# On the difference between Milnor number and Tjurina number of isolated singularities

# Patricio Almirón

Universidad Complutense de Madrid- Interdisciplinary Mathematics Institute

•  $f: (\mathbb{C}^n, \mathbf{0}) \longrightarrow (\mathbb{C}, 0)$  be a germ of isolated hypersurface singularity.

f: (ℂ<sup>n</sup>, 0) → (ℂ, 0) be a germ of isolated hypersurface singularity.
 We denote by

$$T_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})} \quad M_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})}$$

- f: (ℂ<sup>n</sup>, 0) → (ℂ, 0) be a germ of isolated hypersurface singularity.
  We denote by
  - $T_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})} \quad M_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})}$

 $T_f$  y  $M_f$  are  $\mathbb{C}$  complex finite dimensional vector spaces

f: (ℂ<sup>n</sup>, 0) → (ℂ, 0) be a germ of isolated hypersurface singularity.
We denote by

$$T_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})} \quad M_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})}$$

 $T_f$  y  $M_f$  are  $\mathbb C$  complex finite dimensional vector spaces

The Tjurina number is defined as

 $\tau := \dim_{\mathbb{C}} T_f.$ 

It is an analytic invariant of the singularity

f: (ℂ<sup>n</sup>, 0) → (ℂ, 0) be a germ of isolated hypersurface singularity.
 We denote by

$$T_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})} \quad M_f := \frac{\mathbb{C}\{x_1, \dots, x_n\}}{(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})}$$

 $T_f$  y  $M_f$  are  $\mathbb C$  complex finite dimensional vector spaces

The Tjurina number is defined as

 $\tau := \dim_{\mathbb{C}} T_f.$ 

It is an analytic invariant of the singularity

• The Milnor number is defined as

 $\mu := \dim_{\mathbb{C}} M_f.$ 

#### It is a topological invariant of the singularity

## Toy example

Let us consider the curve  $f(x, y) = y^7 - x^9 = 0$ . In this case  $M_f = T_f$ , by using SINGULAR we calculate  $\mu = \tau = 48$  and a basis for this algebra:

$$\begin{split} &\{x^7y^5, x^6y^5, x^5y5, x^4y^5, x^3y^5, x^2y^5, xy^5, y^5, x^7y^4, x^6y^4, x^5y^4, x^4y^4, x^3y^4, x^2y^4, \\ &xy^4, y^4, x^7y^3, x^6y^3, x^5y^3, x^4y^3, x^3y^3, x^2y^3, xy^3, y^3, x^7y^2, x^6y^2, x^5y^2, x^4y^2, x^3y^2, \\ &x^2y^2, xy^2, y^2, x^7y, x^6y, x^5y, x^4y, x^3y, x^2y, xy, y, x^7, x^6, x^5, x^4, x^3, x^2, x, 1 \rbrace \end{split}$$

## Toy example

Let us consider the curve  $f(x, y) = y^7 - x^9 = 0$ . In this case  $M_f = T_f$ , by using SINGULAR we calculate  $\mu = \tau = 48$  and a basis for this algebra:

$$\begin{split} &\{x^7y^5, x^6y^5, x^5y5, x^4y^5, x^3y^5, x^2y^5, xy^5, y^5, x^7y^4, x^6y^4, x^5y^4, x^4y^4, x^3y^4, x^2y^4, \\ &xy^4, y^4, x^7y^3, x^6y^3, x^5y^3, x^4y^3, x^3y^3, x^2y^3, xy^3, y^3, x^7y^2, x^6y^2, x^5y^2, x^4y^2, x^3y^2, \\ &x^2y^2, xy^2, y^2, x^7y, x^6y, x^5y, x^4y, x^3y, x^2y, xy, y, x^7, x^6, x^5, x^4, x^3, x^2, x, 1 \rbrace \end{split}$$





$$f(x,y) = y^7 - x^9 + x^5 y^5$$
$$\mu = 48$$
$$\tau = 45$$



Two isolated hypersurface singularities defined by f and g have the same topological type if there is a homeomorphism  $\varphi : (\mathbb{C}^n, \mathbf{0}) \to (\mathbb{C}^n, \mathbf{0})$  such that  $\varphi(V_f) = V_g$ .

Two isolated hypersurface singularities defined by f and g have the same topological type if there is a homeomorphism  $\varphi : (\mathbb{C}^n, \mathbf{0}) \to (\mathbb{C}^n, \mathbf{0})$  such that  $\varphi(V_f) = V_g$ .

