
PIVOT POLYTOPES OF PRODUCTS OF SIMPLICES

AND SHUFFLES OF ASSOCIAHEDRA

VINCENT PILAUD AND GERMAIN POULLOT

Abstract. We provide a piecewise linear isomorphism from the normal fan of the pivot polytope

of a product of simplices to the normal fan of a shuffle of associahedra.

1. Introduction

To solve a linear program given by a polytope P and a direction c, the simplex algorithm tra-
verses a path along the graph of P from any given vertex to a maximal vertex, choosing for each
vertex an improving neighbor according to a given pivot rule. The pivot rule is memoryless when
the choice only depends on the current vertex, which can be encoded by an arborescence mapping
each vertex to its preferred neighbor. The classical shadow-vertex pivot rule, instrumental for ran-
domized and smoothed analysis of the simplex method [Bor87, ST04], is not memoryless. To make
the shadow-vertex pivot rule memoryless, A. Black, J. De Loera, N. Lütjeharms and R. Sanyal de-
fined in [BDLLS23] the max-slope pivot rule with respect to a given fixed generic weight ω, which
chooses the improving neighbor maximizing the slope on the plane defined by c and ω. They also
introduced the max-slope pivot rule polytope (that we abbreviate here by pivot polytope), whose
vertices are in bijection to the arborescences of the max-slope pivot rule on (P, c). They observed
that the pivot polytope of a cube is the standard permutahedron, that the pivot polytope of a
simplex is an associahedron, and that the pivot polytope of a prism over a simplex is a multipli-
hedron (these observations were latter proved in [BLS24]). Figure 1 illustrates these miracles in
dimension 2. Based on enumerative data, V. Pilaud and R. Sanyal further conjectured [PS23] that
the pivot polytope of a product of two simplices is a constrainahedron [BP22]. As multiplihedra
and constrainahedra are both obtained from associahedra by the shuffle operation of F. Chapoton
and V. Pilaud [CP22], it naturally led to the following conjecture.

Conjecture 1.1 ([PS23]). For any m1 ≥ 1, . . . ,mt ≥ 1, the pivot polytope of the product of simpli-
ces ∆m1 × · · · ×∆mt and the shuffle of Loday’s associahedra Asso(m1) ? · · · ?Asso(mt) are combi-
natorially isomorphic (meaning that they have isomorphic face lattices).

Partial cases of this conjecture were solved in [BDLLS23, BLS24], namely when m1 = . . .=mt=1
(permutahedron [BDLLS23, Thm. 6.5]), when t = 1 (associahedron [BLS24, Thm. 4.3]), when t = 2
(constrainahedron [BLS24, Thm. 5.8]), and the vertex count when m1 = · · · = mt−1 = 1 (mul-
tiplihedron [BLS24, Thm. 6.2]). These results were achieved using the connection to particle
collisions [BP22], motivated by the case of constrainahedra.

This paper reports on an alternative approach to pivot polytopes of product of simplices, de-
veloped independently from [BLS24] and originally announced in [Pou23]. This approach closes
Conjecture 1.1 and provides arguably simpler proofs even for the known cases of the associahedron
and constrainahedron. Our main idea is to define the slope map, which sends each weight ω to its
slope vector, recording the optimal slope at each vertex. As the graph of the simplex is complete,
the arborescence for ω can be directly retrieved from the order of these optimal slopes, hence from
the region of the braid arrangement containing the slope vector of ω. Studying the regions giving
the same arborescence naturally leads to our first result, which refines [BLS24, Thm. 4.3].

Theorem 1.2. For any full dimensional simplex ∆ ⊂ Rm and any generic direction c ∈ Rm, the
slope map is a piecewise linear isomorphism from the normal fan of the pivot polytope of (∆, c) to
the normal fan of the associahedron Asso(m).

VP was partially supported by the French project CHARMS (ANR 19 CE40 0017), by the French – Austrian
project PAGCAP (ANR 21 CE48 0020 & FWF I 5788), and by the Spanish projects PID2019-106188GB-I00 and
PID2022-137283NB-C21 of MCIN/AEI/10.13039/501100011033.
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Figure 1. The arborescences of the max-slope pivot rule over the 3-dimensional cube (left) and
simplex (right) correspond to the faces of the 2-dimensional permutahedron (left) and associahe-
dron (right). The objective vector c points to the right.

