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Abstract. For an n-tuple s of non-negative integers, the s-weak order is a lattice structure
on s-trees, generalizing the weak order on permutations. We first describe the join irreducible

elements, the canonical join representations, and the forcing order of the s-weak order in terms

of combinatorial objects, generalizing the arcs, the non-crossing arc diagrams, and the subarc
order for the weak order. We then extend the theory of shards and shard polytopes to construct

geometric realizations of the s-weak order and all its lattice quotients as polyhedral complexes,

generalizing the quotient fans and quotientopes of the weak order.
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Introduction

The structure of permutations and associations of an n-element set is a classical topic of algebraic
and geometric combinatorics. In combinatorics, it is encoded by the Cayley graph of permutations
under simple transpositions and the rotation graph on binary trees. In lattice theory, it materializes
in the lattice morphism from the weak order on permutations to the Tamari lattice on binary trees.
In polyhedral geometry, it appears in the braid arrangement and the sylvester fan, and their polar
permutahedron and associahedron. See [PSZ23] for a recent survey on these connections and their
influence in mathematics.

This prototype has motivated the study of all lattice congruences of the weak order, pioneered
by N. Reading [Rea04]. Combinatorially, he provided an elegant combinatorial model for the
lattice theory of the weak order in [Rea15]. Namely, the join irreducible permutations are en-
coded as certain arcs wiggling around the vertical axis, the canonical join representations of the
permutations are encoded by non-crossing arc diagrams, and the forcing order on join irreducible
permutations is encoded by the subarc order on these arcs. Geometrically, he showed in [Rea05]
that coarsening the braid fan according to the equivalence classes of any congruence of the weak
order always yields a complete polyhedral fan. These quotient fans were shown to be normal fans
of so-called quotientopes by V. Pilaud and F. Santos [PS19]. Later, A. Padrol, V. Pilaud and
J. Ritter [PPR23] revisited the problem using the theory of shard polytopes, a family of polytopes
indexed by the arcs (or, equivalently, by the join irreducible permutations).

C. Ceballos and V. Pons introduced in [CP22, CP23] the s-weak order on s-trees for an n-tuple s
of non-negative integers, generalizing the classical weak order (which occurs for s = (1, . . . , 1)). An
s-tree is a rooted plane tree on [n], where the node i has si + 1 children which are all either leaves
or nodes j > i (note that we have changed the conventions of [CP22] to make inductive arguments
more transparent). The order among these s-trees is defined by inequalities between the inversion
numbers in s-trees, generalizing the definition of the weak order by inclusion of inversion sets
of permutations. See Figure 1 (left). They proved in [CP22, Sect. 1] that the s-weak order is a
lattice, described its meet and join operations, and established lattice properties of the s-weak
order, in particular congruence uniformity. They also introduced in [CP22, Sect. 2] the s-Tamari
lattice, a sublattice of the s-weak order (and also a lattice quotient of the s-weak order when s
contains no 0), which is isomorphic to the ν-Tamari lattice of [PRV17, CPS19] (for well-chosen s
and ν). They conjectured in [CP23, Conj 3.1.2] that the Hasse diagram of the s-weak order can
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Figure 1. The (1, 2, 0)-weak order (left) and the (1, 2, 0)-foam (right).
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be realized as an orientation of the skeleton of a polyhedral subdivision of the permutahedron,
in the same spirit C. Ceballos, A. Padrol and C. Sarmiento realized the ν-Tamari lattice as an
orientation of the skeleton of a polyhedral complex in [CPS19]. In the situation when s contains
no 0, this conjecture was settled by R. González D’Léon, A. Morales, E. Philippe, D. Tamayo
Jiménez, and M. Yip in [DMP+23] using the theory of flow polytopes. In this paper, we study the
s-weak order combining perspectives from combinatorics, lattice theory and polyhedral geometry.

Combinatorics. Our first contribution is an algorithmic perspective on the s-weak order. We con-
sider a natural insertion algorithm from Rn to s-trees, generalizing the insertion of a permutation
in an increasing binary tree. The ambiguities of this algorithm on certain non-generic points of Rn
forces us to define s-bushes as certain degenerations of s-trees, generalizing ordered set partitions.
We then define the s-foam Fs as the set of fibers of our insertion algorithm in s-bushes, gener-
alizing the braid fan. See Figure 1 (right). The oriented dual graph of this polyhedral complex
gives an alternative definition for the s-weak order, equivalent to the original definition of [CP22].
Exploiting the properties of this insertion algorithm enables us to prove our first battery of results.

Theorem A. The insertion algorithm in s-bushes knows the s-weak order and the facial s-weak order:

(i) The s-foam Fs is a complete polyhedral complex (Proposition 19), whose oriented dual graph
is isomorphic to the Hasse diagram of the s-weak order (Corollary 34).

(ii) Decomposing each insertion step yields a natural construction of the s-weak order by interval
doublings (Proposition 38), thus recovering the result of [CP22, Thms. 1.21 & 1.40] that the
s-weak order is a congruence uniform lattice.

(iii) Considering all faces of the s-foam, there is a natural facial s-weak order on s-bushes (Def-
inition 41), which is also constructible by interval doublings (Proposition 43).

Lattice theory. Our second battery of results generalizes the combinatorial description of [Rea15]
for the lattice theory of the weak order in terms of arcs, non-crossing arc diagrams, and subarcs.
We define an s-arc as an arc of [Rea15] together with an integer bounded by s. We then extend to
all s-arcs the combinatorial notions of crossings and of subarcs to obtain the following statement.

Theorem B. The s-arcs combinatorially encode the lattice theory of the s-weak order:

(i) The join irreducible s-trees are in bijection with the s-arcs (Proposition 51).
(ii) The s-trees are in bijection with the non-crossing s-arc diagrams (Proposition 59), and this

bijection encodes the canonical join representations in the s-weak order (Proposition 61).
(iii) The forcing order in the s-weak order is isomorphic to the subarc order on s-arcs (Theo-

rem 72), so that the congruence lattice of the s-weak order is isomorphic to the distributive
lattice of subsets of s-arcs closed under subarcs (Corollary 74).

We exploit Theorem B (iii) to define relevant congruences of the s-weak order and their quotients,
generalizing the Tamari lattice [Tam51], the Cambrian lattices [Rea06, LP18, CP17], the permutree
lattices [PP18], and the simple congruences of the weak order [HM21, DIR+23, BNP23]. This opens
appealing conjectures about the combinatorics of these congruences (Conjectures 75, 76 and 77).

Polyhedral geometry. We then construct geometric realizations of the s-weak order and all its
lattice quotients. Namely, we first use the s-foam Fs to construct polyhedral realizations of all
lattice quotients of the s-weak order, generalizing the quotient fans for the quotients of the weak
order. See Figure 2 (middle). This gives our third battery of results.

Theorem C. All lattice quotients of the s-weak order are realized by coarsenings of the s-foam:

(i) For any congruence ≡ of the s-weak order, glueing together the maximal cells of the s-foam Fs
corresponding to s-trees in the same congruence class of ≡ defines a complete polyhedral
complex F≡ (Proposition 85).

(ii) The union of the walls of the quotient foam F≡ coincides with the union of the s-shards of the
s-arcs corresponding to ≡ (Proposition 84), where the s-shards are affine cones associated
to the s-arcs, generalizing the shards of [Rea03].

(iii) The oriented dual graph of the quotient foam F≡ is isomorphic to the Hasse diagram of the
quotient of the s-weak order by ≡ (Proposition 86).
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Figure 2. The congruence lattice of the (1, 2, 0)-weak order, where each congruence ≡ is replaced
by its s-arc down set (left), its quotient foam F≡ (middle) and its quotientoplex Q≡ (right).

We then extend the theory of shard polytopes and quotientopes [PS19, PPR23]. We define
the shardoplex Sα associated to any s-arc α, a polyhedral complex whose geometry is tuned to
take care of the s-shard of α. We then use Minkowski sums of shardoplexes to construct the
quotientoplex Q≡ of any congruence ≡ of the s-weak order, a polyhedral complex realizing the
quotient of the s-weak order by ≡. See Figure 2 (right). This yields our fourth battery of results.

Theorem D. All lattice quotients of the s-weak order are realized as Minkowski sums of shardoplexes:

(i) For each s-arc α, the union of the walls of the dual polyhedral complex of the shardoplex Sα
contains the s-shard Σα and is contained in the s-shards of the subarcs of α (Proposition 105).

(ii) For any congruence ≡ of the s-weak order, the Hasse diagram of the quotient of the s-weak
order by ≡ is isomorphic to the oriented skeleton of the quotientoplex Q≡ (Proposition 93).

(iii) The quotientoplex Q≡ is a polytopal subdivision of a quotientope Q≡̃ for the congruence ≡̃ of
the weak order obtained by projecting ≡ (Proposition 94).

We note that the proofs of Theorem D are mainly based on tropical geometry [Jos21] (in fact,
tropical geometry is convenient even to define the notion of dual polyhedral complex).

Applying Theorem D to the trivial congruence provides a definitive answer to the geometric
conjecture of C. Ceballos and V. Pons [CP23, Conj. 3.1.2] (which was already partially answered
using flow polytopes and tropical geometry in [DMP+23], in the situation when s contains no 0).

Corollary. For any tuple s of non-negative integers, the Hasse diagram of the s-weak order is
isomorphic to the oriented skeleton of a polytopal subdivision of a graphical zonotope (Corollary 96).

Plan. The paper is organized as follows. Section 1 describes s-bushes, the insertion algorithm, and
the s-foam. Section 2 defines the s-weak order and s-facial weak order and shows that they are
constructible by interval doublings. Section 3 introduces s-arcs and non-crossing s-arc diagrams,
and describes canonical representations in the s-weak order. Section 4 describes the forcing order
of the s-weak order in terms of subarcs, and introduces a few relevant congruences of the s-weak
order. Section 5 constructs the quotient foams F≡, shardoplexes Sα, and quotientoplexes Q≡.
Section 6 uses tropical geometry to prove the results of Section 5. Each section starts with a
recollection of definitions and results on the weak order to be extended to the s-weak order.
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1. Insertion algorithm in s-bushes

In this section, we describe a family of insertion algorithms whose fibers define polyhedral parti-
tions of Rn. We use the notations [n] := {1, . . . , n}, Jn] := {0, . . . , n} and ]i, j[ := {i+ 1, . . . , j − 1}
throughout the paper. For a property P , we denote 1P := 1 if P and 1P := 0 otherwise.

1.1. Recollections 1: Insertion algorithm in increasing binary trees. We first recall the classical
insertion algorithm in increasing binary trees. An increasing binary tree is a rooted plane binary
tree whose nodes are labeled by integers such that each node is strictly smaller than all its children.
It is called standard if the nodes are bijectively labeled by [n]. The increasing binary trees are in
bijection with words on integers with no repeated letter:

• we associate a word to any increasing binary tree by reading its node labels in inorder,
• conversely, we associate an increasing binary tree B(w) to any word w inductively:

– if w = ∅ is the empty word, then B(∅) is the empty binary tree, with just a root, no
internal node, and a single leaf,

– otherwise w = urv where r is the minimal letter of w, and B(w) is the binary tree
with root r, left subtree B(u) and right subtree B(v).

In particular, the standard increasing binary trees are in bijection with permutations.
Consider now a point x := (x1, . . . , xn) ∈ Rn. If x is generic (no repeated entry), we can consider

the permutation σ of [n] that sorts x, that is, such that xσ(1) < · · · < xσ(n). Then we denote
by B(x) the increasing binary tree obtained by the insertion of σ. In other words, the root of B(x)
is 1, and its left subtree contains the positions j ∈ [2, n] such that x1 > xj while its right subtree
contains the positions j ∈ [2, n] such that x1 < xj .

The fibers of this insertion are the (open) regions of the braid arrangement, defined by the
hyperplanes {x ∈ Rn | xi = xj} for all 1 ≤ i < j ≤ n. See Figure 3 for illustrations when n = 3
and n = 4. We call braid fan the complete simplicial fan defined by the braid arrangement. It has a
cone Cµ for each ordered set partition µ of [n], given by the points x ∈ Rn such that xi ≤ xj if and
only if the part of µ containing i appears weakly before the part of µ containing j (hence xi = xj
if i and j belong to the same part of µ). In particular, it has a region for each permutation
of [n], and two regions are adjacent if the corresponding permutations differ by the transposition
of adjacent entries (meaning at two consecutive positions).
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Figure 3. The braid fan for n = 3 with cones labeled by ordered set partitions and bushes (left)
and for n = 4 with maximal cones labeled by permutations and increasing binary trees (right).
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In this paper, it will be impossible to work with permutations and ordered set partitions (except
if we accept to restrict the generality to strict compositions s). We thus describe all the combina-
torics of the braid fan with treelike structures. For this, we associate to each x ∈ Rn (generic or
not) a rooted plane graph B(x) that we call a bush. It is constructed inductively as follows:

• start with the tree with just a root, no internal node, and a single leaf,
• at step j, attach a new node j with 2 leaves

– either to the leaf between the two nodes u and v such that xu < xj < xv,
– or to the two leaves surrounding the node w with xj = xw.

This is illustrated in Figure 3 (left). We naturally orient a bush increasingly, from its root to its
leaves. The fiber FB of a bush B is the cone defined by the inequalities xu < xj < xv and the
equalities xj = xw discovered along the insertion (an alternative description will be discussed in
Section 1.4). The cones of the braid fan are precisely the closures of the fibers of this insertion.

1.2. s-bushes, s-trees, and s-trunks. Fix an n-tuple s := (s1, . . . , sn) with si ∈ N for any i ∈ [n]
(note that we allow si = 0). For any j ∈ Jn], we define the j-tuple s≤j := (s1, . . . , sj) and the
numbers Sj := 1 +

∑
i≤j si and Tj := 2− 1s1=···=sj=0 +

∑
i≤j max(0, si − 1).

We now define a family of plane rooted labeled graphs which naturally appear in the s-insertion
algorithm of Section 1.3. See Figures 4 and 5 for illustrations.

Definition 1. An s-bush is a plane graph with a root, n internal nodes bijectively labeled by [n],
and some leaves, defined inductively as follows:

• start with the rooted graph with just a root, no internal node, and a single leaf,
• at step j, attach either to a leaf or to two consecutive leaves, a new node j with sj + 1

leaves (except that if sj = 0 and j is attached to two leaves, then j gets itself two leaves).

Remark 2. A few observations on Definition 1:

(1) For j ∈ Jn], deleting all nodes > j in an s-bush B gives an s≤j-bush B≤j .
(2) An s-bush is naturally oriented from its root to its leaves, so that all its edges are increasing.

We draw bushes growing up, with their roots on the bottom and their leaves on top, and
such that the node j is at level j. See Figures 4 and 5.

(3) For an s-bush B and 1 ≤ i < j ≤ n, we say that i is an ancestor of j in B and that j is a
descendant of i in B if there is an increasing path from i to j in B (we consider i to be an
ancestor and a descendant of itself).

(4) The rank r(B) of an s-bush is its number of indegree 1 nodes. We call s-tree (resp. s-trunk)
an s-bush of maximal rank n (resp. minimal rank min {i ∈ [n] | si 6= 0} ∪ {n}). Note that
the s-trees are precisely the rooted plane trees with internal nodes bijectively labeled by [n]
such that the node j has sj + 1 children which are either leaves or nodes larger than j.

(5) An s-bush where X ⊆ [n] is the set of indegree 2 nodes has Sn−# {x ∈ X | sx 6= 0} leaves.
There are

∏
j∈[n]

(
Sj−1 −# {x ∈ X | x < j and sx 6= 0} − 1j∈X

)
such s-bushes. Hence,

• an s-tree has Sn leaves, and there are
∏
j∈[n] Sj−1 s-trees,

• an s-trunk has Tn leaves, and there are
∏
j∈[n] max(1, Tj−1 − 1) s-trunks.

(6) In fact, denoting by

Γs :=
∏
j∈[n]

[Sj−1] and Λs :=
∏
j∈[n]

[max(1, Tj−1 − 1)],

we can associate to each p ∈ Γs the s-tree Sp obtained by attaching node j to leaf pj , and
to each q ∈ Λs the s-trunk Tq obtained by attaching node j to leaves qj and qj + 1 (or to
the only leaf if there is only one).