## Theorem (Lê 1973)

If two isolated hypersurface singularities defined by f and g have the same topological type then  $\mu(f)=\mu(g).$ 

Two isolated hypersurface singularities defined by f and g have the same analytic type if there is a biholomorphic map  $\phi : (\mathbb{C}^n, \mathbf{0}) \to (\mathbb{C}^n, \mathbf{0})$  such that  $\phi(V_f) = V_g$ .

Two isolated hypersurface singularities defined by f and g have the same analytic type if there is a biholomorphic map  $\phi : (\mathbb{C}^n, \mathbf{0}) \to (\mathbb{C}^n, \mathbf{0})$  such that  $\phi(V_f) = V_g$ .

#### Theorem (Mather-Yau 1982)

The hypersurface isolated singularities defined by f and g are analytically equivalent if and only if their Tjurina algebras are isomorphic as  $\mathbb{C}$ -algebras.

In particular, same analytic type  $\Rightarrow \tau(f) = \tau(g)$ .



(a) John Milnor 1931-



(b) Galina N. Tjurina 1938-1970

## Theorem (K. Saito 1971)

Let  $f : \mathbb{C}^n \to \mathbb{C}$  be a germ of analytic function defining an isolated hypersurface singularity at the origin. Then

 $\mu = \tau \Leftrightarrow f$  is quasihomogeneous

## Theorem (K. Saito 1971)

Let  $f : \mathbb{C}^n \to \mathbb{C}$  be a germ of analytic function defining an isolated hypersurface singularity at the origin. Then

 $\mu = \tau \Leftrightarrow f$  is quasihomogeneous

#### Theorem (Liu 2017)

Let  $f : \mathbb{C}^n \to \mathbb{C}$  be a germ of analytic function defining an isolated hypersurface singularity at the origin. Then

$$\frac{\mu}{\tau} \le n$$

## Example (Dimca-Greuel)

Consider the families of curves

$$X_a: x^{2a+1} + x^a y^{a+1} + y^{2a} = 0, \quad X_b: x^{2b+1} + x^{b+1} y^{b+1} + y^{2b+1} = 0.$$

For those families  $\tau(X_a) = 3a^2$ ,  $\mu(X_a) = 2a(2a-1)$ ,  $\mu(X_b) = 4b^2$ ,  $\tau(X_b) = 4b^2 - (b-1)^2$ . Therefore, it follows that

$$\mu/\tau \xrightarrow[a \to \infty]{a \to \infty} 4/3. \quad \mu/\tau \xrightarrow[b \to \infty]{a \to \infty} 4/3$$

## Example (Dimca-Greuel)

Consider the families of curves

$$X_a: x^{2a+1} + x^a y^{a+1} + y^{2a} = 0, \quad X_b: x^{2b+1} + x^{b+1} y^{b+1} + y^{2b+1} = 0.$$

For those families  $\tau(X_a) = 3a^2$ ,  $\mu(X_a) = 2a(2a-1)$ ,  $\mu(X_b) = 4b^2$ ,  $\tau(X_b) = 4b^2 - (b-1)^2$ . Therefore, it follows that

$$\mu/\tau \xrightarrow[a \to \infty]{a \to \infty} 4/3. \quad \mu/\tau \xrightarrow[b \to \infty]{a \to \infty} 4/3$$

Conjecture (Dimca-Greuel 2017)

Is for any plane curve singularity  $\frac{\mu}{\tau} < \frac{4}{3}$ ?

## Proposition (A.-Blanco, 2018)

f is said to be semi-quasi-homogeneous with weight w = (n, m) such that  $gcd(n, m) \ge 1$ ,  $n, m \ge 2$  and  $f = y^n - x^m + h.d.t$ . Then for any semi-quasi-homogeneous plane curve singularity  $\mu/\tau < 4/3$ .

#### Proposition (A.-Blanco, 2018)

f is said to be semi-quasi-homogeneous with weight w = (n, m) such that  $gcd(n,m) \ge 1$ ,  $n,m \ge 2$  and  $f = y^n - x^m + h.d.t$ . Then for any semi-quasi-homogeneous plane curve singularity  $\mu/\tau < 4/3$ .