Beyond the case of simplices for which it provides a proof of Theorem 1.2, the slope map
connects pivot polytopes to deformed permutahedra (or generalized permutahedra [Pos09]). More
precisely, it always embeds the pivot fan inside the braid fan. This perspective opens several
research directions discussed in [Pou23].

We then exploit the fact that a product of polytopes contains many parallel edges to define a
product slope map, which sends each weight ω to a vector recording irredundantly the optimal
slope at each vertex. This map enables us to prove the following refinement of Conjecture 1.1.

Theorem 1.3. For any full dimensional simplices ∆1 ⊂ Rm1 , . . . ,∆t ⊂ Rmt and any generic
direction c ∈ Rm1+···+mt , the product slope map is a piecewise linear isomorphism from the nor-
mal fan of the pivot polytope of (∆1 × · · · ×∆t, c) to the normal fan of the shuffle of associahe-
dra Asso(m1) ? · · · ? Asso(mt).

We insist that both Theorems 1.2 and 1.3 deal with piecewise linear maps on fans. It implies
that the polytopes are combinatorially equivalent, but not necessarily normally equivalent. In
fact they are not, and as observed in [BLS24], the pivot polytopes of simplices seem to be new
geometric realizations of the associahedron.

The paper is organized as follows. In Section 2, we recall from [BDLLS23] the constructions of
the pivot fan and pivot polytope. In Section 3, we define the slope map and prove Theorem 1.2
for the simplex as a warm up for the general case. Finally, we prove Theorem 1.3 in Section 4.

2. Pivot fan and pivot polytope

A linear program is a pair (P, c) where P ⊂ Rd is a d-dimensional polytope and c ∈ Rd is
the direction to be optimized. We denote by V (P) and E(P) the vertex and edge sets of P, and
let n := |V (P)| and m :=n− 1. We assume that (P, c) is generic in the sense that 〈c | u〉 6= 〈c | v〉
for any uv ∈ E(P). An improving neighbor of u ∈ V (P) is any v ∈ V (P) such that uv ∈ E(P)
and 〈c | u〉 < 〈c | v〉. By genericity, there is a unique vmax ∈ V (P) maximizing 〈c | v〉 for v ∈ V (P )
(and it has no improving neighbor). For any u 6= v ∈ V (P) and ω ∈ Rd, we define:

ρω(u,v) :=
〈ω | v − u〉
〈c | v − u〉 .
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Definition 2.1 ([BDLLS23]). For a secondary direction ω ∈ Rd linearly independent of c, we define

τω(u) := max {ρω(u,v) | v improving neighbor of u} .
We say that the direction ω ∈ Rd is generic when there is a unique improving neighbor v of u
with τω(u) = ρω(u,v), and we then define Aω(u) :=v. By convention we set τω(vmax) := −∞
and Aω(vmax) :=vmax. The map Aω : V (P)→ V (P) is called the arborescence of ω.

Theorem 2.2 ([BDLLS23]). The closures of the fibers of the map ω 7→ Aω are the maximal cones
of a polyhedral fan PP,c, called the pivot fan of (P, c). In other words, ω and ω′ belong to the

relative interior of the same maximal cone of PP,c if and only if Aω = Aω′ .

Theorem 2.3 ([BDLLS23, Thm. 5.4]). The pivot fan PP,c is the normal fan of a polytope, called
the pivot polytope of (P, c).

We skip the precise definition of the pivot polytope as we only work here at the level of the
pivot fan. Our aim is to construct a piecewise linear map that embeds the pivot fan into the braid
fan, especially in the case of products of simplices. From Definition 2.1, it is natural to consider
the function ω 7→ τω(u) (note that it also appeared in the proof of [BDLLS23, Thm. 1.4] as the
support function of the pivot polytope).

Lemma 2.4. For any u ∈ V (P), the map ω 7→ τω(u) is piecewise linear on the cones of the pivot
fan PP,c.

Proof. For any v ∈ V (P), the map ω 7→ ρω(u,v) is linear (from Rd to R). If ω and ω′ belong
to the interior of the same maximal cone of the pivot fan PP,c, then τω(u) = ρω(u,v) and

τω
′
(u) = ρω

′
(u,v) for the same v = Aω(u) = Aω′(u). Hence, ω 7→ τω(u) is linear on the interior

of any maximal cone of the pivot fan PP,c. As ω 7→ τω(u) is continuous, it is piecewise linear on
the closed cones of the pivot fan PP,c. �

3. Pivot fan of a simplex

In this section, we show that the pivot polytope of a simplex ∆m is combinatorially equivalent
to the associahedron Asso(m). More precisely, we provide an explicit piecewise linear map from
the pivot fan of ∆m to the normal fan of Asso(m).