Remark 3. Our s-trees are essentially the s-decreasing trees of [CP22]. We have chosen to slightly
change their conventions to simplify our presentation, in particular to allow for more natural
inductive arguments. To change conventions, one just needs to reverse s and relabel each node j
by n − j. We will see that our s-bushes provide alternative combinatorial models to the pure
invervals of [CP23], much more adapted to geometry. Finally, we note that our insertion algorithm,
while never made explicit in [CP22, CP23], is somewhat underlying in their work [Pon24].
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Figure 4. Flow of the s-insertion algorithm to compute B(s,x) for s = (1, 2, 2, 0, 2, 2, 1, 2, 1)
and x = (5, 6, 3, 5, 4, 4, 5.5, 1.5, .25). We indicate each gap label (u, ρ) by writing ρ in red above
the node u. The equalities or inequalities that led to this s-tree are indicated at each step of the
algorithm.

1.3. s-insertion algorithm. We now describe an iterative insertion algorithm that sends a point x
in Rn to an s-bush B(s,x). See Figure 4. To run the algorithm, we actually maintain, in each
gap between two consecutive leaves of our bush, a label of the form (u, ρ), with u ∈ [n] and ρ ∈ N.
We also include the label (0, 0) before the first leaf and the label (n+ 1, 0) after the last leaf.

Definition 4. For each x ∈ Rn, we construct an s-bush B(s,x) inductively as follows:

• start with the rooted graph with just a root, no internal node, and a single leaf,
• at step j,

– attach a new node j either to the leaf between two gap labels (u, ρ) and (v, σ) such
that xu − ρ < xj < xv − σ, or to the two leaves around a gap label (w, τ) such
that xj = xw − τ , (with the convention that x0 = −∞ and xn+1 = +∞),

– attach sj + 1 leaves to the node j, with gaps labeled by (j, sj − 1), . . . , (j, 1), (j, 0)
(except, if sj = 0 and j has indegree 2, then we attach 2 leaves with gap label (j, 0)),

– add max(0, sj − 1) to the second entry of all gap labels on the left of j.

This algorithm is illustrated in Figure 4.

Remark 5. A few observations on Definition 4:

(1) The crucial invariant of the algorithm is that the values xu − ρ for the gap labels (u, ρ)
are always strictly increasing from left to right. This invariant is maintained by the shifts
performed on gap labels at each step. It implies that the attaching step is well-defined.

(2) The gap labels only depend on the s-bush B(s,x), not on the exact values of x.
(3) For j ∈ Jn], deleting all nodes > j in B(s,x) gives B(s≤j ,x≤j).
(4) If x is generic enough (e.g. if xi − xj /∈ N for 1 ≤ i < j ≤ n), then B(s,x) is an s-tree.
(5) When s = 1n and x is generic, this is the classical insertion in an increasing binary tree.

1.4. s-insertion fibers. We now consider the fibers of the s-insertion algorithm of Section 1.3.

Definition 6. For an s-bush B, the fiber of B is FB := {x ∈ Rn | B(s,x) = B}, and the closed fiber
of B is the closure F̄B of FB.

For instance, the fiber FB of the s-bush on the right of Figure 4 is the set of points x ∈ R9 that
satisfy the indicated equalities and inequalities, and the closed fiber F̄B is obtained by replacing
the strict inequalities by large inequalities. We thus get the following observation.

Lemma 7. The closed fiber F̄B of any s-bush B is a polyhedron.

Proof. The fiber FB is a (relatively open) polyhedron, defined by the inequalities xu−ρ<xj<xv−σ
and the equalities xj=xw − τ from Definition 4. Hence, the closed fiber F̄B is a polyhedron. �
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We now aim at an irredundant equality and inequality description of the closed fiber F̄B of an
s-bush B. It is convenient to introduce the following definitions, illustrated in Example 13.

Definition 8. A hole of an s-bush B is a pair (i, j) of nodes such that j has two incoming edges
whose greatest common ancestor is i.

Definition 9. The left (resp. right) zigzag of a node j of an s-bush B is the increasing path Z that
follows the leftmost (resp. rightmost) increasing path of B starting at j until it reaches either a
leaf, or a node k with two distinct parents, in which case it continues with the right (resp. left)
zigzag of k. The nodes where Z exits through the leftmost (resp. rightmost) edge are the zig
(resp. zag) nodes of Z.

Definition 10. An ascent (resp. descent) of an s-bush B is a pair (i, j) of nodes of B such that

• j has indegree 1,
• i is the greatest ancestor of j such that the leftmost (resp. rightmost) increasing path from i

to j in B takes the leftmost (resp. rightmost) outgoing edge at each node, except at node i,
• either sj = 0 or all nodes along the left (resp. right) zigzag of j have indegree 2.

Remark 11. For s-trees, our definition of ascents and descents specializes to [CP22, Def. 1.24].
Namely, (i, j) is an ascent (resp. descent) of an s-tree T if

• i is an ancestor of j and the increasing path from i to j in T takes the leftmost (resp. right-
most) outgoing edge at each node, except at node i,

• either sj = 0 or the leftmost (resp. rightmost) edge of j is a leaf.

Definition 12. Consider an s-bush B and 1 ≤ i < j ≤ n such that i is an ancestor of j. Let π
be the leftmost (resp. rightmost) increasing path in B from i to j, and arriving through the right
(resp. left) incoming edge of j if (i, j) is a hole of B. We define µ(B, i, j) (resp. ν(B, i, j)) as
r − 1 +

∑
k∈K max(0, sk − 1) where r is the number of children of i weakly (resp. strictly) to the

right of π, and K is the set of nodes i < k < j and weakly (resp. strictly) to the right of π. Note
that µ(B, i, j) ≤ ν(B, i, j), and µ(B, i, j) = ν(B, i, j) if (i, j) is a hole of B.

Example 13. On the rightmost s-bush B of Figure 4,

• the holes are (2, 4), (1, 5), and (5, 6),
• the left zigzag of 2 is 2→ 4→ 5→ 6 and the right zigzag of 3 is 3→ 5→ 8→ 9,
• the ascents are (1, 2), (4, 7), (3, 9) and the descents are (2, 7), (5, 8) and (8, 9),
• µ(B, 1, 5) = ν(B, 1, 5) = 1, µ(B, 3, 9) = 3, ν(B, 2, 7) = 0,
• the closed fiber F̄B is the polyhedron defined by the equalities x2 − x4 = 1, x1 − x5 = 1,
x5 − x6 = 0 and the inequalities x1 − x2 ≤ 0, x4 − x7 ≤ 0, x3 − x9 ≤ 3, x2 − x7 ≥ 0,
x5 − x8 ≥ 2, and x8 − x9 ≥ 1.

Proposition 14. The closed fiber F̄B of an s-bush B is irredundantly described by

• an equality xi − xj = µ(B, i, j) for each hole (i, j) of B,
• an inequality xi − xj ≤ µ(B, i, j) for each ascent (i, j) of B,
• an inequality xi − xj ≥ ν(B, i, j) for each descent (i, j) of B.

Proof. Fix j ∈ [n] and consider the s≤j−1-bush B≤j−1 with gaps labeled according to the inser-
tion B(s≤j−1,x≤j−1) of any x ∈ FB. Observe (by induction on j) that, if (i, σ) is the gap label
immediately to the left (resp. right) of a leaf ` of B≤j−1, then

(a) The leftmost (resp. rightmost) increasing path from i to ` takes the leftmost (resp. rightmost)
outgoing edge at each node, except at i. We say that i is the left (resp. right) ancestor of `.

(b) σ = r − 1 +
∑
k∈K max(0, sk − 1) where r is the number of children of i and K the set of

nodes i < k < j, all located weakly (resp. strictly) to the right of the leftmost (resp. rightmost)
increasing path in B from i to `.

Assume now that j is attached to the two leaves `, `′ around a gap label (w, τ) of B≤j−1. Then w
is the greatest common ancestor of ` and `′ in B (by (a)), and τ = µ(B, w, j) = ν(B, w, j) (by (b)).
Hence, the corresponding equation xj = xw − τ of F̄B is indeed of the form xi− xj = µ(B, i, j) for
a hole (i, j) of B.
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Assume now that j is attached to a leaf ` between two gap labels (u, ρ) and (v, σ) of B≤j−1.
Then u is the left ancestor of j (by (a)), and ρ = µ(B, u, j) (by (b)). Moreover, if sj 6= 0 and h lies
on the left zigzag Z of j, then xu − µ(B, u, j) − ζ ≤ xh ≤ xj − ζ, with ζ =

∑
k∈K max(0, sk − 1)

where K is the set of nodes j ≤ k < h on the right of Z, including the zig nodes of Z, but not
the zag nodes of Z. If the node h has indegree 1, then both inequalities are strict on FB, so
that the inequality xu − µ(B, u, j) ≤ xj is actually redundant. The same arguments hold for the
inequality xj ≤ xv − ν(B, v, j). We conclude that all facet defining inequalities of F̄B are of the
form xi − xj ≤ µ(B, i, j) for an ascent (i, j) of B, or xi − xj ≥ ν(B, i, j) for a descent (i, j) of B.

Finally, we need to prove that our system of equalities and inequalities is irredundant. The
equalities are irredundant because they are echeloned. For the inequalities, we choose for instance
an ascent (i, j) of B, and we prove that there is x ∈ F̄B for which the inequality xi−xj ≤ µ(B, i, j)
is the only tight inequality in our system. For this, start with y in the interior of FB (so that
all our inequalities are strict), and let δ = yi − yj − µ(B, i, j). Let Z be the left zigzag of j, and
J be the set of zig nodes of Z. Consider the point x :=y + δ

∑
j∈J ej . As i /∈ J while j ∈ J ,

we have xi − xj = yi − yj − δ = µ(B, i, j). Finally, we let the reader check that x satisfies the
equalities given by all holes of B and strictly satisfies all inequalities given by the other ascents
and descents of B. �

Corollary 15. The dimension of F̄B is the rank of B.

Proof. By Proposition 14, the codimension of F̄B is the number of indegree 2 nodes of B. Hence
the dimension is the number of indegree 1 nodes of B, thus the rank of B. �

Example 16. Recall from Remark 2 (6) that for q ∈ Λs, we denote by Tq the s-trunk obtained by
attaching node i to leaves qi and qi+1 (or to the only leaf if there is only one). Its insertion fiber FTq

is the affine subspace of dimension n+Tn−Sn, defined by the equations x1−xj = µ(Tq, 1, j) = qj−1
for all j ∈ [n] such that Tj−1 ≥ 2. Hence, the insertion fibers of the s-trunks form a grid in the
basis x1 − xj . This is visible in Figure 5.

1.5. s-foam. We now consider the collection of all s-insertion fibers.

Definition 17. The s-foam is the collection Fs of closed fibers F̄B of all s-bushes B.

Some s-foams are illustrated in Figure 5. As B(s,x+ λ
∑
i∈[n] ei) = B(s,x) for any λ ∈ R, all

fibers contain the line R
∑
i∈[n] ei in their lineality space, hence we intersect the s-foams with the

hyperplane
{
x ∈ Rn

∣∣ ∑
i∈[n] xi = 0

}
in all illustrations. We need the following property of the

s-foam.

Proposition 18. Any face of a closed fiber F̄B is a closed fiber F̄B′ .

Proof. Consider a facet G of a closed fiber F̄B. We will prove that G = F̄B′ where B′ := B(s, g)
for an arbitrary g in the relative interior of G. This shows the statement by induction on the
dimension (since any face of F̄B is a face of a facet of F̄B).

Let H be the affine span of F̄B, let H′ be the affine span of G, and let H+ be the half-space
of H defined by H′ and containing F̄B (this is well-defined since G is a facet of F̄B). Pick a
generic x′ ∈ H′ and then some x ∈ H+ close enough to x′ so that x′i < x′j − σ implies xi < xj − σ
for any i, j ∈ [n] and 0 ≤ σ ≤ Sn (this is possible as we have finitely many open conditions).

For j ∈ [n], consider the s≤j-bushes Bj := B(s≤j ,x≤j) and B′j := B(s≤j ,x
′
≤j). Let i be the mini-

mal index such that Bi 6= B′i. Hence, there is a gap label (u, ρ) in Bi−1 = B′i−1 such that xi 6= xu − ρ
while x′i = x′u − ρ. Assume for instance xi < xu − ρ (the other case is similar).

We claim that we can reconstruct the sequence B1, . . . ,Bn from the sequence B′1, . . . ,B
′
n and

vice versa. To see it, we prove by induction that, for any j > i,

(a) the gap labels in Bj are precisely the gap labels in B′j , except that one gap label of the
form (u, ρ′) in Bj may disappear in B′j ,

(b) if a gap label (u, ρ′) of Bj does not appear in B′j , then the gap label (v, σ) immediately to the
left of (u, ρ′) in Bj is such that x′v − σ = x′u − ρ′,

(c) the position of j + 1 in Bj+1 determines the position of j + 1 in B′j+1 and vice versa.
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Figure 5. The s-foam for s = (1, 2, 0) (left) and s = (2, 1, 0) (right).

Note that (a) and (b) hold for j = i. Indeed, the gap (u, ρ) of Bi has disappeared in B′i, the gap
immediately to its left is (i, 0), and we have x′i − 0 = x′u − ρ. Assume now that (a) and (b) hold
for some j > i. For any gap label (w, τ) common to Bj and B′j , we have

• xj+1 = xw − τ ⇐⇒ x′j+1 = x′w − τ . Indeed, let K be the hyperplane of equa-
tion yj+1 = yw − τ . If xj+1 = xw − τ , then H ⊆ K, so that x′j+1 = x′w − τ . Conversely,
if x′j+1 = x′w − τ , then H′ ⊆ K, so that H ⊆ K (otherwise, H′ would have codimension at
least 2 in H, since x′ is generic in H′), hence xj+1 = xw − τ .

• xj+1 < xw − τ ⇐⇒ x′j+1 < x′w − τ by our assumption that x is close enough to x′.

Assume now that some gap label (u, ρ′) in Bj disappeared in B′j , and let (v, σ) be the gap label
immediately to its left in Bj , so that x′v−σ = x′u−ρ′ by (b). Assume that xv−σ ≤ xj+1 ≤ xu−ρ′.
As x is close enough to x′, we also have x′v − σ ≤ x′j+1 ≤ x′u − ρ′. As x′v − σ = x′u − ρ′,
we obtain that x′j+1 = x′v − σ. Since (v, σ) is a common gap label in Bj and B′j , this implies
that xv − σ = xu − ρ′. We thus obtain that j + 1 cannot be attached only to the leaf between
the gap labels (v, σ) and (u, ρ′), nor to the two leaves around the gap label (u, ρ′). We conclude
that the position of j + 1 in Bj+1 determines the position of j + 1 in B′j+1 and vice versa, so
that (c) holds for j. This in turn implies that (a) and (b) hold for j + 1 since we shift a gap
label common to Bj and B′j by the same quantity to obtain the corresponding gap label common
to Bj+1 and B′j+1.

We now consider the facet G of F̄B. We pick an arbitrary g in the relative interior of G, and
choose f close enough to g such that f ∈ FB. We prove that G = F̄B′ where B′ := B(s, g).

Observe first that, for any x′ in the interior of G, we can choose x close enough to x′ such
that x ∈ FB. As we proved that B(s,x′) is determined by B(s,x) = B = B(s,f), we obtain
that B(s,x′) = B(s, g) = B′. Hence, the interior of G is contained in FB′ .

Conversely, consider any x′ in FB′ , and let x in H+ be close enough to x′. Since B(s,x) is
determined by B(s,x′) = B′ = B(s, g), we obtain that B(s,x) = B(s,f) = B. Hence, x′ lies on
the boundary of F̄B. We conclude that the interior of FB′ is contained in G. �

Proposition 19. The s-foam Fs is a complete polyhedral complex (i.e. a set of polyhedra closed
under faces, pairwise intersecting along faces, and whose union completely covers Rn).