## Theorem (Alberich-A.-Blanco-Melle; Genzmer-Hernandes 2019)

For any equisingular class of germs of irreducible plane curve singularity,

$$\begin{split} \tau_{min} = \sigma(n) + \frac{n^2 + 3n - 6}{2} + \sum_{p \text{ free}} \frac{(e_p - 1)(e_p + 2) + 2\sigma(e_p + 1)}{2} \\ + \sum_{p \text{ sat.}} \frac{e_p(e_p - 1) + 2\sigma(e_p + 2)}{2}, \end{split}$$

where the summation runs on all points p equal or infinitely near to the origin and  $\sigma(k) = \frac{(k-2)(k-4)}{4}$  if k is even and  $\sigma(k) = \frac{(k-3)^2}{4}$  if k is odd.

## Dimca and Greuel question for plane branches

#### Corollary

For any plane branch singularity,

$$\frac{\mu}{\tau} < \frac{4}{3}.$$

## Corollary

For any plane branch singularity,

$$\frac{\mu}{\tau} < \frac{4}{3}.$$

Problems of the  $\tau_{min}$  approach:

- Too restrictive: The results to prove the formula do not work for non irreducible curves.
- Too hard: We may find a formula for  $\tau_{min}$  and not to be able to estimate it.

## Corollary

For any plane branch singularity,

$$\frac{\mu}{\tau} < \frac{4}{3}.$$

Problems of the  $\tau_{min}$  approach:

- Too restrictive: The results to prove the formula do not work for non irreducible curves.
- Too hard: We may find a formula for  $\tau_{min}$  and not to be able to estimate it.
- Why 4/3?



...The little Hexagon meditated on this a while and then said to me; "But you have been teaching me to raise numbers to the third power: I suppose three-to-the-third must mean something in Geometry; what does it mean?" "Nothing at all", replied I, "not at least in Geometry; for Geometry has only Two Dimensions"....

"Flatland, A Romance of Many Dimensions" by Edwin Abbott.

## Milnor and Tjurina numbers for surface singularities

Let  $(X, 0) \in (\mathbb{C}^3, 0)$  be an isolated surface singularity defined by an equation  $f \in \mathcal{O}_{\mathbb{C}^3, 0}$ . Let  $\widetilde{X} \to X$  be a resolution of singularities of X.

# Milnor and Tjurina numbers for surface singularities

Let  $(X, 0) \in (\mathbb{C}^3, 0)$  be an isolated surface singularity defined by an equation  $f \in \mathcal{O}_{\mathbb{C}^3, 0}$ . Let  $\widetilde{X} \to X$  be a resolution of singularities of X.

#### Definition

A holomorphic 2–form in  $\mathbb{C}\{x, y, z\}$  is defined as

 $\omega = a(x,y,z)dx \wedge dy + b(x,y,z)dy \wedge dz + c(x,y,z)dx \wedge dz$ 

## Definition

A holomorphic form  $\omega$  on  $U' = X \setminus \{0\}$  is called of *first kind* if there exists a resolution  $\pi : \widetilde{X} \to X$  of the singularity X such that  $\pi^*(\omega)$  extends holomorphically to  $\widetilde{X}$ 

# Milnor and Tjurina numbers for surface singularities

Let  $(X, 0) \in (\mathbb{C}^3, 0)$  be an isolated surface singularity defined by an equation  $f \in \mathcal{O}_{\mathbb{C}^3, 0}$ . Let  $\widetilde{X} \to X$  be a resolution of singularities of X.

#### Definition

A holomorphic 2–form in  $\mathbb{C}\{x, y, z\}$  is defined as

 $\omega = a(x,y,z)dx \wedge dy + b(x,y,z)dy \wedge dz + c(x,y,z)dx \wedge dz$ 

## Definition

A holomorphic form  $\omega$  on  $U' = X \setminus \{0\}$  is called of *first kind* if there exists a resolution  $\pi : \widetilde{X} \to X$  of the singularity X such that  $\pi^*(\omega)$  extends holomorphically to  $\widetilde{X}$ 

#### The geometric genus

$$p_g := \dim \frac{\{\text{Holomorphic } 2\text{--forms on } U\}}{\{2\text{--forms of first kind}\}}$$

## DG Question from other perspective

Consider the germ of isolated surface singularity

$$\Sigma: z^2 + f(x, y) = 0.$$

**Remark:** C : f(x, y) = 0 then  $\tau(C) = \tau(\Sigma)$  and  $\mu(C) = \mu(\Sigma)$ .

## DG Question from other perspective

Consider the germ of isolated surface singularity

 $\Sigma: z^2 + f(x, y) = 0.$ 

Remark: C : f(x, y) = 0 then  $\tau(C) = \tau(\Sigma)$  and  $\mu(C) = \mu(\Sigma)$ .