3.1. Sylvester fan and associahedron. First, we just briefly recall that the normal fan of Loday’s
associahedron Asso(m) is obtained by coarsening the braid arrangement according to the sylvester
congruence. We refer to [PSZ23] for a detailed survey.

Definition 3.1. The braid arrangement is the arrangement of the hyperplanes {x ∈ Rm | xi = xj}
for all 1 ≤ i < j ≤ m. It has a region C(π) := {x ∈ Rm | xπ1 < · · · < xπm} for each permutation π
of [m]. Two regions C(π) and C(π′) are adjacent if π and π′ are adjacent permutations, meaning
that π = UijV and π′ = UjiV for two letters i, j ∈ [m] and two words U, V on [m].

Definition 3.2. The sylvester congruence is the equivalence relation ≡sylv on permutations of [m]
defined by the transitive closure of the rewriting rule UjV ikW ≡sylv UjV kiW for some let-
ters 1 ≤ i < j < k ≤ m and some words U, V,W on [m].

Definition 3.3. The sylvester fan Lm is the fan of Rm whose maximal cones are obtained by gluing
together the regions C(π) of the braid arrangement corresponding to permutations π of [m] in the
same class of the sylvester congruence.

Proposition 3.4 ([Lod04, Pos09]). The sylvester fan is the normal fan of the associahedron

Asso(m) :=
∑

1≤i<k≤m

conv {−ej | i ≤ j ≤ k} .

Remark 3.5. The attentive reader has noticed our unusual conventions in Definition 3.2 and Propo-
sition 3.4. The sylvester congruence is usually the transitive closure of UikV jW ≡ UkiV jW , and
defines the normal fan of Loday’s associahedron

∑
1≤i<k≤m conv {ej | i ≤ j ≤ k}. Our definitions,

sometimes called anti-sylvester congruence and anti-associahedron, are equivalent up to central
symmetry and fit better the max-slope pivot rule.
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3.2. Slope map. We now assume that the graph of P is complete, and we denote by u1, . . . ,un
the vertices of P such that 〈c | ui〉 < 〈c | uj〉 for i < j. We therefore abuse notation, considering
that ρω : [n]× [n]→ R, that τω : [n]→ R ∪ {−∞}, and that Aω : [n]→ [n] for any generic ω.

Lemma 3.6. If the graph of P is complete, then for any generic ω ∈ Rd and i ∈ [m], we have

Aω(i) = min {j ∈ [n] | i < j and τω(i) > τω(j)} .
Proof. For i < j < k, we have

ρω(i, k) =
〈c | uj − ui〉
〈c | uk − ui〉

ρω(i, j) +
〈c | uk − uj〉
〈c | uk − ui〉

ρω(j, k)

which is a strict convex combination, so that ρω(i, k) separates ρω(i, j) from ρω(j, k).
Fix a generic ω ∈ Rd. For i ∈ [m] we haveAω(i) > i by definition. For any j with i < j < Aω(i),

we know that j is an improving neighbor of i (because i < j and the graph of P is complete),
hence ρω(i, j) < ρω(i,Aω(i)). Applying the separation argument to i < j < Aω(i), we ob-
tain ρω(i, j) < ρω(i,Aω(i)) < ρω(j,Aω(i)). Hence, τω(i) = ρω(i,Aω(i)) < ρω(j,Aω(i)) ≤ τω(j).
Finally, observe that ρω

(
i,Aω(Aω(i))

)
< ρω(i,Aω(i)). Applying again the separation argument

to i < Aω(i) < Aω(Aω(i)), we obtain ρω(Aω(i),Aω(Aω(i))) < ρω(i,Aω(Aω(i))) < ρω(i,Aω(i)).
Hence τω(Aω(i)) = ρω(Aω(i),Aω(Aω(i))) < ρω(i,Aω(i)) = τω(i). This proves the lemma. �

For a generic ω ∈ Rd, we define πω as the permutation of [m] such that τω(πω
1 ) < · · · < τω(πω

m).

Lemma 3.7. If the graph of P is complete, then for any two generic ω,ω′ ∈ Rd, we have Aω = Aω′

if and only if πω ≡sylv π
ω′ .