Proof. We already observed that the closed fibers are polyhedra (Lemma 7), and that their faces
are closed fibers (Proposition 18). The fibers (and thus their closures) cover Rn as the insertion
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Figure 6. The left stitching and incision of Definitions 20 and 21 (left) and the left and right
rotations of Definition 23.

algorithm is defined on Rn. We thus just need to prove that the intersection X of two closed
fibers F̄B and F̄B′ is a face of both. For this, consider x ∈ X, and let B′′ := B(s,x). Since x ∈ F̄B,
Proposition 18 implies that F̄B′′ is a face of F̄B (possibly F̄B itself). We thus obtain that F̄B′′ is
contained in X. Hence, X is a union of faces of F̄B. As it is convex, it is actually a face of F̄B

(possibly F̄B itself). By symmetry, it is also a face of F̄B′ (possibly F̄B′ itself). �

1.6. s-rotations. We now describe the dual graph of the s-foam Fs. For this, we describe two
operations, which are obviously inverse to each other, as illustrated in Figure 6 (left).

Definition 20. Let (i, j) be an ascent (resp. descent) in an s-tree T. Let p → q be the last
edge whose source is smaller than j along the rightmost (resp. leftmost) increasing path leaving i
through the edge immediately to the left (resp. right) of the path from i to j (note that q might
be a leaf). The stitching of (i, j) in T is the s-bush B obtained from T by replacing the edge p→ q
by p→ j and the leftmost (resp. rightmost) outgoing edge of j (which is a leaf) by j → q.

Definition 21. Consider an s-bush B with a single hole (i, j). Let p → j and j → q denote the
leftmost (resp. rightmost) incoming and outgoing edges at j (note that q can be a leaf). The left
(resp. right) incision of B is the s-tree T obtained from B by replacing the edge p → j by p → q
and the edge j → q by a leaf at j.

Proposition 22. If (i, j) is an ascent (resp. descent) in an s-tree T, and B is the stitching of (i, j)
in T, then F̄B is the facet of F̄T corresponding to (i, j). If an s-bush B has a single hole, and T
and T′ are the left and right incisions of B, then F̄T and F̄T′ are the two facets of Fs containing F̄B.

Proof. If B is the stitching of an ascent (resp. descent) (i, j) in an s-tree T, then (i, j) is the
only hole of B, so that F̄B satisfies the single equation xi − xj = µ(B, i, j) = ν(B, i, j), and we
have µ(B, i, j) = µ(T, i, j) (resp. ν(B, i, j) = ν(T, i, j)). Moreover, as in the proof of Proposition 18,
an immediate induction shows that, for any k ≥ j, the gap labels in T≤k and B≤k are identical,
except that a gap label (i, ρ) of T disappears in B. Hence, we obtain that F̄B satisfies the same
inequalities as F̄T. We conclude that F̄B is the facet of F̄T defined by xi − xj = µ(B, i, j).

Conversely, if an s-bush B has a single hole, then F̄B is a codimension 1 polyhedron of the
s-foam Fs. As Fs is a complete polyhedral complex, F̄B is contained in precisely two full-
dimensional polyhedra of Fs. Since the stitching and incision operations are clearly inverse to
each other, the first part of the statement implies that F̄T and F̄T′ are the two facets of Fs
containing F̄B. �

We now connect incisions and stitchings with the following operations, adapted from the de-
scription of [CP22], and illustrated in Figure 6 (right).

Definition 23 ([CP22, Def. 1.30]). Consider an ascent (resp. descent) (i, j) in an s-tree T. Let r be
the parent of j (note that r might be i). Let j → s be the rightmost (resp. leftmost) outgoing edge



12 EVA PHILIPPE AND VINCENT PILAUD

of j (note that s might be a leaf). Let p → q be last edge whose source is smaller than j along
the rightmost (resp. leftmost) increasing path leaving i through the edge immediately to the left
(resp. right) of the path from i to j (note that q might be a leaf). The left (resp. right) rotation
of (i, j) transforms T by replacing the edges r → j, j → s and p→ q by new edges r → s, j → q
and p→ j respectively.

Lemma 24. A left (resp. right) rotation is the composition of an ascent (resp. descent) stitching
of Definition 20 with a right (resp. left) incision of Definition 21.

Corollary 25. The dual graph of the s-foam is the rotation graph on s-trees. Its incidence graph
is the incision (or equivalently stitching) graph.

Remark 26. More generally, given an s-bush B, the combinatorial description of the s-bushes B′

such that FB′ is a face of FB is quite technical. Namely, the s-bushes B′ such that FB′ is a facet
of FB are obtained by selecting an ascent or a descent (i, j) of B and performing a technical sewing
process along (i, j).

In contrast, given an s-bush B′, the combinatorial description of which are the s-bushes B such
that FB′ is a face of FB is easier. Let j be an indegree 2 node of B′, and let i → j and j → k
denote the leftmost (resp. rightmost) incoming and outgoing edges at j (note that k can be leaf).
A left (resp. right) incision of B′ at j is an s-bush B obtained as follows:

• replace the edge i→ j by i→ k,
• if the two leftmost (resp. rightmost) outgoing edges of j have a lowest common descen-

dant `, then perform a (left or right) incision at ` and replace the edge j → k by j → `,
• otherwise, replace the edge j → k by a leaf.

Then FB′ is a facet of FB if and only if B is obtained by some incision at an indegree 2 node of B′.
Hence, FB′ is a face of FB if and only if B is obtained by a sequence of incisions in B′. We skip
the proof of this description as we will not need it in the remaining of the paper.

Remark 27. Given an s-bush B′, we denote by T(B′) the set of s-trees T such that FB′ is a face
of FT. In other words, all s-trees obtained by performing left or right incisions at all indegree 2
nodes of B′. We distinguish two particular s-trees of T(B′): the left tree L(B′) obtained by
performing only left incisions, and the right tree R(B′) obtained by performing only right incisions.
In other words, if x′ ∈ FB′ , then L(B′) = B(s,x′ + εω) and L(B′) = B(s,x′− εω) for a sufficiently
small ε > 0 and ω := (1, 2, . . . n)− (n, . . . , 2, 1) =

∑
1≤i<j≤n ej − ei =

∑
i∈[n](2i− n− 1) ei. Note

that the holes, ascents and descents of B′ can be derived from the ascents and descents of L(B′)
and R(B′). Namely, the holes of B′ are the ascents of L(B′) which are also descents of R(B′), the
ascents of B′ are the ascents of R(B′), and the descents of B′ are the descents of L(B′). In fact,
T(B′) is actually the interval [L(B′),R(B′)] in the s-weak order (defined in the next section). These
intervals are called pure intervals in [CP23]. Such an interval is also determined by the s-tree L(B′)
(resp. R(B′)) together with a subset of its ascents (resp. descents). To sum up, there are bijections
between the s-bushes, the faces of the s-foam, the pure intervals of [CP23], and the pairs (T, A)
where A is a subset of ascents (resp. descents) of an s-tree T.

2. The s-weak order and facial s-weak order

In this section, we consider the s-weak order Ws on s-trees (directly adapted from the original
definition of [CP22]), and we extend it to the facial s-weak order FWs on all s-bushes. We prove
that these two posets are actually congruence uniform lattices by exhibiting a construction by
interval doublings (recovering a result of [CP22] for the s-weak order).

2.1. Recollections 2: The weak order and facial weak order. We first remind basic properties of
the weak order on permutations of [n] and the facial weak order on ordered set partitions of [n].

2.1.1. Lattices and interval doublings. A lattice (L,≤,∧,∨) is a poset (L,≤) where any subset X
admits a meet

∧
X (greatest lower bound) and a join

∨
X (least upper bound). Particularly

interesting lattices are semidistributive and congruence uniform lattices, whose definitions are
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delayed to Sections 3.1 and 4.1, where we will have introduced more lattice theoretic background.
We just note here that congruence uniformity implies semidistributivity.

The doubling of a subset X of a poset P is the poset P [X] on (P rX)t (X×{0, 1}) defined by

• a ≤ b in P [X] if a, b /∈ X and a ≤ b in P ,
• (a, i) ≤ b in P [X] if a ∈ X, b /∈ X, i ∈ {0, 1}, and a ≤ b in P ,
• a ≤ (b, j) in P [X] if a /∈ X, b ∈ X, j ∈ {0, 1}, and a ≤ b in P ,
• (a, i) ≤ (b, j) in P [X] if a, b ∈ X, i, j ∈ {0, 1}, and a ≤ b in P and i ≤ j.

Recall that C ⊆ P is order convex if x ≤ y ≤ z and x, z ∈ C implies y ∈ C, and that an interval
of P is a subset of the form [x, z] := {y ∈ P | x ≤ y ≤ z}. A. Day [Day94] observed that if L is a
lattice and C ⊆ L is order convex, then L[C] is again a lattice. In fact, a lattice is congruence
normal (resp. uniform) if and only if it can be obtained from a distributive lattice by a sequence
of doublings of order convex sets (resp. of intervals).

2.1.2. The weak order. We now remind basic properties of the weak order on permutations and
of the facial weak order on ordered partitions, and show that they are constructible by interval dou-
blings. The inversion set of a permutation σ of [n] is inv(σ):= {(σi, σj) | 1 ≤ i < j ≤ n and σi > σj}.
The weak order Wn is the partially ordered set of permutations of [n] ordered by inclusion of their
inversion sets. Its cover relations are given by transpositions of adjacent entries (meaning at
two consecutive positions). See Figure 7. The weak order is known to be a congruence uniform
lattice [GR63, DC94, LCdPB94].

As we will mimic it for the s-weak order and facial s-weak order, we now present a construction
of the weak order by interval doublings, closely related to the insertion algorithm of Section 1.
By induction, it suffices to exhibit a sequence of interval doublings from the weak order Wn−1 to
the weak order Wn. We denote by σ̄ the permutation of [n− 1] obtained by deleting the entry n
in a permutation σ of [n]. For any i ∈ [n], we denote by W i

n the poset obtained from the weak
order Wn by identifying two permutations σ and σ′ if and only if σ̄ = σ̄′ and the relative position
of k and n are the same in σ and σ, for all n − i < k < n. Note that W 1

n is isomorphic to
the weak order Wn−1 and Wn

n is just the weak order Wn. For instance, Figure 8 represents the
posets W i

4 for i = 1, . . . , 4. In this picture, we represent an element of W i
n, on three lines (red,

green, blue). The red line contains [n− i− 1], the green line contains [n− i, n[, and the blue line
just contains n. The red and green lines form the permutation σ̄, the green and blue lines record
the relative position of k and n for all n−i < k ≤ n, while the red and blue lines are incomparable.
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Figure 7. The weak order Wn for n = 3 (left) and n = 4 (right).
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Figure 8. Interval doublings from the weak order W3 (left) to the weak order W4 (right). The
four lattices are W3 ' W 1

4 , W 2
4 , W 3

4 , and W 4
4 = W4. We bold some intervals of W i−1

4 and dash
the corresponding doubled intervals in W i

4.

We claim that W i+1
n is obtained from W i

n by interval doublings. Consider U := {u1 < · · · < up}
and V := {v1 < · · · < vq} such that UtV = ]n− i, n[. Let σ̃iU,V (resp. τ̃ iU,V ) denote the class in W i

n

of the permutations σ (resp. τ) of [n] such that σ̄ = [1, . . . , n − i − 1, u1, . . . , up, n − i, v1, . . . , vq]
(resp. τ̄ = [up, . . . , u1, n−i, vq, . . . , v1, n−i−1, . . . , 1]) and where n is to the right of any u ∈ U and
to the left of any v ∈ V . We invite the reader to check that W i+1

n is obtained from W i
n by doubling,

for all U t V = ]n− i, n[, the interval [σ̃iU,V , τ̃
i
U,V ] in W i

n to the intervals [σ̃i+1
U∪{n−i},V , τ̃

i+1
U∪{n−i},V ]

and [σ̃i+1
U,V ∪{n−i}, τ̃

i+1
U,V ∪{n−i}] in W i+1

n . These interval doublings are illustrated in Figure 8.

1|2|3

3|2|1

2|1|3 1|3|2

2|3|1 3|1|2

1232|13 13|2

12|3 1|23

23|1 3|122.1.3. The facial weak order. Finally, we briefly describe the fa-
cial weak order. It is a lattice structure on all cones of the braid
arrangement, or equivalently, on all faces of the permutahedron,
which extends the weak order. It is illustrated on the right for n = 3.
It was introduced for the braid arrangement in [KLN+01, BHKN01],
studied for arbitrary Coxeter arrangements in [PR06, DHP18],
and extended even further in [DHMP22, Han23]. The facial weak
order FWn is the partial order on ordered set partitions of [n]
where µ ≤ ν if the following equivalent assertions holds:

• min(µ) ≤ min(ν) and max(µ) ≤ max(ν), where min(µ) and max(µ) respectively denote
the weak order minimal and maximal permutations refining µ,

• inv(µ) ⊆ inv(ν) and ninv(µ) ⊇ ninv(ν), where inv(µ) (resp. ninv(µ)) is the set of pairs i < j
such that the part of µ containing i is weakly after (resp. before) the part of µ containing j,

• the corresponding cones Cµ and Cν of the braid arrangement are connected by a path of
pairs (F,G), where either F is a facet of G with the same weak order maximum, or G is
a facet of F with the same weak order minimum.

2.2. The s-weak order. We now define the s-weak order as introduced in [CP22] (modulo our
minor convention changes, see Remark 3).

Definition 28 ([CP22, Def. 1.3]). For an s-tree T and 1 ≤ i < j ≤ n, the position pos(T, i, j) ∈ Jsi]
is the minimum of si and the number of outgoing edges of i strictly to the right of the increasing
path from the root of T to j.
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Figure 9. The s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0) (right).

Lemma 29. For any s-tree T and 1 ≤ i < j < k ≤ n,

pos(T, j, k) > 0⇒ pos(T, i, j) ≤ pos(T, i, k) and pos(T, j, k) < sj ⇒ pos(T, i, j) ≥ pos(T, i, k).

Proof. If pos(T, j, k) > 0, then j is weakly right of the path from the root of T to k. Hence,
the path from the root of T to j is weakly on the right of the path from the root of T to k. By
definition, this yields pos(T, i, j) ≤ pos(T, i, k). The other inequality is similar. �

Although not strictly necessary in this paper, we recall from [CP22] that the inequalities
of Lemma 29 actually characterize the position vectors of s-trees.

Proposition 30 ([CP22, Prop. 1.6]). The following are equivalent for a
(
n
2

)
-tuple (Pi,j)1≤i<j≤n:

(1) there exists an s-tree T such that pos(T, i, j) = Pi,j for all 1 ≤ i < j ≤ n,
(2) 0 ≤ Pi,j ≤ si for all 1 ≤ i < j ≤ n, and Pj,k > 0⇒ Pi,j ≤ Pi,k and Pj,k < sj ⇒ Pi,j ≥ Pi,k

for all 1 ≤ i < j < k ≤ n.

The main object of [CP22, CP23] is the following order on s-trees, illustrated in Figure 9.

Definition 31 ([CP22, Def. 1.9]). The s-weak order Ws is the partially ordered set of s-trees given
by T ≤ T′ if and only if pos(T, i, j) ≤ pos(T′, i, j) for all 1 ≤ i < j ≤ n.

We now describe the cover relations in the s-weak order in terms of ascents, descents, and
rotations (see Definitions 10 and 23 and Remark 11).

Proposition 32 ([CP22, Thm. 1.32]). If two s-trees T and T′ are related by the rotation of an
ascent (i, j) of T to a descent (i, j) of T′, then T is the maximal (resp. T′ is the minimal) s-tree
such that T ≤ T′ and pos(T, i, j) < pos(T′, i, j).

Proposition 33 ([CP22, Thm. 1.32]). The s-trees which cover (resp. are covered by) an s-tree T in
the s-weak order Ws are precisely those obtained by rotating an ascent (resp. descent) of T.

We obtain the following geometric consequence of Corollary 25 and Proposition 33.

Corollary 34. The Hasse diagram of the s-weak order Ws is isomorphic to the dual graph of the
s-foam oriented in the direction ω := (1, 2, . . . n)−(n, . . . , 2, 1) =

∑
1≤i<j≤n

ej−ei =
∑
i∈[n]

(2i−n−1) ei.

Remark 35. We note that C. Ceballos and V. Pons also briefly mention the construction of the
“s-braid arrangement” in [CP23, end of Sect. 3.2 & Fig. 27] which seems to coincide with our
s-foam [Pon24]. Note that we prefer the term “foam” to “arrangement” as it is not anymore a
hyperplane arrangement (not even affine).
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Finally, we state to the key result of [CP22].

