Notas sobre R

Francesc Carmona, Jordi Ocaña i Alex Sánchez

Department d'Estadística Universitat de Barcelona

23 de gener de 2008

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outline

Introdución

Instrucciones de alto nivel Ajuste de parámetros Más ejemplos Identificación de puntos en la región gráfica Graficos Trellis

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

Introducción

- ▶ R tiene grandes posibilidades para hacer gráficos.
 - demo(graphics)
 - http://addictedtor.free.fr/graphiques
- Idea: la visualización es parte integral del análisis y la comunicación de los resultados

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► Los gráficos deben ser en primer lugar *estadísticos*.
- > También pueden ser *estéticos*.

Tipos de funciones gráficas en R

Funciones de alto nivel

- Permiten crear los gráficos básicos
- > plot, hist, boxplot, pairs,...
- Funciones de bajo nivel
 - Permiten modificar los gráficos creados
 - points, lines, text, axis,...
- Gráficos Trellis: Permiten describir situaciones complejas, a menudo multivariantes, con un sólo gráfico organizado en paneles.

Los dispositivos gráficos

 Cuando creamos un gráfico en R dirigimos la salida hacia un dispositivo o "driver".

- Por defecto es la pantalla.
- Hay muchos formatos disponibles: 'postscript','pdf','png','jpeg','bmp',...
- La utilización de los distintos drivers aumenta la flexibilidad y potencia de R
 - Podemos crear gráficos de gran calidad, de manera automàtica.
 - Podemos crear grandes cantidades de gráficos mediante scripts para tratamientos masivos de datos.

Los pasos para crear un gráfico

Una forma típica de crear gráficos puede ser:

- Llamar el driver hacia el que se dirigirá la salida
- Establecer los parámetros por defecto (Ajustes previos al gráfico)
- Crear el gráfico utilizando funciones de alto nivel (Ajustes al crear el gráfico)

- Modificar el gráfico con funciones de bajo nivel (Ajustes prosteriores al gráfico)
- Restablecer los parámetros
- Cerrar el dispositivo de salida.

Outline

Introdución Instrucciones de alto nivel

Ajuste de parámetros Más ejemplos Identificación de puntos en la región gráfica Graficos Trellis

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

plot() y compañía

- La instrucción básica para crear un gráfico es plot()
- Se trata de una *función genérica*: Al ser R un lenguaje orientado a objetos el resultado de la funcion será diferente segun sobre que tipo de datos se aplique.

> opt <- par(bg = "lightyellow", mfrow = c(1, 1))</pre>

> barplot(VADeaths, beside = T, col = c("blue", "pink",

+ "yellow", "red"), legend = rownames(VADeaths), yl
+ 100))

> title(main = "Death Rates in Virginia", font.main = 3
> par(opt)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 善臣 = のへぐ

Ejemplo

Outline

Introdución Instrucciones de alto nivel

Ajuste de parámetros

Más ejemplos Identificación de puntos en la región gráfica Graficos Trellis

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

Ajustes previos al gráfico: par()

- La instrucción par () permie establecer un grandísimo número de opciones gráficas (? par)
- A diferencia de otros programas, muchos aspectos de configuración deben establecerse antes de crear el gráfico.
- Las opciones deben restaurarse despues de su utilización
 - > library(DAAG)
 - > attach(elasticband)
 - > oldpar <- par(cex.main = 1.5, mex = 1.5, bg = "lighth

- > plot(distance ~ stretch)
- > par(oldpar)
- > detach(elasticband)
- > detach(package:DAAG)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ < ○

Ajustes al crear el gráfico

 La mayoria de instrucciones admiten un numero mínimo de parámetros para definir cosas como el título (main) o las etiquetas (xlab, ylab)

- > library(DAAG)
- > attach(elasticband)
- > oldpar <- par(cex.main = 1.5, mex = 1.5)
- > plot(distance ~ stretch, main = "Analisis de elastic
- + ylab = "Distancia", sub = "Tomado de 'Using R...'

+ 60),
$$ylim = c(100, 200))$$

- > par(oldpar)
- > detach(elasticband)
- > detach(package:DAAG)

Analisis de elasticidad

Tomado de 'Using R...'