#### Theorem (Tomari 1991)

Let  $p_g$  be the geometric genus of  $\Sigma$  and  $\mu$  its Milnor number. Then

 $8p_g + 1 \le \mu.$ 

## DG Question from other perspective

Consider the germ of isolated surface singularity

 $\Sigma: z^2 + f(x, y) = 0.$ 

Remark: C : f(x, y) = 0 then  $\tau(C) = \tau(\Sigma)$  and  $\mu(C) = \mu(\Sigma)$ .

#### Theorem (Tomari 1991)

Let  $p_g$  be the geometric genus of  $\Sigma$  and  $\mu$  its Milnor number. Then

 $8p_g + 1 \le \mu.$ 

#### Theorem (Wahl 1985)

Let  $(X, 0) \in (\mathbb{C}^3, 0)$  be an isolated surface singularity defined by an equation  $f \in \mathcal{O}_{\mathbb{C}^3,0}$ . Then

$$\mu - \tau \le 2p_g$$

#### Theorem (A. 2019)

For any germ of plane curve singularity

$$\frac{\mu}{\tau} < \frac{4}{3}.$$

**Proof:** Let f(x, y) = 0 be an equation of a germ of a plane curve singularity. Consider the surface singularity  $f(x, y) + z^2 = 0$ . Then, Wahl + Tomari give

$$\mu - \tau \le 2p_g < \mu/4 \quad \Box$$

#### Theorem (A. 2019)

For any germ of plane curve singularity

$$\frac{\mu}{\tau} < \frac{4}{3}.$$

**Proof:** Let f(x, y) = 0 be an equation of a germ of a plane curve singularity. Consider the surface singularity  $f(x, y) + z^2 = 0$ . Then, Wahl + Tomari give

$$\mu - \tau \le 2p_g < \mu/4 \quad \Box$$

Consequence: The bound 4/3 can be inferred from the geometry of the singularity.

Is  $\mu/\tau < 4/3$  for any surface singularity?

Is  $\mu/\tau < 4/3$  for any surface singularity? NO

$$f = x^{14} + y^6 z^8 + z^{14} + x^9 z^5 + (x + y + z)^{15}.$$

We can compute with SINGULAR that the Milnor number is  $\mu = 2288$  and the Tjurina number is  $\tau = 1660$ . Therefore,  $\mu/\tau > 4/3$ .

Is  $\mu/\tau < 4/3$  for any surface singularity? NO

$$f = x^{14} + y^6 z^8 + z^{14} + x^9 z^5 + (x + y + z)^{15}.$$

We can compute with SINGULAR that the Milnor number is  $\mu = 2288$  and the Tjurina number is  $\tau = 1660$ . Therefore,  $\mu/\tau > 4/3$ .

What is the bound for surface singularities?

Is  $\mu/\tau < 4/3$  for any surface singularity? NO

$$f = x^{14} + y^6 z^8 + z^{14} + x^9 z^5 + (x + y + z)^{15}.$$

We can compute with SINGULAR that the Milnor number is  $\mu = 2288$  and the Tjurina number is  $\tau = 1660$ . Therefore,  $\mu/\tau > 4/3$ .

What is the bound for surface singularities?

#### Conjecture (Durfee 1978)

For any isolated surface singularity  $(X, 0) \subset (\mathbb{C}^3, 0)$ 

 $6p_g \le \mu.$ 

# Durfee conjecture and the bound for surface singularities

Is  $\mu/\tau < 4/3$  for any surface singularity? NO

$$f = x^{14} + y^6 z^8 + z^{14} + x^9 z^5 + (x + y + z)^{15}.$$

We can compute with SINGULAR that the Milnor number is  $\mu = 2288$  and the Tjurina number is  $\tau = 1660$ . Therefore,  $\mu/\tau > 4/3$ .

What is the bound for surface singularities?

#### Conjecture (Durfee 1978)

For any isolated surface singularity  $(X, 0) \subset (\mathbb{C}^3, 0)$ 

$$6p_g \le \mu.$$

Some partial results by: Tomari (91), Ashikaga (93), Némethi (98), Melle-Hernández (2000), Kóllar and Némethi (2017), Enokizono (2018). Still open

### Proposition

Let  $(X,0) \subset (\mathbb{C}^3,0)$  be an isolated surface singularity of one of the following types:

- (1) Quasi-homogeneous singularities,
- (2) (X,0) of multiplicity 3,
- (3) absolutely isolated singularity,
- (4) suspension of the type  $\{f(x, y) + z^N = 0\},\$
- (5) the link of the singularity is an integral homology sphere,
- (6) the topological Euler characteristic of the exceptional divisor of the minimal resolution is positive.