Theorem 36 ([CP22, Thms. 1.21 & 1.40]). The s-weak order Ws is a congruence uniform lattice.

Remark 37. The proof of the lattice property in [CP22] actually exploits the characterization
of Proposition 30 to explicitly describe the join in the s-weak order Ws. Namely, the join T∨T′ of
two s-trees T and T′ satisfies pos(T∨T′, i, j) = M tc

i,j where Mi,j := max
(

pos(T, i, j),pos(T′, i, j)
)

andM tc
i,k

:= max
{
Mj0,j1

∣∣ i = j0 < · · · < jq = k and Mjp,jp+1
> 0 for all p ∈ [q]

}
for 1 ≤ i < j ≤ n.

The congruence uniformity is proved in [CP22] by showing semidistributivity, and exhibiting a
certain edge labeling of the s-weak order that ensures congruence uniformity. We now give an
alternative argument for the congruence uniformity (and hence the semidistributivity) based on
interval doublings, which naturally arise from our insertion algorithm, and will be extended to the
facial s-weak order in Section 2.3. We note that C. Ceballos and V. Pons also mention a proof
by interval doublings in [CP22, Rem. 1.41]. Their sequence of doublings can be found in [Pon22,
function lattice_doublings at line 1489] and seems quite different from ours [Pon24].

Proposition 38. The s-weak order Ws is constructible by a sequence of interval doublings.

Proof sketch. We just give a brief description of the sequence of doublings, generalizing the descrip-
tion of Section 2.1 for the interval doublings in the weak order. Let s̄ := s≤n−1 = (s1, . . . , sn−1)
and denote by T̄ the s̄-tree obtained by deleting the node n in an s-tree T. For any i ∈ [n − 1]
and j ∈ Jsn−i], we denote by W i,j

s the poset obtained from the s-weak order Ws by identifying
two s-trees T and T′ if and only if T̄ = T̄′, pos(T, k, n) = pos(T′, k, n) for all n− i < k < n,
and pos(T, n − i, n) and pos(T′, n − i, n) either coincide or are both at least j. Note that W 1,0

s

is isomorphic to the s̄-weak order Ws̄, that Wn−1,s1
s is just the s-weak order Ws, and

that W i,si
s = W i+1,0

s .
We now observe that we can construct W i,j

s from W i,j−1
s by interval doublings. For J ⊆ [n],

the left (resp. right) s-comb with nodes J is the increasing tree on J , where each node j ∈ J
has sj + 1 outgoing edges, which are all leaves except the leftmost (resp. rightmost). Con-
sider U := {u1 < · · · < up} and V := {v1 < · · · < vq} such that U t V = ]n− i, n[. We denote

by Si,jU,V the class in W i,j
s of s-trees S such that S̄ is obtained by attaching the right comb with

nodes U to the (j+1)-st rightmost outgoing edge of n−i in the right comb with nodes [n−i−1]∪V
and where the node n is attached either to the rightmost leaf of the right comb with nodes U or
to leftmost leaf of the j-th rightmost subtree of n − i. We denote by Ti,jU,V the class in W i,j

s of

s-trees T such that T̄ is obtained by attaching the left comb with nodes V to the j-th rightmost
outgoing edgege of n − i in the left comb with nodes [n − i − 1] ∪ U and where the node n is
attached either to the leftmost leaf of the left comb with nodes V or to the rightmost leaf of the
(j + 1)-st rightmost subtree of n− i. We let the reader check that W i,j

s is obtain from W i,j−1
s by

doubling the intervals [Si,jU,V ,T
i,j
U,V ] for all U t V = ]n− i, n[. �

2.3. The facial s-weak order. We now extend the s-weak order to all s-bushes (hence, to all
polyhedra of the s-foam Fs). Although it is not required to read the remaining of the paper, we
have included this section as the ideas are very similar to that of Section 2.2.

Definition 39. For an s-bush B and 1 ≤ i < j ≤ n, we define the left (resp. right) posi-
tion lpos(B, i, j) (resp. rpos(B, i, j)) as follows:

• If i is an ancestor of j, consider the rightmost (resp. leftmost) increasing path π from i
to j such that any inner node of π with an incoming edge strictly left (resp. right) of π has
an outgoing edge strictly left (resp. right) of π, and define lpos(B, i, j) (resp. rpos(B, i, j))
as the number of outgoing edges of i strictly left (resp. right) of π.

• Otherwise, define lpos(B, i, j) = si and rpos(B, i, j) = 0 if i is on the left of any increasing
path from the root of B to j, and lpos(B, i, j) = 0 and rpos(B, i, j) = si otherwise.

Remark 40. A few observations on Definition 39:

• Definition 39 contains Definition 28: for all 1 ≤ i < j ≤ n, there is at most one increasing
path from i to j in an s-tree T, so that pos(T, i, j) = rpos(T, i, j) = si − lpos(T, i, j).
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Figure 10. Interval doublings from the (2, 1)-weak order (left) to the (2, 1, 0)-weak order (right).

The four lattices are W(2,1) 'W 1,0
(2,1,0), W

1,1
(2,1,0) = W 2,0

(2,1,0), W
2,1
(2,1,0), and W 2,2

(2,1,0) = W(2,1,0).

• For any s-bush B and any 1 ≤ i < j ≤ n, we have 0 ≤ lpos(B, i, j), rpos(B, i, j) ≤ si,
and lpos(B, i, j) + rpos(B, i, j) ≤ si + 1. Moreover, both lpos(B, i, j) and rpos(B, i, j)
satisfy the conditions of Lemma 29. We conjecture that these conditions characterize the
left and right positions of s-bushes.

• For any two s-bushes B and B′, one can check that the closed fiber F̄B is a face of the
closed fiber F̄B′ if and only if lpos(B, i, j) ≥ lpos(B′, i, j) and rpos(B, i, j) ≥ rpos(B′, i, j)
for all 1 ≤ i < j ≤ n.

We now use lpos(B, i, j) and rpos(B, i, j) to define a different order on s-bushes, which extends
the s-weak order of Definition 31 and generalizes the facial weak order of [KLN+01]. It is illustrated
in Figure 11.

Definition 41. The facial s-weak order FWs is the partially ordered set of s-bushes given by B ≤ B′

if and only if lpos(B, i, j) ≥ lpos(B′, i, j) and rpos(B, i, j) ≤ rpos(B′, i, j) for all 1 ≤ i < j ≤ n.

Remark 42. As for the facial weak order on ordered set partitions of [n], there are several equivalent
perspectives on the facial s-weak order. Namely,

• B ≤ B′ if and only if min(B) ≤ min(B′) and max(B) ≤ max(B′), where min(B) and max(B)
denote the s-weak order minimal and maximal s-trees refining the s-bush B,

• if an s-bush B has an indegree 2 node j, then it covers (resp. is covered by) the s-bush
obtained from B by detaching the left (resp. right) incoming edge of j, and these are all
cover relations of the facial s-weak order (note that this simple description contrasts with
the involved description of the cover relations of the refinement order, see Remark 26).

Proposition 43. The facial s-weak order FWs is constructible by interval doublings, so that it is a
congruence uniform lattice.

Proof sketch. The proof follows the same lines as that of Proposition 38. Let s̄ := s≤n−1 =
(s1, . . . , sn−1) and denote by B̄ the s̄-bush obtained by deleting the node n in an s-bush B.
For any i ∈ [n− 1] and j ∈ Jsn−i], we denote by FW i,j

s the poset obtained from the facial s-weak
order FWs by identifying two s-bushes B and B′ if and only if B̄ = B̄′, lpos(B, k, n) = lpos(B′, k, n)
and rpos(B, k, n) = rpos(B′, k, n) for all n− i < k < n, lpos(B, n− i, n) and lpos(B′, n− i, n) either
coincide or are both at most si − j, and rpos(B, n− i, n) and rpos(B′, n− i, n) either coincide or
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Figure 11. The facial s-weak order FWs for s = (1, 2, 0) (left) and s = (2, 1, 0) (right).

are both at least j. As before, observe that FW 1,0
s is isomorphic to the facial s̄-weak order FWs̄,

that FWn−1,s1
s is just the facial s-weak order FWs, and that FW i,si

s = FW i+1,1
s . We then prove

that we can construct FW i,j
s from FW i,j−1

s by a sequence of interval tripling (which are obtained
by doubling twice each interval). �

3. Canonical representations in the s-weak order

This section is devoted to the combinatorial description of the join irreducibles and canonical
join representations in the s-weak order Ws.

3.1. Recollections 3: Canonical representations in the weak order. We first recall the combina-
torics of canonical representations of permutations in terms of non-crossing arc diagrams [Rea15],
and of weak order intervals in terms of semi-crossing arc bidiagrams [AP23].

3.1.1. Canonical representations in semidistributive lattices. We first recall the definition of canon-
ical representations in a finite semi-distributive lattice (L,≤,∧,∨). A join representation of x ∈ L
is a subset J ⊆ L such that x =

∨
J . Such a representation is irredundant if x 6=

∨
J ′ for any

strict subset J ′ ( J . The irredundant join representations of an element x ∈ L are ordered by
containment of the down sets of their elements, i.e. J ≤ J ′ if and only if for any y ∈ J there
exists y′ ∈ J ′ such that y ≤ y′ in L. The canonical join representation of x is the minimal irredun-
dant join representation of x for this order when it exists. Its elements are the canonical joinands
of x. Note that by definition, the canonical joinands form an antichain of join irreducible elements
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of L (the elements which are their only irredundant join representation, or equivalently that cover
a single element).

The lattice L is join semidistributive if the following equivalent assertions hold

• x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y for any x, y, z ∈ L,
• all elements of L admit a canonical join representation.

The canonical join complex of L is the simplicial complex whose vertices are the join irreducible el-
ements of L and whose simplices are the canonical join representations of elements of L, see [Rea15,
Bar19]. The canonical meet representations, the canonical meetands, and the canonical meet com-
plex of a meet semidistributive lattice are defined dually.

The lattice L is semidistributive if it is both join and meet semidistributive. In this situation, its
canonical join and meet complexes are isomorphic flag simplicial complexes [Bar19]. The canonical
representation of an interval [x, y] of L is the disjoint union J tM , where J is the canonical join
representation of x and M the canonical meet representation of y. The canonical complex of L is
the flag simplicial complex whose vertex set is the disjoint union of the join irreducible elements
of L and the meet irreducible elements of L, and whose simplices are the canonical representations
of the intervals of L, see [AP23].

3.1.2. Canonical join representations of permutations and non-crossing arc diagrams. We now
recall the combinatorial model of [Rea15] for the canonical join representations in the weak order.
An arc on [n] is a quadruple (i, j, A,B) where 1 ≤ i < j ≤ n and A t B forms a partition of the
interval ]i, j[ := {i+1, . . . , j−1}. We represent an arc by a curve wiggling around the vertical axis,
starting at height i and ending at height j, and passing to the right of the points of A and to the
left of the points of B. Two arcs α := (i, j, A,B) and α′ := (i′, j′, A′, B′) are crossing if they cross
in their interior or have the same bottom endpoints or the same top endpoints. In other words,
if there exist u 6= v such that u ∈ (A′ ∪ {i′, j′}) ∩ (B ∪ {i, j}) and v ∈ (A ∪ {i, j}) ∩ (B′ ∪ {i′, j′}).
A non-crossing arc diagram on [n] is a collection of pairwise non-crossing arcs on [n].

1
2
3
4
5
6
7

76421 3 5

In [Rea15], N. Reading defined an elegant bijection between
permutations of [n] and non-crossing arc diagrams on [n]. It
sends a permutation σ to the non-crossing arc diagram δ∨(σ)
with an arc (σj+1, σj , Aj , Bj) for each descent j ∈ [n− 1] of σ
(i.e. with σj > σj+1), where

Aj := {σi | 1 ≤ i < j and σj+1 < σi < σj}
and Bj := {σk | j + 1 < k ≤ n and σj+1 < σk < σj} .

As illustrated on the right with σ = 2531746, the non-crossing arc diagram δ∨(σ) can also been
visualized by representing the table (j, σj) of the permutation σ, drawing the segments correspond-
ing to the descents of σ, and collapsing the picture vertically, allowing the segments to bend but
not to cross each other nor to pass through a point.

The single arcs correspond to permutations with a single descent, that is, to join irreducible
permutations of the weak order. More generally, the non-crossing arc diagram δ∨(σ) of a permu-
tation σ encodes the canonical join representation of σ in the weak order.

Theorem 44 ([Rea15]). The map δ∨ is a bijection from the permutations of [n] to the non-crossing
arc diagrams on [n]. The canonical join representation σ is precisely the set of join irreducible
permutations corresponding to the arcs of the non-crossing arc diagram δ∨(σ). In other words, the
canonical join complex of the weak order Wn is isomorphic to the non-crossing arc complex on [n].

See Figure 12 for the weak order on non-crossing arc diagrams and [Rea15] for details. The
canonical meet representation of a permutation is obtained similarly, using ascents instead of
descents to define the non-crossing arc diagram δ∧(σ).

3.1.3. Canonical representations of weak order intervals and semi-crossing arc bidiagrams. Two
arcs α∨ := (i∨, j∨, A∨, B∨) and α∧ := (i∧, j∧, A∧, B∧) are semi-crossing if they do not cross in their
interiors with α∨ going in the diagonal direction and α∧ in the anti-diagonal direction at the
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Figure 12. The weak order for n = 3 (left) and n = 4 (right), where each permutation σ is
replaced by its non-crossing arc diagram δ∨(σ).

crossing, and do not start at the same point with α∨ leaving right of α∧ at this point, and do not
end at the same point with α∨ arriving left of α∧ at this point. In other words, if there exists
no u < v with u ∈ (A∧ ∪ {i∧}) ∩ (B∨ ∪ {i∨}) and v ∈ (A∨ ∪ {j∨}) ∩ (B∧ ∪ {j∧}). A semi-crossing
arc bidiagram is a disjoint union δ∨ t δ∧ of two non-crossing arc diagrams δ∨ and δ∧ such that
any α∨ ∈ δ∨ and α∧ ∈ δ∧ are semi-crossing. The following statement is illustrated in Figure 13
and details can be found in [AP23].

Theorem 45 ([AP23]). The map [x, y] 7→ δ∨(σ)t δ∧(σ) is a bijection from the weak order intervals
to the semi-crossing arc bidiagrams, which encodes the canonical representations of the weak order.
In other words, the canonical complex of the weak order Wn is isomorphic to the semi-crossing arc
complex on [n].

3.2. Join irreducibles of the s-weak order, s-arcs, s-shards. We first define the main characters
of this paper, generalizing the arcs of [Rea15].

Definition 46. An s-arc is a quintuple (i, j, A,B, r) where 1 ≤ i < j ≤ n, the sets A and B form a
partition of {k ∈ ]i, j[ | sk 6= 0}, and r ∈ [si].

Note that the first entry i of an s-arc must satisfy si 6= 0 (otherwise, we have no choice for r).
We represent s-arcs graphically as follows. We place n points on the vertical axis, where the point
at level i is round if si 6= 0 and square if si = 0. The s-arc (i, j, A,B, r) is represented by a curve
wiggling around the vertical axis, starting from the point at level i and ending at the point at
level j, passing on the right of the points in A and on the left of the points in B (we do not care if
it passes on the left or right of the square points), and with an additional label r written close to it.

Remark 47. The number of s-arcs is
∑

1≤i<j≤n si 2#{k∈]i,j[ | sk 6=0}.

We now associate two specific s-trees to each s-arc.
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Figure 13. The canonical complex of the weak order for n = 3 (left) and n = 4 (right), in-
terpreted as the semi-crossing arc complex. The canonical join and meet complexes of the weak
order, interpreted as non-crossing arc complexes, appear in red and blue respectively. Adapted
from [AP23, Fig. 8 & 9].

4

6

1
2

6
7

5

3
4

1
2

4

6
7

5

3

2

1
2

7

5

3

Definition 48. For J ⊆ [n], the left (resp. right) s-comb with nodes J
is the increasing tree on J , where each node j ∈ J has sj +1 outgoing
edges, which are all leaves except the leftmost (resp. rightmost). For
an s-arc α := (i, j, A,B, r), we define T∨(α) (resp. T∧(α)) as the s-tree
obtained by attaching the right (resp. left) s-comb with nodes A∪{j}
(resp. B ∪ {j}) to the (r+ 1)-st (resp. r-th) rightmost leaf of i in the
right (resp. left) s-comb with nodes [n]r(A∪{j}) (resp. [n]r(B∪{j}).
See examples of T∨(α) and T∧(α) on the right for s = (2, 3, 1, 0, 1, 0, 0)
and α = (2, 7, {3}, {5}, 2).

