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Milnor and Tjurina numbers

f : (Cn,0) −→ (C, 0) be a germ of isolated hypersurface singularity.

We denote by

Tf :=
C{x1, . . . , xn}

(f, ∂f∂x1
, . . . , ∂f∂xn

)
Mf :=

C{x1, . . . , xn}
( ∂f∂x1

, . . . , ∂f∂xn
)

Tf y Mf are C complex finite dimensional vector spaces

The Tjurina number is defined as

τ := dimC Tf .

It is an analytic invariant of the singularity

The Milnor number is defined as

µ := dimCMf .

It is a topological invariant of the singularity
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Toy example
Let us consider the curve f(x, y) = y7 − x9 = 0. In this case Mf = Tf , by
using SINGULAR we calculate µ = τ = 48 and a basis for this algebra:

{x7y5, x6y5, x5y5, x4y5, x3y5, x2y5, xy5, y5, x7y4, x6y4, x5y4, x4y4, x3y4, x2y4,

xy4, y4, x7y3, x6y3, x5y3, x4y3, x3y3, x2y3, xy3, y3, x7y2, x6y2, x5y2, x4y2, x3y2,

x2y2, xy2, y2, x7y, x6y, x5y, x4y, x3y, x2y, xy, y, x7, x6, x5, x4, x3, x2, x, 1}

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7
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Toy example

1 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9

1
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f(x, y) = y7 − x9 + x5y5 f(x, y) = y7 − x9 + x4y4

µ = 48 µ = 48
τ = 45 τ = 40
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Topology vs Analysis

Definition
Two isolated hypersurface singularities defined by f and g have the same
topological type if there is a homeomorphism ϕ : (Cn,0)→ (Cn,0) such that
ϕ(Vf ) = Vg.

Theorem (Lê 1973)
If two isolated hypersurface singularities defined by f and g have the same
topological type then µ(f) = µ(g).
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Topology vs Analysis

Definition
Two isolated hypersurface singularities defined by f and g have the same
analytic type if there is a biholomorphic map φ : (Cn,0)→ (Cn,0) such that
φ(Vf ) = Vg.

Theorem (Mather-Yau 1982)
The hypersurface isolated singularities defined by f and g are analytically
equivalent if and only if their Tjurina algebras are isomorphic as C–algebras.

In particular, same analytic type⇒ τ(f) = τ(g).
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(a) John Milnor 1931- (b) Galina N. Tjurina 1938-1970
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Comparing µ and τ

Theorem (K. Saito 1971)
Let f : Cn → C be a germ of analytic function defining an isolated
hypersurface singularity at the origin. Then

µ = τ ⇔ f is quasihomogeneous

Theorem (Liu 2017)
Let f : Cn → C be a germ of analytic function defining an isolated
hypersurface singularity at the origin. Then

µ

τ
≤ n
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Dimca and Greuel Question

Example (Dimca-Greuel)
Consider the families of curves

Xa : x2a+1 + xaya+1 + y2a = 0, Xb : x2b+1 + xb+1yb+1 + y2b+1 = 0.

For those families τ(Xa) = 3a2, µ(Xa) = 2a(2a− 1), µ(Xb) = 4b2,
τ(Xb) = 4b2 − (b− 1)2. Therefore, it follows that

µ/τ −−−→
a→∞

4/3. µ/τ −−−→
b→∞

4/3

Conjecture (Dimca-Greuel 2017)

Is for any plane curve singularity µ
τ <

4
3?
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Dimca and Greuel Question

Proposition ( A.-Blanco, 2018)
f is said to be semi-quasi-homogeneous with weight w = (n,m) such that
gcd(n,m) ≥ 1, n,m ≥ 2 and f = yn − xm + h.d.t. Then for any
semi-quasi-homogeneous plane curve singularity µ/τ < 4/3.