Then

$$\frac{\mu}{\tau} < \frac{3}{2}$$

**Remark:** All these cases are the cases for which Durfee conjecture is known to be true.

### Bound for surface singularities

Is  $\frac{\mu}{\tau} < \frac{3}{2}$  sharp?

Is  $\frac{\mu}{\tau} < \frac{3}{2}$  sharp? YES. Consider  $F(x, y, z) = x^d + y^d + z^d + g(x, y, z) = 0$  with  $deg(g) \ge d + 1$ . Then, Wahl shows that

$$\tau_{min} = (2d - 3)(d + 1)(d - 1)/3.$$

Also,  $\mu = (d - 1)^3$ . Then

$$\frac{\mu}{\tau_{\min}} \xrightarrow[d \to \infty]{} \frac{3}{2}.$$

Is  $\frac{\mu}{\tau} < \frac{3}{2}$  sharp? YES. Consider  $F(x, y, z) = x^d + y^d + z^d + g(x, y, z) = 0$  with  $deg(g) \ge d + 1$ . Then, Wahl shows that

$$\tau_{min} = (2d - 3)(d + 1)(d - 1)/3.$$

Also,  $\mu = (d - 1)^3$ . Then

$$\frac{\mu}{\tau_{\min}} \xrightarrow[d \to \infty]{} \frac{3}{2}.$$

### Conjecture (A. 2019)

For any  $(X,0) \subset (\mathbb{C}^3,0)$  isolated surface singularity:

$$\frac{\mu}{\tau} < \frac{3}{2}.$$

 $f: \mathbb{C}^{n+1} \to \mathbb{C}$  germ of isolated hypersurface singularity,  $t \in \mathbb{C}$ . The *Brieskorn lattice* is defined as

$$H_0'' := \frac{\Omega_{\mathbb{C}^{n+1},0}^{n+1}}{df \wedge d\Omega_{\mathbb{C}^{n+1},0}^{n-1}}$$

In the Brieskorn lattice there is an action of the differential operator  $\partial_t^{-1}$  defined as

$$\partial_t^{-1}[\omega] := [df \wedge \alpha],$$

where  $\omega \in \Omega^{n+1}_{\mathbb{C}^{n+1},0}$  and  $\alpha \in \Omega^{n}_{\mathbb{C}^{n+1},0}$  such that  $d\alpha = \omega$ . Also,  $t\omega := f\omega$ .

#### Proposition (Pham 70's)

 $H_0''$  is a  $\mathbb{C}\{\{\partial_t^{-1}\}\}$ -module

#### Theorem (M. Saito 1989)

There exists a basis  $\{v_i\}$  of  $H''_0$  as  $\mathbb{C}\{\{\partial_t^{-1}\}\}$ -module and matrices with complex coefficient  $A_0, A_1$  such that

$$tv = A_0 v + A_1 \partial_t^{-1} v$$

where  $v = (v_1, \ldots, v_\mu)^t$ . Moreover,  $A_0$  is nilpotent and  $A_1$  is semisimple.

### Theorem (M. Saito 1989)

There exists a basis  $\{v_i\}$  of  $H''_0$  as  $\mathbb{C}\{\{\partial_t^{-1}\}\}$ -module and matrices with complex coefficient  $A_0, A_1$  such that

$$tv = A_0 v + A_1 \partial_t^{-1} v$$

where  $v = (v_1, \ldots, v_{\mu})^t$ . Moreover,  $A_0$  is nilpotent and  $A_1$  is semisimple.

#### Definition

The *exponents* of f are defined as the set of eigenvalues of the matrix  $A_1$ .

### Quasi-homogeneous singularities

 $f(x_0, \ldots, x_n)$  quasi-homogeneous of degree 1 with respect to the weigths  $(w_0, \ldots, w_n)$ , i.e.  $f(\eta^{w_0} x_0, \ldots, \eta^{w_n} x_n) = \eta f(x_0, \ldots, x_n)$ .