Lemma 49. For any s-arc α := (i, j, A,B, r), and any 1 ≤ k < ` ≤ n, we have

pos(T∨(α), k, `) =


r if k = i and ` ∈ A ∪ {j}
sk if k ∈ B and ` ∈ A ∪ {j}
0 otherwise

,

and pos(T∧(α), k, `) =


r − 1 if k = i and ` ∈ B ∪ {j}
0 if k ∈ A and ` ∈ B ∪ {j}
sk otherwise

.

Proof. Immediate from Definitions 28 and 48. �

Corollary 50. For any two s-arcs α := (i, j, A,B, r) and α′ := (i′, j′, A′, B′, r′), we have

(i) T∨(α) ≤ T∨(α′) if and only if A∪{j} ⊆ A′∪{j′} and B∪{i} ⊆ B′∪{i′} and i = i′ ⇒ r ≤ r′,
(ii) T∧(α) ≤ T∧(α′) if and only if A∪{i} ⊇ A′∪{i′} and B∪{j} ⊇ B′∪{j′} and i = i′ ⇒ r < r′,

(iii) T∨(α) ≤ T∧(α′) if and only if there is no 1 ≤ k < ` ≤ n such that k ∈ (A′ ∪ {i′})∩ (B ∪ {i})
and ` ∈ (A ∪ {j}) ∩ (B′ ∪ {j′}) except if k = i′ and r < r′.

Proof. Straightforward from Definition 31 and Lemma 49. �
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Recall that an element of a lattice (L,≤,∧,∨) is join (resp. meet) irreducible if it covers (resp. is
covered by) a single element of L.

Proposition 51. The map T∨ (resp. T∧) is a bijection from the s-arcs to the join (resp. meet)
irreducible s-trees in the s-weak order.

Proof. Consider an s-tree T which is a join irreducible in the s-weak order. By Proposition 33,
this means that T has a unique descent (i, j). This implies that T is a right s-comb, to which we
have attach on some leaf of node i a right s-comb with top vertex j. Let r := pos(T, i, j) ∈ [si],
let A denote the set of nodes along the path from i to j (but distinct from i and j), and let B
be the complement of A in {k ∈ ]i, j[ | sk 6= 0}. Define the s-arc α∨(T) := (i, j, A,B, r). Then T∨
and α∨ are obviously inverse to each other. �

We now provide the geometric counterpart of the s-arcs, generalizing the shards of [Rea03] (see
also [Rea16, Sect. 9.7]).

Definition 52. The s-shard of an s-arc α := (i, j, A,B, r) is the polyhedron Σα of Rn defined by

• the equality xi − xj = r − 1 +
∑
k∈B max(0, sk − 1),

• the inequalities xi − xa ≥ r − 1 +
∑
k∈B∩]i,a[ max(0, sk − 1) for all a ∈ A, and

• the inequalities xi − xb ≤ r − 1 +
∑
k∈B∩]i,b[ max(0, sk − 1) for all b ∈ B.

Lemma 53. For any s-arc α := (i, j, A,B, r), the s-shard Σα is the union of the closed fibers F̄B

over all s-bushes B in which (i, j) is a hole and the rightmost path from i to the left incoming edge
at j has the nodes of A weakly on its left, and the nodes of B and r children of i strictly on its right.

Proof. We prove both inclusions.
Consider an s-bush B where (i, j) is a hole and the rightmost path from i to the left incoming

edge at j has the nodes of A weakly on its left, and the nodes of B and r children of i strictly on
its right. Consider x in the fiber FB. As in the proof of Proposition 14, we check that x must sat-
isfy the equality xi−xj = r−1+

∑
k∈B max(0, sk−1) since (i, j) is a hole of B and the inequalities

xi − xa ≥ r − 1 +
∑
k∈B∩]i,a[ max(0, sk − 1) for a ∈ A and xi − xb ≤ r − 1 +

∑
k∈B∩]i,b[ max(0, sk − 1)

for b ∈ B.
Conversely, consider x ∈ Σα and let B := B(s,x). Follow the steps of the insertion algorithm

described in Definition 4, and construct inductively the rightmost path π leaving through the
(r + 1)-st leaf of node i. Since x ∈ Σα, we obtain by induction that all nodes of A are weakly
on the left of π while all nodes of B are strictly on its right, and finally that (i, j) is a hole
of B. It follows from the description of the insertion algorithm in Definition 4 that B is an s-bush
where (i, j) is a hole and the rightmost path from i to the left incoming edge at j has the nodes
of A weakly on its left, and the nodes of B and r children of i strictly on its right. �

Corollary 54. The union of all codimension 1 closed fibers in Fs is precisely the union of the
shards Σα for all s-arcs α.

3.3. Canonical join representations in the s-weak order and non-crossing s-arc diagrams. We
now generalize Theorem 44 to the s-weak order, exploiting its semidistributivity established in
Theorem 36 and [CP22, Thms. 1.21 & 1.40].

Definition 55. Consider two s-arcs α := (i, j, A,B, r) and α′ := (i′, j′, A′, B′, r′). Assume without
loss of generality that j ≤ j′ (otherwise, exchange α and α′). Then α and α′ are non-crossing
if j < j′, and one of the following conditions hold

(1) j ≤ i′,
(2) i < i′ < j and i′ ∈ A and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[,
(3) i < i′ < j and i′ ∈ B and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
(4) i = i′ and r < r′ and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[,
(5) i = i′ and r = r′ and sj = 0 and A′ ∩ ]i, j[ = A ∩ ]i′, j′[,
(6) i = i′ and r > r′ and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
(7) i′ < i and i ∈ A′ and j /∈ B′ and A′ ∩ ]i, j[ ⊇ A ∩ ]i′, j′[,
(8) i′ < i and i ∈ B′ and j /∈ A′ and A′ ∩ ]i, j[ ⊆ A ∩ ]i′, j′[.
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Figure 14. The s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0) (right), where each
s-tree T is replaced by its non-crossing s-arc diagram δ∨(T).

A non-crossing s-arc diagram is a set δ of pairwise non-crossing s-arcs. The non-crossing s-arc
complex is the (flag) simplicial complex of non-crossing s-arc diagrams.

Lemma 56. If α and α′ are non-crossing, then T∨(α) and T∨(α′) are incomparable in s-weak order.

Proof. Write α := (i, j, A,B, r) and α′ := (i′, j′, A′, B′, r′), and assume that T∨(α) ≤ T∨(α′). By
Corollary 50 (i), we have A ∪ {j} ⊆ A′ ∪ {j′} and B ∪ {i} ⊆ B′ ∪ {i′} and i = i′ ⇒ r ≤ r′. The
two inclusions imply in particular that i′ ≤ i < j ≤ j′. If j = j′, then α and α′ are crossing.
Otherwise, j < j′ and the first inclusion implies j ∈ A′. If i′ = i, then r ≤ r′, and since j ∈ A′,
we obtain by Condition (5) and (6) of Definition 55 that α and α′ are crossing. Otherwise, i′ < i,
and the second inclusion implies i ∈ B′, which together with j ∈ A′ implies by Condition (8) of
Definition 55 that α and α′ are crossing. �

Definition 57. For a descent (i, j) of an s-tree T, let r := pos(T, i, j) and A (resp. B) be the
set of nodes i < k < j with sk 6= 0 and weakly on the left (resp. strictly on the right) of the
path from i to j. Define α∨(T, i, j) := (i, j, A,B, r) and δ∨(T) := {α∨(T, i, j) | (i, j) descent of T}.
Define similarly α∧(T, i, j) for an ascent (i, j) of T, and δ∧(T) := {α∧(T, i, j) | (i, j) ascent of T}.

Remark 58. The maps δ∨ and δ∧ have both a graphical and a geometric interpretation. Namely,
the non-crossing s-arc diagram δ∨(T) (resp. δ∧(T)) of an s-tree T is obtained

• by drawing the path joining i to j in T for each descent (resp. as-
cent) (i, j) of T, perturbing all these paths so that they pass
slightly to the right (resp. left) of their intermediate nodes, and
flattening the picture horizontally, allowing the arcs to bend but
not to cross nor to pass a node, see on the right,

• as the set of all s-arcs α whose corresponding s-shard Σα sup-
ports a lower facet of the maximal cell F̄T of the s-foam corre-
sponding to T.
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Proposition 59. The maps δ∨ and δ∧ are bijections from s-trees to non-crossing s-arc diagrams.

Proof. By symmetry, we only prove it for δ∨. First, for a descent (i, j) of an s-tree T, α∨(T, i, j) is
indeed an s-arc, and it is not difficult to see that the s-arcs of δ∨(T) are non-crossing by Remark 58.
We now define the inverse map of δ∨. Consider a non-crossing s-arc diagram δ. We construct an
s-tree T∨(δ) inductively as follows:

• start with the rooted tree with just a root 1 and s1 + 1 leaves,
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• at step k ≥ 2, attach a node k with sk + 1 leaves to the rightmost leaf of the (r + 1)-st
subtree of node i where i and r are defined by:

– if there exists an s-arc (i′, k, A,B, r′) in δ, then i := i′ and r := r′ (such an arc is
necessarily unique),

– otherwise, if there exists an s-arc (i′, j, A,B, r′) in δ with k ∈ A, then

i := max {i′ | ∃ (i′, j, A,B, r′) ∈ δ with k ∈ A}
and r := max {r′ | ∃ (i, j, A,B, r′) ∈ δ with k ∈ A} ,

– otherwise i := 1 and r := 0.

Let us check that δ∨(T∨(δ)) = δ. It is clear that any arc (i, j, A,B, r) of δ will correspond to
a descent (i, j) in T∨, created at step j. Reciprocally, let (i, j) be a descent of T∨(δ). The
construction of T∨(δ) implies that there is an arc (i, j, A,B, r) in δ with pos(T∨(δ), i, j) = r. We
show by induction on k ∈ ]i, j[ and i that A (resp. B) corresponds to the nodes of T weakly on
the left (resp. strictly on the right) of the path from i to j in T∨(δ).

Suppose that k ∈ A. During the construction of T∨(δ), the node k was attached to the rightmost
leaf of the (r′ + 1)-st subtree of a node i′ with i′ > i or i′ = i and r′ ≥ r. This implies that k
is weakly on the left of the path from i to j. Indeed, this is clear if i′ = i and r′ ≥ r. Suppose
that i′ > i. Then we are in the case (7) of Definition 55 since i < i′ < k < j and k ∈ A. Thus i′ ∈ A
and we conclude by induction.

Now, suppose that k ∈ B. During the construction of T∨(δ), the node k was attached either to
the rightmost available leaf at step k, in which case it is clear that k is strictly on the right of the
path from i to j in T∨(δ), or to the rightmost leaf of the (r′ + 1)-st subtree of a node i′ such that
there is an s-arc (i′, j′, A′, B′, r′) in δ, with k ∈ A′ ∪ {j′}. In this case, assume that j < j′. Then
the only possible cases of Definition 55 are (3), which implies i′ ∈ B, (6), which implies i = i′

and r′ < r, or (7), which implies i ∈ A′. In all these cases we can conclude either directly or by
induction that k is strictly on the right of the path from i to j in T∨(δ). Similarly, if j′ < j the
only possible cases of Definition 55 are (2), (4), or (8) and we arrive to the same conclusion.

We have proven that δ∨ ◦T∨ is the identity function on the set of non-crossing s-arc diagrams.
To finish the proof of the bijection, we show that δ∨ is injective. Let T and T′ be two s-trees

and denote by j the first step where their inductive construction differs. Up to exchanging T
and T′ we can assume that the leaf of T≤j−1 where j is attached to build T is on the left of the
leaf where j is attached to build T′. In particular j is not on the rightmost path from the root
in T. If sj = 0, then j forms an ascent (i, j) in T, which gives an s-arc α∨(T, i, j) that is in δ∨(T)
but not in δ∨(T′). Assume that sj 6= 0. Then there is an s-arc (i, k, A,B, r) with j ∈ A that is
in δ∨(T) but not in δ∨(T′) (we take i and k to be the smallest and greatest nodes such that j is
on the rightmost path from i to k in T). This proves that δ∨ is injective and we have the desired
bijection. �

Lemma 60. For a descent (i, j) of an s-tree T, the tree T∨(α∨(T, i, j)) is the unique minimal
element of the set {T′ ≤ T | pos(T′, i, j) = pos(T, i, j)}.

Proof. Let (i, j, A,B, r) :=α∨(T, i, j). Note that pos(T, i, a) ≥ r and pos(T, a, j) = 0 for all a ∈ A,
while pos(T, i, b) < r and pos(T, b, j) = sb for all b ∈ B. For any s-tree T′ ≤ T with pos(T′, i, j) = r,

• for a ∈ A, we have pos(T′, a, j) ≤ pos(T, a, j) = 0 < sa (because sa 6= 0), so that we
get pos(T′, i, a) ≥ pos(T′, i, j) = r (by Lemma 29),

• for a ∈ A∪{j} and b ∈ B with b < a, we have pos(T′, i, b) ≤ pos(T, i, b) < r ≤ pos(T′, i, a),
so that pos(T′, b, a) = sb (by Lemma 29).

We conclude that pos(T′, k, `) ≥ pos(T∨(α∨(T, i, j)), k, `) for all 1 ≤ k < ` ≤ n by Lemma 49, so
that T′ ≥ T∨(α∨(T, i, j)). This concludes the proof since pos(T∨(α∨(T, i, j)), i, j) = r = pos(T, i, j)
by Definitions 48 and 57, and T ≥ T∨(α∨(T, i, j)) by setting T′ = T. �

Proposition 61. The canonical join (resp. meet) representation of an s-tree T is T =
∨
α∈δ∨(T) T∨(α)

(resp. T =
∧
α∈δ∧(T) T∧(α)). In other words, the map α∨ (resp. α∧) induces an isomorphism from

the canonical join (resp. meet) complex of the s-weak order Ws to the non-crossing s-arc complex.
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Figure 15. The canonical complex of the s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0)
(right), interpreted as the semi-crossing arc complex. The canonical join and meet complexes of
the s-weak order, interpreted as non-crossing arc complexes, appear in red and blue respectively.

Proof. We only prove the result for the canonical join representation.
We first show that T =

∨
α∈δ∨(T) T∨(α). Indeed, Lemma 60 implies that T ≥ T∨(α∨(T, i, j)) for

any descent (i, j) of T, so that T ≥
∨
α∈δ∨(T) T∨(α). Moreover, as any T′ covered by T is obtained

by rotating a descent (i, j) of T, we have pos(T′, i, j) = pos(T, i, j)− 1 < pos(T∨(α∨(T, i, j)), i, j),
so that T′ 6≥

∨
α∈δ∨(T) T∨(α).

It follows from Lemma 56 and Proposition 59 that the s-trees T∨(α) for α ∈ δ∨(T) form an
antichain in the s-weak order, thus the join representation T =

∨
α∈δ∨(T) T∨(α) is irredundant.

Consider now any join representation T =
∨
J , and assume by contradiction that there is a

descent (i, j) of T such that there is no J ∈ J with T∨(α∨(T, i, j)) ≤ J. Let T′ be the s-tree obtained
by rotating the descent (i, j) of T. For all J ∈ J , we thus obtain that pos(J, i, j) < pos(T, i, j)
by Lemma 60, so that J ≤ T′ by Proposition 32. Hence, we conclude that

∨
J ′ ≤ T′ < T, a

contradiction. �

For instance, Figure 15 contains the canonical join (red) and meet (blue) complexes of the
s-weak order for s = (1, 2, 0) and s = (2, 1, 0).

3.4. Canonical complex of the s-weak order and semi-crossing s-arc bidiagrams. We finally gen-
eralize Theorem 45 to the s-weak order. This section is not required in the sequel.