Ajustes despues del gráfico: funciones de bajo nivel

- Una vez dibujado el gráfico podemos añadirle lineas o texto facilmente. ylab)
 - > library(DAAG)
 - > attach(elasticband)
 - > oldpar <- par(cex = 1.5, mex = 1.5)
 - > plot(distance ~ stretch, main = "Analisis de elastic

- > abline(lm(distance ~ stretch))
- > text(stretch, distance, rownames(elasticband), pos =

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- + col = "red")
- > par(oldpar)
- > detach(elasticband)
- > detach(package:DAAG)

Analisis de elasticidad

Estiramiento

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

æ

Símbolos, colores y tamaños para los gráficos

> plot(1, 1, xlim = c(1, 7.5), ylim = c(0, 5), type = "n")
> points(1:7, rep(4.5, 7), cex = 1:7, col = 1:7, pch = 0:6)
> text(1:7, rep(3.5, 7), labels = paste(0:6), cex = 1:7, col
> points(1:7, rep(2, 7), pch = (0:6) + 7)
> text((1:7) + 0.25, rep(2, 7), paste((0:6) + 7))
> points(1:7, rep(1, 7), pch = (0:6) + 14)
> text((1:7) + 0.25, rep(1, 7), paste((0:6) + 14))

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで、

Gráficos múltiples

Scatterplots matriciales con pairs()

 Si los datos estan en una matriz numérica cuyas columnas representan variables relacionadas podemos representarlas simultáneamente con la instrucción pairs()

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- > library(MASS)
- > data(hills)
- > pairs(hills)
- > detach(package:MASS)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Scatterplots matriciales panelados pairs()

- Si utilizamos un panel simétrico puede contener informaciones distintas.
- Para ello debemos crear una función y utilizarla mediante la función panel()

```
> panel.cor <- function(x, y, digits = 2, prefix = "",</pre>
      usr <- par("usr")</pre>
+
      on.exit(par(usr))
+
      par(usr = c(0, 1, 0, 1))
+
      r <- cor(x, y, use = "complete.obs")</pre>
+
      txt <- format(c(r, 0.123456789), digits = digits)</pre>
+
      txt <- paste(prefix, txt, sep = "")</pre>
+
+
      if (missing(cex.cor))
          cex <- 0.8/strwidth(txt)</pre>
+
      text(0.5, 0.5, txt, cex = cex * 0.5)
+
+ }
> pairs(hills, main = "Correlation between genes (alls
      lower.panel = panel.cor)
+
```


Correlation between genes (alls spots)

Varios gráficos por pantalla

- Probablemente las opciones más utilizadas sean mfrow() y mfcol()
- Permiten representar más de un gráfico por pantalla organizándolos por filas o columnas.
 - > library(MASS)
 - > attach(Animals)
 - > par(mfrow = c(2, 2), pch = 16)
 - > plot(body, brain)
 - > plot(sqrt(body), sqrt(brain))
 - > plot((body)^0.1, (brain)^0.1)
 - > plot(log(body), log(brain))
 - > par(mfrow = c(1, 1), pch = 1)
 - > mtext("Varias formas de representar la relacion peso
 - + line = 2)
 - > detach(Animals)
 - > detach(package:MASS)

Varias formas de representar la relacion peso altura

Outline

Introdución Instrucciones de alto nivel Ajuste de parámetros Más ejemplos Identificación de puntos en la región gráfica Graficos Trellis

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

Más ejemplos

- La mejor forma de aprender a utilizar los parámetros es probando que efecto producen sobre los gráficos.
- Una buena fuente de ejemplos esta en la página web del libro "Rgraphics" de Paul Murrell http://www.stat.auckland. ac.nz/~paul/RGraphics/rgraphics.html
- El codigo contenido en este script: http://www.stat.auckland.ac.nz/~paul/RGraphics/ examples-stdplots.R realiza los gráficos de la página siguiente.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Outline

Introdución Instrucciones de alto nivel Ajuste de parámetros Más ejemplos Identificación de puntos en la región gráfica Graficos Trellis

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

- R permite una cierta interacción con interactuar con los gráficos en pantalla.
 - identify() Permite etiquetar puntos, colocando el cursor sobre ellos y haciendo un clic con el botón izquierdo.
 - locate() Permite obtener las coordenadas del punto, colocando el cursor sobre ellos y haciendo un clic con el botón izquierdo.
- La interacción finaliza si se alcanza el total de puntos solicitados o se pulsa el botón derecho.

```
library(UsingR);attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush", ylab="Buchanan")
identify(BUSH, BUCHANAN, County)
locator()
detach(florida);detach(package:UsingR)
```

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Introdución Instrucciones de alto nivel Ajuste de parámetros Más ejemplos Identificación de puntos en la región gráfica **Graficos Trellis**

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Graficos

La libreria lattice

- El paquete lattice es muy útil para describir gráficamente datos multivariantes.
- La idea consiste en que el gráfico está formado por un cierto número de paneles.
- Normalmente cada uno de ellos corresponde a alguno de los valores de una variable que condiciona.
- Las funciones se escriben con la notación de la fórmula del modelo.
- En los gráficos univariantes como los histogramas, la variable respuesta, a la izquierda, se deja vacía.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Un grafico Trellis básico

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

Representación de una variable condicionada por los valores de otra

Notación de fórmula en gráficos Trellis

La última instrucción es

muy interesante porque nos permite estudiar comparativamente el sexo separado por especies.