### Quasi-homogeneous singularities

 $f(x_0, \ldots, x_n)$  quasi-homogeneous of degree 1 with respect to the weigths  $(w_0, \ldots, w_n)$ , i.e.  $f(\eta^{w_0} x_0, \ldots, \eta^{w_n} x_n) = \eta f(x_0, \ldots, x_n)$ . Consider the generating function

$$\operatorname{Sp}_f(t) := \sum_{i=1}^{\mu} t^{\alpha_i} \in \mathbb{Z}[\mathbb{Q}]$$

with  $\alpha_1, \ldots, \alpha_\mu$  the exponents of *f*. In this case we can compute  $\text{Sp}_f(t)$  as

$$\operatorname{Sp}_{f}(t) = \frac{\prod_{i=0}^{n} (t - t^{w_{i}})}{\prod_{i=0}^{n} (t^{w_{i}} - 1)}.$$

### Quasi-homogeneous singularities

 $f(x_0, \ldots, x_n)$  quasi-homogeneous of degree 1 with respect to the weigths  $(w_0, \ldots, w_n)$ , i.e.  $f(\eta^{w_0} x_0, \ldots, \eta^{w_n} x_n) = \eta f(x_0, \ldots, x_n)$ . Consider the generating function

$$\operatorname{Sp}_f(t) := \sum_{i=1}^{\mu} t^{\alpha_i} \in \mathbb{Z}[\mathbb{Q}]$$

with  $\alpha_1, \ldots, \alpha_\mu$  the exponents of *f*. In this case we can compute  $\text{Sp}_f(t)$  as

$$\operatorname{Sp}_{f}(t) = \frac{\prod_{i=0}^{n} (t - t^{w_{i}})}{\prod_{i=0}^{n} (t^{w_{i}} - 1)}$$

If we do  $t = \exp(\pi i \tau)$  and  $\chi_f = (1/\mu) \operatorname{Sp}_f(t)$ ,

$$\lim_{w_0,\dots,w_n\to 0} \chi_f(t) = \left(\exp(\pi i\tau)\frac{\sin(\pi\tau)}{\pi\tau}\right)^{n+1}$$

$$N_{n+1}(s)ds := \int_{x_0 + \cdots + x_n = s} \varphi(x_0) \cdots \varphi(x_n) dx_0 \cdots dx_n,$$

where  $\varphi$  is the indicator function of the unit interval [0, 1],

$$\varphi(x) := \begin{cases} 1 & \text{if } x \in [0,1], \\ 0 & \text{if } x \notin [0,1]. \end{cases}$$

$$N_{n+1}(s)ds := \int_{x_0 + \cdots + x_n = s} \varphi(x_0) \cdots \varphi(x_n) dx_0 \cdots dx_n,$$

where  $\varphi$  is the indicator function of the unit interval [0, 1],

$$\varphi(x) := \begin{cases} 1 & \text{if } x \in [0,1], \\ 0 & \text{if } x \notin [0,1]. \end{cases}$$

The Fourier transform  $\mathcal{F}(N_{n+1}(\tau))$  of  $N_{n+1}(s)$  is:

$$\int \exp(2\pi i\tau s) N_{n+1}(s) ds = \mathcal{F}(\varphi)(\tau)^{n+1} = \left(\exp(\pi i\tau)\frac{\sin(\pi\tau)}{\pi\tau}\right)^{n+1}.$$

The normalized spectrum of f,

$$\chi_f(t) := \frac{\operatorname{Sp}_f(T)}{\mu} = \frac{1}{\mu} \sum_{j=1}^{\mu} T^{\alpha_j},$$

Making  $T = \exp(2\pi i t)$ , one gets the Fourier transform representation:

$$\chi_f(t) := \frac{1}{\mu} \int \exp(2\pi i s\tau) \sum_{i=1}^{\mu} \delta(s - \alpha_i) ds,$$

where  $\delta(s)$  is Dirac's delta function.

### K. Saito's problem

### Question (K. Saito 1983)

Let  $\alpha_1, \ldots, \alpha_\mu$  be the spectral values of an isolated hypersurface singularity, is

$$\lim \chi_f = \mathcal{F}(N_{n+1}), \text{ or equivalently, } \lim \sum_{i=1}^{\mu} \delta(s - \alpha_i) ds = N_{n+1} ds \quad ?$$

### K. Saito's problem

### Question (K. Saito 1983)

Let  $\alpha_1, \ldots, \alpha_\mu$  be the spectral values of an isolated hypersurface singularity, is

im 
$$\chi_f = \mathcal{F}(N_{n+1})$$
, or equivalently,  $\lim \sum_{i=1}^{\mu} \delta(s - \alpha_i) ds = N_{n+1} ds$ ?