Definition 62. A semi-crossing s-arc bidiagram is a disjoint union δ∨ t δ∧ of non-crossing s-arc
diagrams such that for any α∨ := (i∨, j∨, A∨, B∨, r∨) ∈ δ∨ and α∧ := (i∧, j∧, A∧, B∧, r∧), there is
no 1 ≤ k < ` ≤ n such that k ∈ (A∧∪{i∧})∩ (B∨∪{i∨}) and ` ∈ (A∨∪{j∨})∩ (B∧∪{j∧}) except
if k = i∧ and r∨ < r∧. The semi-crossing s-arc complex is the (flag) simplicial complex whose
ground set contains two copies α∨ and α∧ of each s-arc α and whose simplices are all semi-crossing
s-arc bidiagrams.

Proposition 63. The map [T,T′]→ δ∨(T)t δ∧(T′) is a bijection from intervals of the s-weak order
to semi-crossing s-arc diagrams. The canonical representation of an interval [T,T′] in the s-weak
order is given by

∨
α∈δ∨(T) T∨(α) t

∧
α∈δ∧(T′) T∧(α). In other words, the canonical complex of the

s-weak order Ws is isomorphic to the semi-crossing s-arc complex.

Proof. According to Proposition 61 and Corollary 50 (iii), this is a direct application of the ideas
of [AP23]. �

See Figure 15 for illustrations.
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4. Lattice congruences of the s-weak order

In this section, we describe the combinatorics of the congruence lattice of the s-weak order, and
we explore a few relevant families of these congruences.

4.1. Recollections 4: Lattice congruences of the weak order. We first recall the combinatorics of
lattice congruences of the weak order. We refer to [Rea16] for an enlightening survey on the topic.

4.1.1. Lattice congruences and quotients. Consider a finite lattice (L,≤,∧,∨). A congruence ≡
on L is an equivalence relation on L which respects the lattice operations, i.e. such that x ≡ x′

and y ≡ y′ implies x ∨ y ≡ x′ ∨ y′ and x ∧ y ≡ x′ ∧ y′. Equivalently, the equivalence classes are
intervals, and the maps π≡↓ and π↑≡ sending an element to the minimum and maximum elements
in its congruence class are order preserving. The lattice quotient L/≡ is the lattice structure on
the congruence classes of ≡, where for any two congruence classes X and Y , the order is given
by X ≤ Y if and only if x ≤ y for some representatives x ∈ X and y ∈ Y , and the join X ∨ Y
(resp. meet X ∧ Y ) is the congruence class of x ∨ y (resp. x ∧ y) for any representatives x ∈ X
and y ∈ Y . Intuitively, the quotient L/≡ is obtained by contracting the equivalence classes of ≡
in the lattice L. More precisely, we say that an element x is contracted by ≡ if it is not minimal
in its equivalence class of ≡, i.e. if x 6= π↓(x). As each class of ≡ is an interval of L, it contains
a unique uncontracted element, and the quotient L/≡ is isomorphic to the subposet of L induced
by its uncontracted elements π↓(L).

The prototypical example of congruence of the weak order Wn is the sylvester congruence ≡sylv

[Ton97, LR98, HNT05]. Its congruence classes are the fibers of the binary tree insertion algorithm,
or equivalently the sets of linear extensions of binary trees (labeled in inorder and considered as
posets oriented from bottom to top). It can also be seen as the transitive closure of the rewriting
rule UuwV vW ≡sylv UwuV vW where u < v < w are letters and U, V,W are words on [n]. The
uncontracted permutations for ≡sylv are those avoiding the pattern 312. The quotient Wn/≡sylv

is (isomorphic to) the classical Tamari lattice [Tam51], whose elements are the binary trees on n
nodes and whose cover relations are right rotations in binary trees. See Figure 16.

4.1.2. Canonical representations in lattice quotients. If a lattice L is semidistributive, then any
lattice quotient L/≡ is also semidistributive. Moreover, via the identification between congru-
ence classes of ≡ and their minimal elements, the canonical join representations in the quo-
tient L/≡ ' π↓(L) are precisely the canonical join representations of L that only involve join-
irreducibles of L uncontracted by ≡. In other words, the canonical join complex of the quo-
tient L/≡ is isomorphic to the subcomplex of the canonical complex of L induced by the join-
irreducibles of L uncontracted by ≡.

Recall from Section 3.1 that the weak order Wn is semidistributive, the join-irreducible permuta-
tions correspond to arcs on [n], and the canonical join representations of permutations correspond
to non-crossing arc diagrams. This yields the following statement.
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Figure 16. The sylvester congruence ≡sylv (left), and the Tamari lattice (right). [PS19, Fig. 2]
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Theorem 64 ([Rea15, Thm. 4.1]). For any lattice congruence ≡ of the weak order Wn, the set of
join-irreducibles of Wn uncontracted by ≡ corresponds to a set of arcs A≡, and the canonical join
representations in the lattice quotient Wn/≡ correspond to non-crossing arc diagrams using only
arcs of A≡.

For instance, the uncontracted join-irreducibles of the sylvester congruence ≡sylv are given by
the set Asylv = {(i, j, ]i, j[,∅) | 1 ≤ i < j ≤ n} of right arcs, i.e. those which pass on the right of
all dots in between their endpoints. Therefore, the sylvester congruence classes are in bijection
with non-crossing arc diagrams with arcs in Asylv, also known as non-crossing partitions.

4.1.3. The congruence lattice and the forcing relation. The congruence lattice con(L) is the set of
all congruences of L ordered by refinement. It is a lattice where the meet is the intersection of
relations and the join is the transitive closure of union of relations. Consider a join irreducible
element j of L, and let j? be the unique element covered by j. We say that ≡ contracts j
if j ≡ j? and we denote by con(j) the unique minimal congruence of L that contracts j. It turns
out that con(j) is join irreducible in con(L) and that all join irreducible congruences in con(L)
are of this form. Hence, any congruence of L is completely determined by the subset J≡ of join
irreducible elements of L that it contracts. For j and j′ join irreducible in L, we say that j forces j′,
and write j < j′, if con(j) ≥ con(j′), that is, if any congruence contracting j also contracts j′.
The relation < is a preorder (i.e. a transitive and reflexive, but not necessarily antisymmetric,
relation) on the join irreducible elements of L. Moreover, the down sets of < (i.e. the subsets J
such that j < j′ and j ∈ J implies j′ ∈ J) are precisely the subsets J≡ of join irreducible elements
of L which are contracted by some congruence ≡ on L. We sum up with the following statement.

Theorem 65 ([Rea16, Prop. 9.5.16]). The congruence lattice con(L) is isomorphic to the lattice of
down sets of the forcing relation < (hence, it is a distributive lattice).

When < is a poset (meaning antisymmetric), then there is a bijection between its join irreducible
elements and its join irreducible congruences. The lattice L is congruence uniform if and only if
it satisfies this property and the dual property (i.e. the meet irreducible elements are in bijection
with the meet irreducible congruences). As already mentioned in Section 2.1, this is equivalent to
constructibility by interval doublings, and it implies semidistributivity.

The weak order Wn is a congruence uniform lattice, and the forcing order on join-irreducible
permutations can be described visually on arcs as follows. We say that an arc α := (i, j, A,B) is
a subarc of an arc α′ := (i′, j′, A′, B′), if i′ ≤ i < j ≤ j′ and A ⊆ A′ and B ⊆ B′. Visually, α is
a subarc of α′ if the endpoints of α are located in between those of α′ and α agrees with α′ in
between its endpoints (meaning, α and α′ pass on the left and on the right of the same points
in between the endpoints of α). See Figure 17. Then α is a subarc of α′ if and only if the join
irreducible permutation corresponding to α forces the join irreducible permutation corresponding
to α′. We thus obtain the following description of the lattice congruences of the weak order Wn.

Theorem 66 ([Rea15, Thm. 4.4 & Coro. 4.5]). The map ≡ 7→ A≡ is a bijection between the lattice
congruences of the weak order and the down sets of the subarc poset.

For instance, we have represented in Figure 19 the upper set of the congruence lattice con(W4)
generated by the recoil congruence (these are precisely the congruences whose quotient fan is
essential, see [PS19] and Figure 25).

4.1.4. Forcing in polygonal lattices. A polygon in L is an interval [x, y] which is the union of two
maximal chains joining x to y, which are disjoint except at x and y. We call edges the order
relations appearing in the polygon. The two edges incident to x are called the bottom edges of
the polygon, the two edges incident to y are called the top edges of the polygon, and the other
edges are called the side edges of the polygon. The lattice L is polygonal if

• for any y, y′ covering the same element x, the interval [x, y ∨ y′] is a polygon, and
• for any x, x′ covered by the same element y, the interval [x ∧ x′, y] is a polygon.
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Figure 17. The subarc relation (left) and the subarc poset for n = 4 (right). The red
arc (i, j, A,B) is a subarc of the blue arc (i′, j′, A′, B′). [PS19, Fig. 5]

Figure 18. Forcing in a polygon. In each picture, the red edge forces all the blue edges.

Polygonal lattices behave particularly nicely with respect to congruence relations. To be precise,
let us define two notions of forcing on all cover relations of L (not only on the relations j? l j as
before). We say that a congruence ≡ of L contracts a cover relation xl y in L if x ≡ y. We say
that x l y forces x′ l y′ if any congruence contracting x l y also contracts x′ l y′. We say that
x l y forces x′ l y′ in a polygon if there is some polygon in L containing x l y and x′ l y′ such
that one of the following holds:

(1) xl y is a bottom edge of the polygon and x′ l y′ is the opposite top edge,
(2) xl y is a bottom edge of the polygon and x′ l y′ is a side edge,
(3) xl y is a top edge of the polygon and x′ l y′ is the opposite bottom edge,
(4) xl y is a top edge of the polygon and x′ l y′ is a side edge.

See Figure 18. Note that these are the only forcing relations in a polygon, and the following holds.

Theorem 67 ([Rea16, Thm. 9-6.5]). If L is a finite polygonal lattice, then the forcing relation (on
cover relations of L) is the transitive closure of the forcing in polygons relation.

It is known that the weak order Wn is polygonal [CLCdPBM04]. More generally, the polygo-
nality of posets of regions of hyperplane arrangements was studied in details in [Rea16, Sect. 9-6].

4.1.5. Special congruences of the weak order. We conclude this recollection with some particularly
relevant congruences of the weak order Wn:

(1) the recoil congruence ≡rec is defined by the down set Arec = {(i, i+ 1,∅,∅) | i ∈ [n− 1]}
of basic arcs. It has a congruence class for each subset I ⊆ [n − 1] given by the permu-
tations whose recoils (descents of the inverse) are at positions in I. It can also be seen
as the transitive closure of the rewriting rule UuvV ≡rec UvuV for |u − v| > 1. The
quotient Wn/≡rec is the boolean lattice.

(2) for an arc α := (i, j, A,B), the α-Cambrian congruence ≡α is defined by the down set of
subarcs of α. It was introduced by N. Reading [Rea06] as a generalization of the sylvester
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Figure 19. The congruence lattice of the weak order W4, where each congruence ≡ is replaced
by its down set A≡. We have colored in green / blue / red / purple / orange the recoil / sylvester
/ anti-sylvester / Baxter / trivial (also generic rectangulation) congruence. See also Figure 25.
Adapted from [PS19, Fig. 6]
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congruence, obtained for α = (1, n, ]1, n[,∅). The α-Cambrian congruence classes are
fibers of the α-Cambrian tree insertion, or equivalently linear extensions of α-Cambrian
trees, see [LP18, CP17, PP18]. An α-Cambrian tree is a tree on [i, j] such that the
node b ∈ {i} ∪A (resp. b ∈ B ∪ {j}) has one ancestor (resp. descendant) subtree and two
descendant (resp. ancestor) subtrees, and a < b < c for any nodes a in the left descendant
(resp. ancestor) subtree of b and c in the right descendant (resp. ancestor) subtree of b. The
α-Cambrian congruence can also be seen as the transitive closure of the three rewriting
rules UuvV ≡α UvuV for u < i or v > j, UuwV vW ≡α UwuV vW for u < v < w
with v ∈ A, and UvV uwW ≡α UvV wuW for u < v < w with v ∈ B.

(3) for δ ∈ { , , , }n, the δ-permutree congruence ≡δ is defined by the down set Aδ of
arcs which do not pass on the right the points j with δj ∈ { , } nor on the left of the
points j with δj ∈ { , }. Its congruence classes correspond to δ-permutrees [PP18]. It
can also be seen as the transitive closure of the rewriting rules UuwV vW ≡δ UwuV vW
for u < v < w with δv ∈ { , } and UvV uwW ≡δ UvV wuW for u < v < w
with δv ∈ { , }.

(4) the Baxter congruence ≡Bax is defined by the down set of arcs that do not cross the vertical
axis, i.e. ABax = {(i, j, A,B) | A = ∅ or B = ∅}. Its congruence classes correspond to
diagonal rectangulations [LR12] or equivalently pairs of twin binary trees [Gir12], which
are counted by the Baxter numbers. It can also be seen as the transitive closure of the
rewriting rule UvV uxWwX ≡Bax UvV xuWwX for u < v,w < x. See also [CP24].

(5) the generic rectangulation congruence ≡Rec is defined by the down set of arcs that do not
cross twice the vertical axis, i.e. ARec ={(i, j, A,B) | A and B are empty or intervals} Its
congruence classes correspond to generic rectangulations [Rea12] up to wall slides. See
also [ACFF24, CP24].

(6) for p ≥ 1, the p-twist congruence ≡p-twist is defined by the down set of arcs passing on the
left of at most p points, i.e. Ap-twist = {(i, j, A,B) | |B| ≤ p}. Its congruence classes corre-
spond to certain acyclic pipe dreams [Pil18]. It can also be seen as the transitive closure of
the rewriting rule UuwV1v1 . . . VpvpW ≡p-twist UwuV1v1 . . . VpvpW for u<v1, . . . , vp<w.

(7) a congruence ≡ of the weak order Wn is regular if the cover graph of the quotient Wn/≡
is regular (or equivalently if the quotient fan ≡≡ is simplicial and the quotientope Q≡ is
simple, see Section 5.1). It was proved in [HM21, DIR+23, BNP23] that ≡ is regular if and
only if any minimal (in subarc order) arc in the complement of the down set A≡ is either a
left arc (i, j,∅, ]i, j[) or a right arc (i, j, ]i, j[,∅). For instance, the sylvester, Cambrian, and
permutree congruences are regular, while the Baxter, generic rectangulation, and p-twist
(for p > 1) congruences are not regular.

4.2. Forcing order and subarc order. The goal of this section is to describe the forcing order on the
join irreducible elements of the s-weak order. Our approach is similar to the one developed for the
weak order in [Rea15, Thm. 4.4] and relies on the property that the s-weak order is a polygonal
lattice with well-understood polygons, described in [Lac22, Lems. 3.16 & 3.18 and Thm. 3.19]
and [CP22, Prop. 1.35].

Proposition 68 ([CP22, Prop. 1.35], from [Lac22, Lems. 3.16 & 3.18 and Thm. 3.19]). The s-weak
order is a polygonal lattice. More precisely, let T be an s-tree such that T is covered by R and S by
left rotations of the ascents (a, b) and (c, d) respectively, with a < c. Then the interval [T,R ∨ S]
is either a square, a pentagon, or an hexagon depending on the following cases:

(1) If (a, b) is an ascent of S and (c, d) is an ascent of R, then [T,R ∨ S] is a square depicted
in the first case of Figure 20.

(2) If (a, b) is an ascent of S but (c, d) is not an ascent of R, then b = c and [T,R ∨ S] is a
pentagon depicted in the second case of Figure 20.

(3) If (a, b) is not an ascent of S and (c, d) is an ascent of R, then b = c and [T,R ∨ S] is a
pentagon depicted in the third case of Figure 20.

(4) If (a, b) is not an ascent of S and (c, d) is not an ascent of R, then b = c, sb = 1, and
[T,R ∨ S] is a hexagon depicted in the fourth case of Figure 20.
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Figure 20. The four possible intervals between T and R∨S where TlR and TlS in the s-weak
order. Figure adapted from [CP22].

Lemma 69. Let α := (i, j, A,B, r) be an s-arc and δ be a non-crossing s-arc diagram such that α ∈ δ.
Denote by T∨(α)? the only s-tree covered by T∨(α), and by T∨(δ)? the s-tree obtained by rotating
the descent (i, j) of T∨(δ). Then, for any congruence ≡ of the s-weak order, T∨(α)? ≡ T∨(α) if
and only if T∨(δ)? ≡ T∨(δ).