Theorem (Alberich-A.-Blanco-Melle; Genzmer-Hernandes 2019)
For any equisingular class of germs of irreducible plane curve singularity,

τmin = σ(n) +
n2 + 3n− 6

2
+
∑
p free

(ep − 1)(ep + 2) + 2σ(ep + 1)

2

+
∑
p sat.

ep(ep − 1) + 2σ(ep + 2)

2
,

where the summation runs on all points p equal or infinitely near to the origin
and σ(k) = (k−2)(k−4)

4 if k is even and σ(k) = (k−3)2
4 if k is odd.

P. Almirón (IMI-UCM) Milnor and Tjurina 10/ ∞



Dimca and Greuel Question

Proposition ( A.-Blanco, 2018)
f is said to be semi-quasi-homogeneous with weight w = (n,m) such that
gcd(n,m) ≥ 1, n,m ≥ 2 and f = yn − xm + h.d.t. Then for any
semi-quasi-homogeneous plane curve singularity µ/τ < 4/3.

Theorem (Alberich-A.-Blanco-Melle; Genzmer-Hernandes 2019)
For any equisingular class of germs of irreducible plane curve singularity,

τmin = σ(n) +
n2 + 3n− 6

2
+
∑
p free

(ep − 1)(ep + 2) + 2σ(ep + 1)

2

+
∑
p sat.

ep(ep − 1) + 2σ(ep + 2)

2
,

where the summation runs on all points p equal or infinitely near to the origin
and σ(k) = (k−2)(k−4)

4 if k is even and σ(k) = (k−3)2
4 if k is odd.

P. Almirón (IMI-UCM) Milnor and Tjurina 10/ ∞



Dimca and Greuel question for plane branches

Corollary
For any plane branch singularity,

µ

τ
<

4

3
.

Problems of the τmin approach:
Too restrictive: The results to prove the formula do not work for non
irreducible curves.
Too hard: We may find a formula for τmin and not to be able to estimate
it.
Why 4/3?
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...The little Hexagon meditated on
this a while and then said to me;
”But you have been teaching me
to raise numbers to the third
power: I suppose
three-to-the-third must mean
something in Geometry; what
does it mean?” ”Nothing at all”,
replied I, ”not at least in
Geometry; for Geometry has only
Two Dimensions”....

”Flatland, A Romance of Many
Dimensions” by Edwin Abbott.
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Milnor and Tjurina numbers for surface singularities

Let (X, 0) ∈ (C3, 0) be an isolated surface singularity defined by an equation
f ∈ OC3,0. Let X̃ → X be a resolution of singularities of X.

Definition
A holomorphic 2–form in C{x, y, z} is defined as

ω = a(x, y, z)dx ∧ dy + b(x, y, z)dy ∧ dz + c(x, y, z)dx ∧ dz

Definition
A holomorphic form ω on U ′ = X \ {0} is called of first kind if there exists a
resolution π : X̃ → X of the singularity X such that π∗(ω) extends
holomorphically to X̃

The geometric genus

pg := dim
{Holomorphic 2–forms on U}
{2–forms of first kind}

.
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DG Question from other perspective

Consider the germ of isolated surface singularity

Σ : z2 + f(x, y) = 0.

Remark: C : f(x, y) = 0 then τ(C) = τ(Σ) and µ(C) = µ(Σ).

Theorem (Tomari 1991)
Let pg be the geometric genus of Σ and µ its Milnor number. Then

8pg + 1 ≤ µ.

Theorem (Wahl 1985 )
Let (X, 0) ∈ (C3, 0) be an isolated surface singularity defined by an equation
f ∈ OC3,0. Then

µ− τ ≤ 2pg
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DG Question from other perspective

Theorem (A. 2019)
For any germ of plane curve singularity

µ

τ
<

4

3
.

Proof: Let f(x, y) = 0 be an equation of a germ of a plane curve singularity.
Consider the surface singularity f(x, y) + z2 = 0. Then, Wahl + Tomari give

µ− τ ≤ 2pg < µ/4

Consequence: The bound 4/3 can be inferred from the geometry of the sin-

gularity.
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Durfee conjecture and the bound for surface
singularities

Is µ/τ < 4/3 for any surface singularity?