#### Theorem (K. Saito 1983)

- For quasi-homogeneous singularities of degree with weights  $(w_0, \ldots, w_n)$ :  $\lim_{w_0, \ldots, w_n \to 0} \chi_f = \mathcal{F}(N_{n+1}).$
- **2** For an irreducible plane curve singularity with Puiseux pairs  $(n_1, l_1), \ldots, (n_g, l_g)$ ,  $\lim_{n_g \to \infty} \chi_f = \mathcal{F}(N_2)$ .

### Theorem (A.-Schulze 2020)

For a fixed Newton diagram  $\Gamma$ , consider the Newton diagrams  $\varpi\Gamma$  obtained from  $\Gamma$  by scaling with the factor  $\varpi$ . Then we have  $\lim_{\varpi \to \infty} \chi_{f_{\varpi}} = \mathcal{F}(N_{n+1})$ , where the limit runs over all Newton non-degenerate  $f_{\varpi}$  of n + 1 variables with Newton diagram  $\varpi\Gamma$ .

Consider the function

$$\Phi_f \colon [0,1] \to \mathbb{R}, \quad r \mapsto \int_0^r \left( N_{n+1}(s) - \frac{1}{\mu} \sum_{i=1}^\mu \delta(s - \alpha_i) \right) ds$$

By definition  $0 < r < \frac{n+1}{2}$  is a *dominating value* if  $\Phi_f(r) > 0$  for all f in n + 1 variables. A *weakly dominating value* is defined by replacing < by  $\leq$  and  $\int_0^r$  by  $\int_0^{r-\epsilon}$  for all  $\epsilon > 0$ .

Consider the function

$$\Phi_f \colon [0,1] \to \mathbb{R}, \quad r \mapsto \int_0^r \left( N_{n+1}(s) - \frac{1}{\mu} \sum_{i=1}^\mu \delta(s - \alpha_i) \right) ds$$

By definition  $0 < r < \frac{n+1}{2}$  is a *dominating value* if  $\Phi_f(r) > 0$  for all f in n + 1 variables. A *weakly dominating value* is defined by replacing < by  $\leq$  and  $\int_0^r$  by  $\int_0^{r-\epsilon}$  for all  $\epsilon > 0$ .

### Problem (K. Saito 1983)

- Determine the set of all dominating values and weakly dominating values for each n.
- **2** Is 1/2 a dominating value for all  $n \ge 1$ ?
- Is 1 a dominating value for all  $n \ge 2$ ?

### **Related problems**

#### The geometric genus

$$p_g := \dim \frac{\{\text{Holomorphic } n\text{-forms on } U\}}{\{n\text{-forms of first kind}\}}$$

### Theorem (M. Saito 1983)

Let  $\{\alpha_1, \ldots, \alpha_\mu\}$  be the exponents of f. Then,  $p_g = |\{i \mid \alpha_i \leq 1\}|$ .

### Question (K. Saito 1983)

Is 1 a dominating value for all  $n \geq 2?$  In other words, for is f in n+1 variables, is the geometric genus bounded by

$$p_g < \frac{\mu}{(n+1)!}?$$

### **Related problems**

#### The geometric genus

$$p_g := \dim \frac{\{\text{Holomorphic } n\text{-forms on } U\}}{\{n\text{-forms of first kind}\}}$$

### Theorem (M. Saito 1983)

Let  $\{\alpha_1, \ldots, \alpha_\mu\}$  be the exponents of f. Then,  $p_g = |\{i \mid \alpha_i \leq 1\}|$ .

### Question (K. Saito 1983)

Is 1 a dominating value for all  $n \geq 2?$  In other words, for is f in n+1 variables, is the geometric genus bounded by

$$p_g < \frac{\mu}{(n+1)!}?$$

$$\mu = \dim \frac{H_0''}{\partial_t^{-1} H_0''} \qquad \tau = \dim \frac{H_0''}{t H_0'' + \partial_t^{-1} H_0''} \quad \mu - \tau = \dim \frac{t H_0'' + \partial_t^{-1} H_0''}{\partial_t^{-1} H_0''}$$

### Definition

For isolated complete intersection singularities defined by an ideal  $\mathcal{I} = (f_1, \dots, f_k)$  of dimension n = N - k:

$$\mu := \operatorname{rk} H_n(F), \quad \tau := \dim_{\mathbb{C}} (\operatorname{Ext}^1_{\mathcal{O}_{(X,0)}}(\Omega^1_{(X,0)}, \mathcal{O}_{(X,0)})).$$

