigma_{i,\nu} = \frac{k_i + 1 + \nu}{N_i} \right| \ 0 \le \nu < N_i, N_i^{(j)} \sigma_{i,\nu} \notin \mathbb{Z}, j = 1, 2, 3 \right\}$$

- Fix a candidate $\sigma_{i,\nu}$ associated to E_i . The candidates are non-resonant, that is $\epsilon_{j,\nu}(\omega) \notin \mathbb{Z}$.
- Set $\omega = dx \wedge dy$, then $\sigma_{i,\nu}(\omega) = \sigma_{i,\nu}$.
- Generically in the deformation, $\overline{\omega}_{\nu}$ is non-zero.
- Since $\sigma_{i,\nu}$ is non-resonant and E_i is rupture, by Deligne-Mostow, $R_{i,\nu}(\omega)$ is non-zero in $H^1(E_i^\circ, L)$, hence $A_{\sigma_{i,\nu}-1,0}^\omega \neq 0$.
- Since $0 \le \nu < N_i$, by Varchenko's theorem, $\sigma_{i,\nu}$ is a *b*-exponent of the generic fibers.
- Generalizing a result of Varchenko: the *b*-exponents are semicontinuous under μ -constant deformations. Hence, we can apply this argument to all the candidates.

Theorem (B.)

For any irreducible plane curve singularity, Yano's conjecture holds true.

• B., Yano's conjecture, Invent. Math., 226 (2021), 421-465.

Thank you!