Proof. Assume first that T∨(α)? ≡ T∨(α). Then T∨(δ) =
∨
β∈δ T∨(β) ≡

∨
β∈δr{α} T∨(β) ∨ T∨(α)?.

Let us denote T′ :=
∨
β∈δr{α} T∨(β) ∨ T∨(α)?. It is clear that T∨(α) � T′ in the s-weak order.

Thus it follows from Lemma 60 (where we take T :=T∨(δ)) that pos(T′, i, j) < pos(T∨(α), i, j),
and Proposition 32 implies that T′ ≤ T∨(δ)?. Hence T∨(δ)? is contained in the interval [T′,T∨(δ)],
and T∨(δ)? ≡ T∨(δ) since congruence classes are intervals.

Assume now that T∨(δ)? ≡ T∨(δ). Then we have T∨(α) = T∨(α)∧T∨(δ) ≡ T∨(α)∧T∨(δ)?. But
since T∨(α) � T∨(δ)? in the s-weak order, we have that T∨(α) ∧ T∨(δ)? ≤ T∨(α)?. We conclude
that T∨(α) ≡ T∨(α)?. �

Definition 70. Consider two s-arcs α := (i, j, A,B, r) and α′ := (i′, j′, A′, B′, r′). We say that α is
a subarc of α′ if all the following conditions hold:

• i′ ≤ i < j ≤ j′,
• A ⊆ A′ and B ⊆ B′,
• if sj = 0 then j = j′,
• if i′ = i then r = r′,
• if i′ < i then either i ∈ A′ and r = 1, or i ∈ B′ and r = si.

Definition 71. We say that an s-arc α := (i, j, A,B, r) is extended by an s-arc α′ := (i′, j′, A′, B′, r′)
if one of the following conditions holds:

(1) sj 6= 0 and α′ = (i, j + 1, A ∪ {j}, B, r),
(2) sj 6= 0 and α′ = (i, j + 1, A,B ∪ {j}, r),
(3) r = si and α′ = (i− 1, j, A,B ∪ {i}, r′),
(4) r = 1 and α′ = (i− 1, j, A ∪ {i}, B, r′).

It is clear that the subarc relation is the transitive closure of the extension relation. The subarc
order is illustrated in Figure 21 (note that when n = 3, the subarc and the extension orders
coincide).
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Figure 21. The subarc order on s-arcs for s = (1, 2, 0) (left) and s = (2, 1, 0) (right).

Theorem 72. The forcing order on join irreducible s-trees coincide with the subarc order on s-arcs:
if α and α′ are two s-arcs, then T∨(α) forces T∨(α′) if and only if α is a subarc of α′.

Definition 73. Consider two s-arcs α := (i, j, A,B, r) and α′ := (i′, j′, A′, B′, r′). We write α→ α′ if
there are non-crossing s-arc diagrams δ and δ′ such that α ∈ δ, α′ ∈ δ′ and the edge T∨(δ)?lT∨(δ)
forces the edge T∨(δ′)? l T∨(δ′) in a polygon of the s-weak order, where we denote by T∨(δ)? the
s-tree obtained by rotating the descent (i, j) of T∨(δ) and by T∨(δ′)? the s-tree obtained by rotating
the descent (i′, j′) of T∨(δ′).

Proof of Theorem 72. It follows from Theorem 67, Lemma 69 and Definition 73 that the forcing
order on the s-arcs is the transitive closure of the relation →.

We can assume that α and α′ are distinct.
First, we suppose that α → α′ with δ, δ′,T∨(δ)?,T∨(δ′)∨ as in Definition 73 and we show that

α is a subarc of α′. By considering the polygon in which the edge T∨(δ)? l T∨(δ) forces the edge
T∨(δ′)? l T∨(δ′), Proposition 68 shows that we are in one of the following cases:

(1) T∨(δ) = R and T∨(δ′) = R′ (cases (2) or (4) of Proposition 68), then i = i′, sj 6= 0. The
s-tree R = T∨(δ) = T∨(δ′)? has a descent (i, j) and an ascent (i, j′) around a same gap of
the node i (so that (j, j′) is an ascent of R′ = T∨(δ′)). This implies that r = r′. Moreover,
all the nodes i < k < j that are weakly on the left, resp. strictly on the right, of the path
from i to j in R are weakly on the left, resp. strictly on the right, of the path from i to j′

in R′, thus A ⊆ A′ and B ⊆ B′. (In this case we moreover have j ∈ A′).
(2) T∨(δ) = R and T∨(δ′) = S′ (cases (3) or (4) of Proposition 68), then i = i′ and sj 6= 0.

The s-tree T has an ascent (i, j) and an ascent (j, j′) around the leftmost gap of node j,
so that (i, j′) is an ascent of the s-tree S. This implies that r = r′. Moreover, all the
nodes i < k < j that are weakly on the left, resp. strictly on the right, of the path from i
to j in R are weakly on the left, resp. strictly on the right, of the path from i to j′ in S′,
thus A ⊆ A′ and B ⊆ B′. (In this case we moreover have j ∈ B′).

(3) T∨(δ) = S and T∨(δ′) = S′ (cases (3) or (4) of Proposition 68), then j = j′. The tree S has
an ascent (i′, j) and a descent (i, j). This implies that r = si. Moreover, it follows from
the fact that (i, j) is an ascent of S′ that there are no nodes i < k < j on the path from i
to j in S. Hence, all the nodes i < k < j that are weakly on the left, resp. strictly on the
right, of the path from i to j in S are weakly on the left, resp. strictly on the right, of the
path from i′ to j in S′, thus A ⊆ A′ and B ⊆ B′. The node i is on the right of the path
from i′ to j in S′, thus i ∈ B′.

(4) T∨(δ) = S and T∨(δ′) = R′ (cases (2) or (4) of Proposition 68), then j = j′. The s-tree
T has an ascent (i′, i) and an ascent (i, j). The fact that (i′, j) is an ascent of R implies
that r = 1 (so that j is not moved during the rotation of (i′, i) from T to R). The nodes
i < k < j that are weakly on the left, resp. strictly on the right, of the path from i to j
in S are weakly on the left, resp. strictly on the right, of the path from i′ to j in R′, thus
A ⊆ A′ and B ⊆ B′. The node i is on the path from i′ to j on R′, thus i ∈ A′.

Then, we suppose that α is extended by α′ and we show that α → α′. For each of the four
cases of Definition 71 we indicate which δ and δ′ we can use to recover the four previously studied
cases.
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(1) sj 6= 0 and α′ = (i, j+1, A∪{j}, B, r). We take δ = {α} if r = 1 or δ = {α, (i, j + 1, A ∪ {j},
B, r− 1)} if r > 1, and δ′ = {α′}. Then we have T∨(δ) = R and T∨(δ′) = R′ in case (2) of
Proposition 68 if sj > 1 or case (4) if sj = 1.

(2) sj 6= 0 and α′ = (i, j + 1, A,B ∪ {j}, r). If sj > 1, we take δ = {α, (j, j + 1, ∅, ∅, sj)},
and δ′ = {α′} if r = 1 or δ′ = {α′, (i, j, A,B, r − 1)} if r > 1. Then we have T∨(δ) = R
and T∨(δ′) = S′ in case (3) of Proposition 68. If sj = 1, we take δ = {α} and δ′ = {α′}
if r = 1 or δ = {α, (i, j + 1, A ∪ {j}, B, r − 1)} and δ′ = {α′, (i, j, A,B, r − 1)} if r > 1.
Then we have T∨(δ) = R and T∨(δ′) = S′ in case (4) of Proposition 68.

(3) r = si and α′ = (i − 1, j, A,B ∪ {i}, r′). If A = ∅, we take δ = {α} and δ′ = {α′}
if r′ = 1, or δ = {α, (i − 1, i, ∅, ∅, r′ − 1)} and δ′ = {α′, (i − 1, i, ∅, ∅, r′ − 1)} if r′ > 1.
If A 6= ∅, we denote by k ∈ ]i, j[ the maximum element of A and we add the s-arc
(i− 1, k, Ar {k}, (B ∩ ]i, k[)∪ {i}, r′) to the diagrams δ previously defined. Then we have
T∨(δ) = S and T∨(δ′) = S′ in case (3) of Proposition 68 if si > 1 or case (4) if si = 1.

(4) r = 1 and α′ = (i − 1, j, A ∪ {i}, B, r′). If A = ∅, we take δ = {α} if r′ = 1, or
δ = {α, (i − 1, i, ∅, ∅, r′ − 1)} if r′ > 1, and δ′ = {α′}. If A 6= ∅, we denote by k ∈ ]i, j[
the maximum element of A and we add the s-arc (i − 1, k, A r {k}, (B ∩ ]i, k[) ∪ {i}, r′)
to the diagram δ and we add (i, k, A r {k}, B ∩ ]i, k[, si) to δ′. Then we have T∨(δ) = S
and T∨(δ′) = R′ in case (2) of Proposition 68 if si > 1 or case (4) if si = 1. �

From Theorems 65 and 72, we immediately deduce the following statement, illustrated in Fig-
ure 22.

Corollary 74. The congruence lattice of the s-weak order Ws is isomorphic to the lattice of down
sets of the subarc order on s-arcs.

For a congruence ≡ of Ws, we denote by A≡ the corresponding down set of the subarc order on
s-arcs.

4.3. Some relevant congruences of the s-weak order. In this section, we exploit Corollary 74 to
define particularly relevant congruences, mimicking some congruences of Section 4.1.5. We present
a few conjectures that echo the situation of the similar congruences in the classical weak order.

4.3.1. The s-sylvester congruence and the s-Tamari lattice. A right s-arc is an s-arc of the
form (i, j, {k ∈ ]i, j[ | sk 6= 0} ,∅, r) for some 1 ≤ i < j ≤ n and r ∈ [si]. The set of right s-
arcs clearly forms a down set Asylv of the subarc order. The corresponding congruence of the
s-weak order is the s-sylvester congruence ≡sylv, and the quotient Ws/≡sylv of the s-weak order
by the s-sylvester congruence is the s-Tamari lattice. An s-tree T is minimal in its s-sylvester
congruence class if and only if pos(T, a, b) ≤ pos(T, a, c) for all 1 ≤ a < b < c ≤ n with sb 6= 0.

When s contains no 0, and up to our convention modifications (see Remark 3), these s-trees
are called s-Tamari trees in [CP22, CP23]. We thus directly obtain that the subposet of the
s-weak order induced by the s-Tamari trees is (isomorphic to) the s-Tamari lattice Ws/≡sylv.
This immediately recovers [CP22, Thm. 2.20]. We refer to [CP22, Sect. 2.4] for the connection to
the ν-Tamari lattice of [PRV17, CPS19].

When s contains some 0, the s-trees that are minimal in their s-sylvester congruence classes
actually differ from the s-Tamari trees of [CP22], because they drop the condition sb 6= 0. It was
proved in [CP22, Thm. 2.2] that the subposet of the s-weak order induced by the s-Tamari trees
is still a sublattice of the s-weak order, but is not anymore a lattice quotient of the s-weak order.
(We note that even when s contains no 0, it follows from the theory of lattice congruences that
this subposet is a join sublattice, but it could a priori fail to be a meet sublattice.) They still call
this sublattice the s-Tamari lattice. We insist that, in the situation that s contains some 0, our
s-Tamari lattice differs from that of [CP22, Sect. 2].

4.3.2. The s-Cambrian congruences. For any s-arc α, the α-Cambrian congruence ≡α is defined by
the down set of subarcs of α, and the quotient Ws/≡α is the α-Cambrian lattice. Note that the s-
sylvester congruence is not anymore an s-Cambrian congruence (as some right arcs are not subarcs
of the arc (1, n, {k ∈ ]1, n[ | sk 6= 0} ,∅, 1)). Our main conjecture on s-Cambrian congruences is
the following.
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Figure 22. The congruence lattice of the s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0)
(right), where each congruence ≡ is replaced by its s-arc down set A≡. See also Figures 27 and 29.

Conjecture 75. For any fixed s, the following only depend on the endpoints of α:

• the cardinality of the α-Cambrian lattice,
• the f -vector of the canonical join complex of the α-Cambrian lattice,
• the (isomorphism class of the) undirected cover graph of the α-Cambrian lattice,
• the (isomorphism class of the) face lattice of the α-Cambrian foam F≡α or equivalently of

the α-Cambrian quotientoplex Q≡α (see Section 5 for the definitions of F≡ and Q≡).

4.3.3. The s-permutree congruences. For a map δ : {i ∈ [n] | si 6= 0} → { , , , }, the δ-per-
mutree congruence ≡δ is defined by the down set of arcs which do not pass on the right of a point j
with δ(j) ∈ { , } nor on the left of the points j with δ(j) ∈ { , }. The δ-permutree lattice
is the quotient Ws/≡δ. For these congruences, we observed the following behavior.

Conjecture 76. For any fixed s, changing any to in δ does not affect

• the cardinality of the δ-permutree lattice,
• the f -vector of the canonical join complex of the δ-permutree lattice.

Note that in contrast to Conjecture 75, the undirected cover graph of the δ-permutree lattice and
the face lattice of the δ-permutree foam F≡δ and of the δ-permutree quotientoplex Q≡δ all depend
on the positions of and . For instance, for s := (1, 1, 2, 2, 1, 1), and δ := ( , , , , , )
and δ′ := ( , , , , , ), the δ- and δ′-permutree lattices both have cardinality 331, the
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f -vector of their canonical complex is (1, 20, 93, 139, 69, 9), but their undirected cover graphs are
not isomorphic.

4.3.4. Regular congruences. An interval of a lattice L is cellular if it is of the form [x,
∨
Y ] for x ∈ L

and a non-empty subset Y of elements of L covering x, or dually [
∧
X, y] for any y ∈ L and a

non-empty subset X of elements of L covered by y. We say that L is cellularly regular if the
cover graph of any cellular interval of L is regular. Note that it obviously does not imply that the
cover graph of the lattice L itself is regular. The result of [HM21, DIR+23, BNP23] on regular
congruences of the weak order motivates the following conjecture.

Conjecture 77. The following conditions are equivalent for a congruence ≡ of the s-weak order Ws:

• the quotient Ws/≡ is cellularly regular,
• any minimal (in subarc order) arc of the complement of the down set A≡ is either a left

arc (i.e. with A = ∅) or a right arc (i.e. with B = ∅).

5. Quotient foams and quotientoplexes

In this section, we construct polyhedral complexes realizing all lattice quotients of the s-weak
order Ws. Most proofs of the results of this section actually require some basic tropical geometry,
and are therefore delayed to Section 6.

5.1. Recollections 5: Quotient fans and quotientopes. As usual now, we start with a recollection of
the geometric realizations of the lattice quotients of the classical weak order [Rea05, PS19, PPR23].

5.1.1. Quotient fan. We start with polyhedral fan realizations.

Definition 78 ([Rea05, Thm. 1.1]). The quotient fan of a congruence ≡ of the weak order is the
polyhedral fan F≡ where

(i) the maximal cones are obtained by glueing together the chambers of the braid arrangement
corresponding to permutations in the same congruence class of ≡,

(ii) the union of the codimension 1 cones is the union of the shards of the arcs of A≡.

By construction, the braid fan refines the quotient fan F≡, and the dual graph of the quotient
fan F≡, oriented in the direction ω, is isomorphic to the Hasse graph of the quotient Wn/≡. For
instance, Figure 23 (left) represents the sylvester fan, the quotient fan of the sylvester congruence
of Figure 16 (left), whose dual graph is the cover graph of the Tamari lattice of Figure 16 (right).

Figure 23. The sylvester fan (left) and the associahedron Asso(4) (right). [PPR23, Fig. 5]
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Figure 24. The shard polytopes of the four arcs of the form (1, 4, A,B). The vertices of the
shard polytope of α := (i, j, A,B) are labeled by the corresponding α-alternating matchings, where
we use solid dots • for elements in {i} ∪ A and hollow dots ◦ for elements in B ∪ {j}. The
corresponding vertex coordinates are directly read replacing • by 1 and ◦ by −1. For instance,

the vertex labeled •
··
◦

has coordinates (1, 0, 0,−1). Adapted from [PPR23, Fig. 10].