Proof. We assume that πω and πω′ are adjacent permutations, the general case follows by in-
duction on the distance from πω to πω′ . Hence πω = XikY while πω′ = XkiY for some let-
ters 1 ≤ i < k ≤ m and some words X,Y on [m]. From Lemma 3.6, we clearly have Aω(`)=Aω′(`)
for any ` ∈ [n], except maybe when ` = i. We distinguish two cases:

• if there is j ∈ X with i < j < k, then Aω(i) = Aω′(i) ≤ j,
• otherwise, Aω(i) 6= k = Aω′(i). �

Lemma 3.7 motivates the following definition.

Definition 3.8. We define the slope map θ : Rd → Rm by θ(ω) =
(
τω(i)

)
i∈[m]

.

Lemma 3.9. On each maximal cone of the pivot fan PP,c, the slope map θ is linear and injective.

Proof. The map θ is linear on each maximal cone of the pivot fan PP,c by Lemma 2.4. If ω,ω′ ∈ Rd

are such that Aω = Aω′ and θ(ω) = θ(ω′), then all edges uiuAω(i) are orthogonal to ω − ω′,
which implies that ω = ω′ since P is full dimensional. �

3.3. Pivot fan of a simplex. We are now ready to show that the slope map sends the pivot fan of
the simplex ∆m to the sylvester fan Lm, which refines [BLS24, Thm. 4.3].

Theorem 3.10. For any full dimensional simplex ∆ ⊂ Rm and any generic direction c ∈ Rm, the
slope map θ is a piecewise linear isomorphism from the pivot fan P∆,c to the sylvester fan Lm.

Proof. Note first that P∆,c and Lm are both complete fans in Rm. By Lemma 3.9, the map θ
sends each m-dimensional cone of P∆,c to an m-dimensional cone in Rm, that we call θ-cone in
this proof. By Lemma 3.7, each θ-cone is contained in some maximal cone of Lm, and distinct
θ-cones are contained in distinct maximal cones of Lm. In particular, the interior of the θ-cones
are disjoint. By continuity of θ, two adjacent maximal cones of P∆,c are thus sent to adjacent
θ-cones in Rm. We thus obtain that the θ-cones form a complete fan in Rm. As each θ-cone is
contained in a cone of Lm, and both are complete fans in Rm, we conclude that they coincide. �

Remark 3.11. Recall that the sylvester fan has a cone C(T ) := {x ∈ Rm | xi ≤ xj for all i→j in T}
for each binary tree T with m internal nodes (where T is labeled in in-order and oriented away
from its root). The slope map thus induces a bijection from the arborescences {Aω | ω ∈ Rm}
on (∆, c) to the binary trees with m internal nodes. This is the classical bijection from non-crossing
arborescences to binary trees.
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4. Pivot fan of a product of simplices

In this section, we prove that the pivot polytope of a product of simplices ∆m1
× · · · × ∆mt

is combinatorially equivalent to the shuffle of associahedra Asso(m1) ? · · · ? Asso(mt). Again, we
provide an explicit piecewise linear map from the pivot fan of ∆m1 × · · · ×∆mt to the normal fan
of Asso(m1) ? · · · ? Asso(mt).

4.1. (m1, . . . ,mt)-sylvester fan and shuffle of associahedra. First, we describe here the normal
fan of the shuffle Asso(m1) ? · · · ? Asso(mt). We refer to [CP22] for the general treatment of
shuffle of deformed permutahedra. We fix m1 ≥ 1, . . . ,mt ≥ 1 with t > 0. Let m :=

∑
1≤s≤tms,

and Ms :=
∑

1≤r≤smr for 0 ≤ s ≤ t (hence, M0 = 0 and Mt = n).

Definition 4.1. The (m1, . . . ,mt)-sylvester congruence is the equivalence relation ≡m1,...,mt

sylv on per-

mutations of [m] defined by the transitive closure of the rewriting rule UjV ikW ≡m1,...,mt

sylv UjV kiW

for some letters i, j, k of [m] and some words U, V,W on [m], such that Ms−1 < i < j < k ≤ Ms

for some s ∈ [t].

Definition 4.2. The (m1, . . . ,mt)-sylvester fan Lm1,...,mt
is the fan of Rm whose maximal cones

are obtained by gluing together the regions C(π) of the braid arrangement corresponding to
permutations π of [m] in the same class of the (m1, . . . ,mt)-sylvester congruence.