### Definition

For isolated complete intersection singularities defined by an ideal  $\mathcal{I} = (f_1, \dots, f_k)$  of dimension n = N - k:

$$\mu := \operatorname{rk} H_n(F), \quad \tau := \dim_{\mathbb{C}} (\operatorname{Ext}^1_{\mathcal{O}_{(X,0)}}(\Omega^1_{(X,0)}, \mathcal{O}_{(X,0)})).$$

### Theorem (( $\Leftarrow$ ) Greuel 1980– ( $\Rightarrow$ ) Vosegaard 2002)

If (X, x) is an isolated complete intersection singularity of dimension  $n \ge 1$ ,

 $\mu = \tau \Leftrightarrow (X, x)$  is quasihomogeneous.

Let  $(X, 0) \subset (\mathbb{C}^N, 0)$  be an isolated complete intersection singularity of dimension  $n \geq 1$  and codimension r = N - n. Is there exist an optimal  $\frac{b}{a} \in \mathbb{Q}$  with b < a such that

$$\mu - au < rac{b}{a} \mu$$
 ?

Where optimal means that there exist a family of singularities such that  $\mu/\tau$  tends to  $\frac{a}{a-b}$  when the multiplicity at the origin tends to infinity.

Let  $(X, 0) \subset (\mathbb{C}^N, 0)$  be an isolated complete intersection singularity of dimension  $n \geq 1$  and codimension r = N - n. Is there exist an optimal  $\frac{b}{a} \in \mathbb{Q}$  with b < a such that

$$\mu - au < rac{b}{a} \mu$$
 ?

Where optimal means that there exist a family of singularities such that  $\mu/\tau$  tends to  $\frac{a}{a-b}$  when the multiplicity at the origin tends to infinity.

• Case N = 2, r = 1 is  $DG \Rightarrow a = 4$ , b = 1

Let  $(X, 0) \subset (\mathbb{C}^N, 0)$  be an isolated complete intersection singularity of dimension  $n \geq 1$  and codimension r = N - n. Is there exist an optimal  $\frac{b}{a} \in \mathbb{Q}$  with b < a such that

$$\mu - au < rac{b}{a} \mu$$
 ?

Where optimal means that there exist a family of singularities such that  $\mu/\tau$  tends to  $\frac{a}{a-b}$  when the multiplicity at the origin tends to infinity.

- Case N = 2, r = 1 is DG  $\Rightarrow a = 4, b = 1$
- Case r = N 1 with arbitrary N + (X, 0) is an irreducible germ of curve with the semigroup of a plane curve singularity. DG  $\Rightarrow a = 4, b = 1$

Let  $(X, 0) \subset (\mathbb{C}^N, 0)$  be an isolated complete intersection singularity of dimension  $n \geq 1$  and codimension r = N - n. Is there exist an optimal  $\frac{b}{a} \in \mathbb{Q}$  with b < a such that

$$\mu - au < rac{b}{a} \mu$$
 ?

Where optimal means that there exist a family of singularities such that  $\mu/\tau$  tends to  $\frac{a}{a-b}$  when the multiplicity at the origin tends to infinity.

- Case N = 2, r = 1 is DG  $\Rightarrow a = 4, b = 1$
- Case r = N 1 with arbitrary N + (X, 0) is an irreducible germ of curve with the semigroup of a plane curve singularity. DG  $\Rightarrow a = 4, b = 1$
- Case N = 3 and r = 1 Durfee  $\Rightarrow a = 3, b = 1$

### References

- P. Almirón, G. Blanco, A note on a question of Dimca and Greuel, C. R. Math. Acad. Sci. Paris, Ser. I 357 (2019), 205–208.
- M. Alberich-Carramiñana, P. Almirón, G. Blanco and A. Melle-Hernández, The minimal Tjurina number of irreducible germs of plane curve singularities, Indiana Univ. Math. J. 70 No. 4 (2021), 1211–1220.
- P. Almirón, *The 4/3 problem for germs of isolated plane curve singularities*, To appear in: Extended Abstracts GEOMVAP 2019 (Geometry, Topology, Algebra, and Applications; Women in Geometry and Topology), Trends in Mathematics 15. (2021)
- P. Almirón, On the quotient of Milnor and Tjurina numbers for two-dimensional isolated hypersurface singularities, To appear in Mathematische Nachrichten. (2021)
- P. Almirón, M. Schulze, Limit spectral distribution for non-degenerate hypersurface singularities. ARXIV: 2012.06360.
- P. Almirón PhD Thesis 2022.

## Thanks for the attention!!