NO

f = x14 + y6z8 + z14 + x9z5 + (x+ y + z)15.

We can compute with SINGULAR that the Milnor number is µ = 2288 and the
Tjurina number is τ = 1660. Therefore, µ/τ > 4/3.

What is the bound for surface singularities?

Conjecture (Durfee 1978 )
For any isolated surface singularity (X, 0) ⊂ (C3, 0)

6pg ≤ µ.

Some partial results by: Tomari (91), Ashikaga (93), Némethi (98), Melle-
Hernández (2000), Kóllar and Némethi (2017), Enokizono (2018). Still open
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Bound for surface singularities

Proposition

Let (X, 0) ⊂ (C3, 0) be an isolated surface singularity of one of the following
types:
(1) Quasi-homogeneous singularities,
(2) (X, 0) of multiplicity 3,

(3) absolutely isolated singularity,
(4) suspension of the type {f(x, y) + zN = 0},
(5) the link of the singularity is an integral homology sphere,
(6) the topological Euler characteristic of the exceptional divisor of the

minimal resolution is positive.
Then

µ

τ
<

3

2

Remark: All these cases are the cases for which Durfee conjecture is known
to be true.
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Bound for surface singularities

Is µ
τ <

3
2 sharp?

YES. Consider F (x, y, z) = xd + yd + zd + g(x, y, z) = 0 with
deg(g) ≥ d+ 1. Then, Wahl shows that

τmin = (2d− 3)(d+ 1)(d− 1)/3.

Also, µ = (d− 1)3. Then
µ

τmin
−−−→
d→∞

3

2
.

Conjecture (A. 2019)
For any (X, 0) ⊂ (C3, 0) isolated surface singularity:

µ

τ
<

3

2
.
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Exponents

f : Cn+1 → C germ of isolated hypersurface singularity, t ∈ C.
The Brieskorn lattice is defined as

H ′′0 :=
Ωn+1

Cn+1,0

df ∧ dΩn−1Cn+1,0

In the Brieskorn lattice there is an action of the differential operator ∂−1t de-
fined as

∂−1t [ω] := [df ∧ α],

where ω ∈ Ωn+1
Cn+1,0 and α ∈ ΩnCn+1,0 such that dα = ω. Also, tω := fω.

Proposition (Pham 70’s)
H ′′0 is a C{{∂−1t }}–module
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Exponents

Theorem (M. Saito 1989)
There exists a basis {vi} of H ′′0 as C{{∂−1t }}–module and matrices with
complex coefficient A0, A1 such that

tv = A0v +A1∂
−1
t v

where v = (v1, . . . , vµ)t. Moreover, A0 is nilpotent and A1 is semisimple.

Definition
The exponents of f are defined as the set of eigenvalues of the matrix A1.
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Quasi-homogeneous singularities

f(x0, . . . , xn) quasi-homogeneous of degree 1 with respect to the weigths
(w0, . . . , wn), i.e. f(ηw0x0, . . . , η

wnxn) = ηf(x0, . . . , xn).

Consider the generating function

Spf (t) :=

µ∑
i=1

tαi ∈ Z[Q]

with α1, . . . , αµ the exponents of f.
In this case we can compute Spf (t) as

Spf (t) =

∏n
i=0(t− twi)∏n
i=0(twi − 1)

.

If we do t = exp(πiτ) and χf = (1/µ) Spf (t),

lim
w0,...,wn→0

χf (t) =

(
exp(πiτ)

sin(πτ)

πτ

)n+1
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A continuous distribution

Nn+1(s)ds :=

∫
x0+···xn=s

ϕ(x0) · · ·ϕ(xn)dx0 · · · dxn,

where ϕ is the indicator function of the unit interval [0, 1],

ϕ(x) :=

{
1 if x ∈ [0, 1],

0 if x /∈ [0, 1].