The next statement immediately follow from [CP22, Def. 75 & Prop. 86] and Proposition 3.4.

Proposition 4.3. The (m1, . . . ,mt)-sylvester fan Lm1,...,mt
is the normal fan of the shuffle of as-

sociahedra

Asso(m1) ? · · · ? Asso(mt) :=
(
Asso(m1)× · · · × Asso(mr)

)
+

∑
1≤r<s≤t

i∈[mr], j∈[ms]

[eMr−1+i, eMs−1+j ].

4.2. Product slope map. We now consider t generic linear programs (P1, c1), . . . , (Pt, ct). For
each s ∈ [t], the polytope Ps is ds-dimensional in Rds and has ns :=ms + 1 vertices ordered
according to cs ∈ Rds , and we denote by θs : Rds → Rms the slope map of (Ps, cs).

We consider the generic linear program (P, c) where P := P1× · · ·×Pt and c := (c1, . . . , ct). We
let d :=

∑
s∈[t] ds and m :=

∑
s∈[t]ms. Be careful that the number of vertices of P := P1 × · · · ×Pt

is
∏
s∈[t] ns =

∏
s∈[t](ms + 1), which is distinct from m+ 1 =

∑
s∈[t]ms + 1.

Throughout, we identify
∏
s∈[t] Rds with Rd, and similarly

∏
s∈[t] Rms with Rm. Namely, we

have (c1, . . . , ct) = (c1,1, . . . , c1,d1 , c2,1, . . . , c2,d2 , . . . , ct,1, . . . , ct,dt). As in Section 3.2, our vertex
labeling enables us to consider that Aω :

∏
s∈[t][ns]→

∏
s∈[r][ns] for a generic ω ∈ Rd.

Lemma 4.4. For any generic ω := (ω1, . . . ,ωt) ∈ Rd, we have

Aω(i1, . . . , it) = (i1, . . . , ir−1,Aωr (ir), ir+1 . . . , it),

where r ∈ [t] is such that τωr (ir) = max {τωs(is) | s ∈ [t]}.
Proof. The improving neighbors of (i1, . . . , it) in P1 × · · · × Pt are of the form (i1, . . . , js, . . . , it)
for some s ∈ [t] and some improving neighbor js of is in Ps. Moreover,

ρω
(
(i1, . . . , is, . . . it), (i1, . . . , js, . . . , it)

)
= ρωs(is, js).

Thus, for a fixed s ∈ [t], the best improving neighbor (i1, . . . , js, . . . , it) is (i1, . . . ,Aωs(is), . . . , it),
and its slope is τωs(is). Hence, the best improving neighbor is (i1, . . . ,Aωr (ir), . . . , it), for r ∈ [t]
maximizing τωr (ir). �

Lemma 4.5. For any generic ω,ω′ ∈ Rd, if Aω = Aω′ then Aωs = Aω′s for all s ∈ [t].

Proof. From Lemma 4.4, we obtain that

Aω(n1, . . . , ns−1, is, ns+1, . . . , nt) = (n1, . . . , ns−1, Aωs(is), ns+1, . . . , nt).

Hence, Aω indeed determines Aωs for all s ∈ [t]. �

Definition 4.6. Define the product slope map Θ:Rd → Rm by Θ(ω1, . . . ,ωt):=
(
θ1(ω1), . . . , θt(ωt)

)
.
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Lemma 4.7. On each maximal cone of the pivot fan PP,c, the product slope map Θ is linear and
injective.

Proof. If ω and ω′ lie in the same maximal cone of PP,c, then ωs and ω′s lie in the same maximal
cone of PPs,cs

by Lemma 4.5. Hence, Θ is linear injective since each θs is linear injective. �

For a generic ω ∈ Rd, we define πω as the permutation of [m] such that Θ(ω)πω
1
< · · · < Θ(ω)πω

m
.

Lemma 4.8. If the graph of Ps is complete for each s ∈ [t], then for any two generic ω,ω′ ∈ Rd,

we have Aω = Aω′ if and only if πω ≡m1,...,mt

sylv πω′ .