The Fourier transform F(Nn+1(τ)) of Nn+1(s) is:∫
exp(2πiτs)Nn+1(s)ds = F(ϕ)(τ)n+1 =

(
exp(πiτ)

sin(πτ)

πτ

)n+1

.
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K. Saito’s problem

The normalized spectrum of f ,

χf (t) :=
Spf (T )

µ
=

1

µ

µ∑
j=1

Tαj ,

Making T = exp(2πit), one gets the Fourier transform representation:

χf (t) :=
1

µ

∫
exp(2πisτ)

µ∑
i=1

δ(s− αi)ds,

where δ(s) is Dirac’s delta function.
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K. Saito’s problem

Question (K. Saito 1983)
Let α1, . . . , αµ be the spectral values of an isolated hypersurface singularity, is

limχf = F(Nn+1), or equivalently, lim

µ∑
i=1

δ(s− αi)ds = Nn+1ds ?

Theorem (K. Saito 1983)
1 For quasi-homogeneous singularities of degree with weights (w0, . . . , wn):

limw0,...,wn→0 χf = F(Nn+1).

2 For an irreducible plane curve singularity with Puiseux pairs (n1, l1), . . . , (ng, lg),
limng→∞ χf = F(N2).

Theorem (A.-Schulze 2020)
For a fixed Newton diagram Γ, consider the Newton diagrams $Γ obtained from Γ by
scaling with the factor $. Then we have lim$→∞ χf$ = F(Nn+1), where the limit
runs over all Newton non-degenerate f$ of n+ 1 variables with Newton diagram $Γ.
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Dominating values

Consider the function

Φf : [0, 1]→ R, r 7→
∫ r

0

(
Nn+1(s)− 1

µ

µ∑
i=1

δ(s− αi)
)
ds

By definition 0 < r < n+1
2 is a dominating value if Φf (r) > 0 for all f in n + 1

variables. A weakly dominating value is defined by replacing < by ≤ and
∫ r
0

by
∫ r−ε
0

for all ε > 0.

Problem (K. Saito 1983)
1 Determine the set of all dominating values and weakly dominating values

for each n.
2 Is 1/2 a dominating value for all n ≥ 1?
3 Is 1 a dominating value for all n ≥ 2?
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Related problems

The geometric genus

pg := dim
{Holomorphic n–forms on U}
{n–forms of first kind} .

Theorem (M. Saito 1983)
Let {α1, . . . , αµ} be the exponents of f . Then, pg = |{i | αi ≤ 1}|.

Question (K. Saito 1983)
Is 1 a dominating value for all n ≥ 2? In other words, for is f in n+ 1 variables, is the
geometric genus bounded by

pg <
µ

(n+ 1)!
?

µ = dim
H ′′0

∂−1
t H ′′0

τ = dim
H ′′0

tH ′′0 + ∂−1
t H ′′0

µ− τ = dim
tH ′′0 + ∂−1

t H ′′0
∂−1
t H ′′0
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Open problem

Definition
For isolated complete intersection singularities defined by an ideal
I = (f1, . . . , fk) of dimension n = N − k:

µ := rkHn(F ), τ := dimC(Ext1O(X,0)
(Ω1

(X,0),O(X,0))).

Theorem ((⇐) Greuel 1980– (⇒) Vosegaard 2002)
If (X,x) is an isolated complete intersection singularity of dimension n ≥ 1,

µ = τ ⇔ (X,x) is quasihomogeneous.
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Problem

Problem
Let (X, 0) ⊂ (CN , 0) be an isolated complete intersection singularity of
dimension n ≥ 1 and codimension r = N − n. Is there exist an optimal ba ∈ Q
with b < a such that

µ− τ < b

a
µ ?

Where optimal means that there exist a family of singularities such that µ/τ
tends to a

a−b when the multiplicity at the origin tends to infinity.

Case N = 2, r = 1 is DG⇒ a = 4, b = 1

Case r = N − 1 with arbitrary N+(X,0) is an irreducible germ of curve
with the semigroup of a plane curve singularity. DG⇒ a = 4, b = 1

Case N = 3 and r = 1 Durfee⇒ a = 3, b = 1
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