Proof. We assume that πω and πω′ are adjacent permutations, the general case follows by in-
duction on the distance from πω to πω′ . Hence πω = XikY while πω′ = XkiY for some let-
ters 1 ≤ i < k ≤ m and some words X,Y on [m]. Let 1 ≤ r ≤ s ≤ t be such that Mr−1 < i ≤Mr

and Ms−1 < k ≤ Ms, and define i := i − Mr−1 and k := k − Ms−1, so that Θ(ω)i = τωr (i)
and Θ(ω)k = τωs(k). We now distinguish three cases.

Assume first that r < s. As τωr (i) = Θ(ω)i, τ
ωs(k) = Θ(ω)k and τωq (nq) = −∞ for all q ∈ [t],

the fact that Θ(ω)i < Θ(ω)k while Θ(ω′)i > Θ(ω′)k implies by Lemma 4.4 that

Aω(n1, . . . , nr−1, i, nr+1, . . . , ns−1, k, ns+1, . . . , nt)

= (n1, . . . , nr−1, i, nr+1, . . . , ns−1, Aωs(k), ns+1, . . . , nt)

6= (n1, . . . , nr−1, Aωr (i), nr+1, . . . , ns−1, k, ns+1, . . . , nt)

= Aω′(n1, . . . , nr−1, i, nr+1, . . . , ns−1, k, ns+1, . . . , nt).

Assume now that r = s and πωr 6≡sylv π
ω′r . By the proof of Lemma 3.7, we getAωr (i) 6= Aω′r (i).

Hence

Aω(n1, . . . , nr−1, i, nr+1, . . . , nt) = (n1, . . . , nr−1, Aωr (i), nr+1, . . . , nt)

6= (n1, . . . , nr−1, Aω′r (i), nr+1, . . . , nt) = Aω(n1, . . . , nr−1, i, nr+1, . . . , nt)

Assume finally that r = s and πωr ≡sylv π
ω′r . Then for any (i1, . . . , it), the quantities τωq (iq)

and τω
′
q (iq) are maximized for the same q ∈ [t]. Thus

Aω(i1, . . . , it) = (i1, . . . ,Aωq (iq), . . . , it) and Aω′(i1, . . . , it) = (i1, . . . ,Aω′q (iq), . . . , it).

Hence, Aω = Aω′ if and only if Aωq = Aω′q . If q 6= r = s, then Aωq = Aω′q since πωq = πω′q .

If q = r = s, then Aωq = Aω′q by Lemma 3.7 since πωr ≡sylv π
ω′r .

We conclude that Aω = Aω′ ⇐⇒ r = s and πωr ≡sylv π
ω′r ⇐⇒ πω ≡m1,...,mt

sylv πω′ . �

4.3. Pivot fan of a product of simplices. We are now ready to show that the product slope map
sends the pivot fan of ∆m1

× · · · ×∆mt
to the (m1, . . . ,mt)-sylvester fan Lm1,...,mt

, which refines
Conjecture 1.1.

Theorem 4.9. For any full dimensional simplices ∆1 ⊂ Rm1 , . . . ,∆t ⊂ Rmt and any generic
direction c ∈ Rm1+···+mt , the product slope map Θ is a piecewise linear isomorphism from the
pivot fan P∆1×···×∆t,c to the (m1, . . . ,mt)-sylvester fan Lm1,...,mt

.

Proof. Same argument as in the proof of Theorem 3.10, using Lemma 4.7 instead of Lemma 3.9
and Lemma 4.8 instead of Lemma 3.7. �

Corollary 4.10. For any full dimensional simplices ∆1 ⊂ Rm1 , . . . ,∆t ⊂ Rmt and any generic
direction c ∈ Rm1+···+mt , the product slope map Θ sends the pivot fan of ∆1 × · · · × ∆t to the
normal fan of

• the t-permutahedron when m1 = · · · = mt = 1,
• the m1-associahedron when t = 1,
• the (m1,m2)-constrainahedron when t = 2, see [BP22],
• the (t− 1,mt)-multiplihedron when m1 = · · · = mt−1 = 1, see [CP22, Sect. 3.2].
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Note that the first three are proved in [BLS24], while only the vertex count of the last one is
proved in [BLS24].

Remark 4.11. Similar to Remark 3.11, the product slope map induces a bijection from the arbores-
cences {Aω | ω ∈ Rm} on (∆1 × · · · × ∆t, c) to the (m1, . . . ,mt)-cotrees in the sense of [CP22,
Sect. 4] (note that [CP22, Sect. 4] only presents (m,n)-cotrees, but the definition extends straight-
forward to tuples).
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