5.1.2. Shard polytopes and quotientopes. We now recall the definition and main property of the
shard polytopes of [PPR23], which are illustrated in Figure 24.

Definition 79 ([PPR23, Defs. 39 & 40]). Fix a classical arc α := (i, j, A,B). An α-alternating
matching µ is a sequence i ≤ i1 < j1 < i2 < j2 < · · · < iq < jq ≤ j such that ip ∈ {i} ∪ A
and jp ∈ {j} ∪ B for all p ∈ [q]. Its characteristic vector is χµ :=

∑
p∈[q] eip − ejp . We denote by

Mα the set of all α-alternating matchings. The shard polytope of α is the convex hull SPα of the
characteristic vectors of all α-alternating matchings µ in Mα.

For instance, the shard polytope SPα corresponding to a right arc α := (i, j, ]i, j[,∅) is just the
simplex 4[i,j] := conv {ek | i ≤ k ≤ j} translated by the vector −ej .
Proposition 80 ([PPR23, Prop. 48]). For any arc α, the union of the walls of the normal fan of
the shard polytope SPα

• contains the shard Σα corresponding to α,
• is contained in the union of the shards Σβ over all subarcs β of α.

The shard polytopes are the building blocks to construct polytopal realizations of lattice quo-
tients of the weak order. We note that alternative realizations were constructed by V. Pilaud and
F. Santos in [PS19] using direct but slightly obscur right hand sides to define their inequalities.

Theorem 81 ([PPR23, Coro. 50]). For any congruence ≡ of the weak order, the quotient fan F≡
is the normal fan of the quotientope Q≡, obtained as the Minkowski sum of (any positive scaling
of) the shard polytopes SPα, over all arcs α in A≡.

By construction, the quotientope Q≡ is a deformed permutahedron (or generalized permuta-
hedron [Pos09, PRW08], or polymatroid [Edm70]), whose skeleton, oriented in the direction ω, is
isomorphic to the Hasse diagram of the quotient Wn/≡. For instance, Figure 23 (right) represents
the associahedron Asso(4), a quotientope for the sylvester congruence of Figure 16 (left), whose
normal fan is the sylvester fan of Figure 23 (left), and whose skeleton is the cover graph of the
Tamari lattice of Figure 16 (right). It is obtained as the Minkowski sum of the shard polytopes of
all right arcs, that is, up to translation, of the faces 4[i,j] of the standard simplex corresponding
to all intervals 1 ≤ i < j ≤ n.

If we want to make explicit the scaling coefficients, we denote byQ≡(λ) the quotientope obtained
as the Minkowski sum

∑
α∈A≡ λα SPα for λ := (λα)α∈A≡ with λα > 0 for all α ∈ A≡.

Remark 82. In general, the quotient fan F≡ is not simplicial, and the quotientope Q≡ is not
simple. It is the case for regular congruences, see Section 4.1.5 (5) and [HM21, DIR+23, BNP23].
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Figure 25. The congruence lattice of the weak order W4, where each congruence ≡ is replaced
by its quotientope Q≡. We have colored in green / blue / red / purple / orange the cube / asso-
ciahedron / anti-associahedron / Baxter polytope / permutahedron. See also Figure 19. Adapted
from [PS19, Fig. 9]
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Figure 26. The quotient foam F≡sylv
for the s-sylvester congruence of the s-weak order of Sec-

tion 4.3.1, for s = (1, 2, 0) (left) and s = (2, 1, 0) (right).

5.2. Quotient foams. We now generalize Definition 78 to the s-weak order. For a congruence of
the s-weak order Ws, we construct a polyhedral complex F≡ coarsening the s-foam Fs, and whose
oriented dual graph is isomorphic to the Hasse diagram of the quotient Ws/≡. See Figures 26
and 27 for some illustrations. Recall from Definition 52 that we have associated to each s-arc α a
codimension 1 polyhedral cone called the s-shard Σα of α.

Definition 83. For any congruence ≡ of the s-weak order Ws, the quotient foam F≡ is the complete
polyhedral complex defined by the following equivalent descriptions:

(i) its maximal cells are obtained by glueing together the maximal cells of the s-foam corre-
sponding to s-trees in the same congruence class of ≡,

(ii) the union of its codimension 1 cells is the union of the s-shards Σα of the s-arcs α in A≡.

Definition 83 requires some justifications, that we give in the following statements.

Proposition 84. For any congruence ≡ of the s-weak order Ws, the two descriptions of Defini-
tion 83 coincide.

Proof. Consider a cover relation Tl T′ in the s-weak order, let (i, j) denote the ascent of T and
descent of T′ corresponding to this flip, and let α := (i, j, A,B, r) denote the corresponding s-arc
in δ∨(T′). Consider now the s-bush B obtained by stitching (i, j) in T (or equivalently in T′), that
is, such that F̄T∩F̄T′ = FB by Proposition 22. Then F̄B is contained in the shard Σα by Lemma 53.
As T ≡ T′ if and only if α /∈ A≡, we thus obtain that T l T′ is contracted in the description of
Definition 83 (i) if and only if it is contracted in the description of Definition 83 (ii). �

Proposition 85. For any congruence ≡ of the s-weak order Ws, the quotient foam F≡ of Defini-
tion 83 is indeed a polyhedral complex.

Proof. The proof uses tropical geometry to show that the quotient foam is the polyhedral complex
induced by a certain arrangement of tropical hypersurfaces, see Theorem 106. �

Proposition 86. The Hasse diagram of the quotient Ws/≡ is isomorphic to the dual graph of the
quotient foam F≡, oriented in the direction ω.

Proof. By Definition 83 (i), the maximal cells of the quotient foam F≡ are labeled by the equiv-
alence classes of ≡. Consider now two maximal cells C and C′ corresponding to two equivalent
classes C and C′ of ≡. Then the following are equivalent:
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Figure 27. The congruence lattice of the s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0)
(right), where each congruence ≡ is replaced by its quotient foam F≡. See also Figures 22 and 29.

• Cl C′ in the quotient Ws/≡,
• there exist two s-trees T ∈ C and T′ ∈ C′ such that Tl T′ in the s-weak order,
• there exist two s-trees T ∈ C and T′ ∈ C′ such that F̄T and F̄T′ are adjacent, and ω points

from F̄T to F̄T′ ,
• C and C′ are adjacent, and ω points from C to C′. �

5.3. Shardoplexes. Generalizing Definition 79, we now associate to each s-arc α a polytopal com-
plex Sα, that we call the α-shardoplex. To construct this polytopal complex, we associate a
polytope (not necessarily full-dimensional) to each s-arc and s-trunk, in such a way that the
polytopes corresponding to the same s-arc but different s-trunks glue nicely. These polytopes
are constructed as certain faces of shard polytopes of [PPR23], see Definition 79. Recall from
Remark 2 (6) our labeling of the s-trunks by Λs, and from Example 16 the geometric description
of the corresponding minimal cells of the s-foam Fs.

Definition 87. Fix an s-arc α := (i, j, A,B, r), let α̃ := (i, j, A,B) denote the corresponding classical
arc, and let q ∈ Λs. The local shard polytope Sqα is the face of the shard polytope SPα̃ maximizing
the scalar product with the vector

∑
`∈]i,j]

(
qi − q` + r − 1 +

∑
k∈B∩]i,`[ max(0, sk − 1)

)
e`.
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Figure 28. Some quotientoplexes of the (2, 1, 0)-weak order, obtained as Minkowski sums of
shardoplexes.

Remark 88. In Definition 87, note that α̃ := (i, j, A,B) is strictly speaking not really an arc
since A t B = {k ∈ ]i, j[ | sk 6= 0} may differ from ]i, j[ if s contains some 0. However, Defi-
nition 79 for the shard polytope SPα̃ still holds, and was already considered in [PPR23, Rem. 43]
as “pseudoshard polytope”.

Proposition 89. For any s-arc α, the collection of all local shard polytopes Sqα for q ∈ Λs, together
with all their faces, form a polyhedral complex Sα that we call the shardoplex of α.

Proof. The union of the sets of faces of the local shard polytopes Sqα for q ∈ Λs is a set of faces
of the shard polytope SPα̃ that contains SPα̃ itself. Indeed, we can take for example q ∈ Λs
such that q` = 1 for all ` ∈ [i] ∪ ]j, n] and q` = r +

∑
k∈B∩]i,`[ max(0, sk − 1) for all ` ∈ ]i, j]

to have Sqα = SPα̃. Hence the collection of local shard polytopes with their faces indeed form a
polytopal complex. �

Generalizing Proposition 80, the main feature of the α-shardoplex Sα is that the union of the
walls of its dual polyhedral complex contains the s-shard Σα and is contained in the union of the
s-shards Σβ over all subarcs β of the s-arc α. This property is properly stated in Proposition 105
in terms of tropical geometry.

5.4. Quotientoplexes. We now generalize Theorem 81 to the s-weak order. For a congruence ≡ of
the s-weak order, we define a polytopal complex Q≡ using Minkowski sums of the α-shardoplexes
of Proposition 89, such that the oriented graph of Q≡ is isomorphic to the Hasse diagram of the
quotient Ws/≡. See Figures 29 to 33 for some illustrations. We first need to explain what we
mean by Minkowski sums here, even if it will be clear from Section 6.

Lemma 90. Let S := (Sq)q∈Λs and T := (Tq)q∈Λs be such that for any p 6= q ∈ Λs, there is µ, ν ∈ R
such that 〈 q − p | s 〉 − µ (resp. 〈 q − p | t 〉 − ν) is non-negative for all s ∈ Sp (resp. t ∈ Tp) and
non-positive for all s ∈ Sq (resp. t ∈ Tq). If S and T, together with all their faces, form two
polytopal complexes, then so does their Minkowski sum S+T := (Sq +Tq)q∈Λs .

Proof. Let X and Y be two faces of S + T whose intersection is non-empty. Let p, q ∈ Λs
be such that X (resp. Y) is a face of Sp + Tp (resp. of Sq + Tq). Let µ, ν ∈ R be as in the
statement. Then 〈 q − p | s+ t 〉− (µ+ν) is non-negative for any s+t ∈ Sp+Tp and non-positive
for s+ t ∈ Sq +Tq. Hence, this dot product must vanish on the intersection X∩Y. We conclude
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that the intersection X ∩Y lies in the face of X, hence of Sp +Tp (resp. of Y, hence of Sq +Tq)
maximizing the direction q−p (resp. p−q). By standard properties of Minkowski sums, the latter
is the Minkowski sum of the faces of Sp and Tp (resp. of Sq and Tq) maximizing the direction q−p
(resp. p − q). Since S (resp. T) form polytopal complexes, these faces of Sp and Sq (resp. of Tp

and Tq) intersect along a face F (resp. G) of both. We conclude that X ∩Y = F+G is a face of
both X and Y. �

As the shardoplexes clearly satisfy the conditions of Lemma 90, we can apply Lemma 90 to
define Minkowski sums of shardoplexes. Note that we will see in Theorem 107 an alternative and
more direct definition for the quotientoplex Q≡ in terms of tropical geometry.

Definition 91. For a congruence ≡ of the s-weak order Ws, the quotientoplex Q≡ is the Minkowski
sum of (any positive scaling of) the shardoplexes Sα over all s-arcs α in A≡.

If we want to make explicit the scaling coefficients, we denote by Q≡(λ) the quotientoplex
obtained as the Minkowski sum

∑
α∈A≡ λα Sα for λ := (λα)α∈A≡ with λα > 0.

We now state a generalization of Theorem 81. A more refined version will be stated in Theo-
rem 106 and Theorem 107 using tropical geometry.

Proposition 92. There is an inclusion reversing bijection ψ from the faces of the quotient foam F≡
to the faces of the quotientoplex Q≡ such that F and ψ(F) are orthogonal.

Proof. See Remark 108. �

Proposition 93. For any congruence ≡ of the s-weak order Ws, the Hasse diagram of the quo-
tient Ws/≡ is isomorphic to the skeleton of the quotientoplex Q≡.

Proof. This follows from Propositions 86 and 92. �

Proposition 94. For an s-arc α := (i, j, A,B, r), denote by α̃ := (i, j, A,B) the corresponding clas-
sical arc. For a congruence ≡ of the s-weak order Ws, denote by ≡̃ the corresponding congru-
ence of the weak order Wn, with down set of arcs A≡̃ := {α̃ | α ∈ A≡}. Consider λ := (λα)α∈A≡
with λα > 0, and let λ̃ := (λ̃α̃)α̃∈A≡̃ with λ̃α̃ :=

∑
α λα where the sum ranges over all s-arcs α

which project to α̃. Then the quotientoplex Q≡(λ) is a polytopal subdivision of (a translate of) the

quotientope Q≡̃(λ̃).

Proof. For each s-arc α, the support of the α-shardoplex Sα is (a translate of) the shard poly-
tope SPα̃. Hence, the support of the Minkowski sum Q≡(λ) :=

∑
α∈A≡ λαSα is (a translate of)

the Minkowski sum
∑
α∈A≡ λα SPα̃ =

∑
α̃∈A≡̃

(∑
α λα

)
SPα̃ =

∑
α̃∈A≡̃ λ̃α̃ SPα̃ =: Q≡̃(λ̃). �

Remark 95. In Proposition 94, note that ≡̃ is strictly speaking not really a congruence of the weak
order, for the same reason as Remark 88. However, the definition of Q≡̃(λ̃) as a Minkowski sum

of pseudoshard polytopes
∑
α̃ λ̃α̃ SPα̃ is still valid.

Applying Propositions 93 and 94 to the trivial congruence (where each congruence class contains
a single s-tree), we obtain the following statement, answering a question of C. Ceballos and
V. Pons [CP22, CP23]. We note that this question was partially solved in [DMP+23] in the case
when s contains no 0 entry, with a very different method based on a combination of flow polytopes,
tropical geometry, and Cayley embedding.

Corollary 96. For any s, the Hasse diagram of the s-weak order Ws is isomorphic to the ori-
ented skeleton of a polytopal subdivision of a polytope combinatorially equivalent to the zono-
tope Zono(s) :=

∑
1≤i<j≤n si conv{ei, ej}.

Proof. By Propositions 93 and 94, the Hasse diagram of the s-weak order Ws is isomorphic to
a polyhedral subdivision of Q≡̃(λ̃), where ≡̃ is the projection of the trivial congruence ≡ of the

s-weak order. The normal fan of Q≡̃(λ̃) is the arrangement of the hyperplanes {x ∈ Rn | xi = xj}
for all 1 ≤ i < j ≤ n such that there exists an s-arc of the form (i, j, A,B, r), that is, such

that si 6= 0. We conclude that Q≡̃(λ̃) and Zono(s) are normally equivalent, hence combinatorially
equivalent. �
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Remark 97. In fact, the Minkowski sum of the shardoplexes Sα for all s-arcs α, with coeffi-
cients λα = 1 is a polytopal subdivision of the zonotope∑

1≤i<j≤n

1si 6=0

( ∑
1≤g≤i

sg 2#{h∈]g,i[ | sh 6=0}
)(

1 + 1sj 6=0

∑
j<`≤n

2#{k∈]j,`[ | sk 6=0}
)

conv{0, ei − ej}.

For instance, when s = (1, . . . , 1), this zonotope∑
1≤i<j≤n

2n−j+i−1 conv{0, ei − ej}

is the sum of all the shard polytopes illustrated in [PPR23, Fig. 14].

Figure 29 illustrates the quotientoplexes of all congruences of the (1, 2, 0)- and (2, 1, 0)-weak
orders. In Figures 30 to 33, we have represented the quotientoplexes for the trivial and the sylvester
congruences of some s-weak orders.

Remark 98. Consider s ∈ {0, 1}n, and define the directed graph Ds with vertices [n] and arcs
{(i, j) | 1 ≤ i < j ≤ n and si 6= 0}. As Tj ≤ 2 for all j ∈ [n], we have

∏
j∈[n] max(1, Tj−1 − 1) = 1,

hence a single s-trunk. Consequently

• the s-weak order is the acyclic reorientation lattice of Ds studied in [Pil21] (one can check
that Ds is indeed a vertebrate and skeletal acyclic directed graph as defined in [Pil21]),

• the s-arcs correspond to the ropes of Ds, the non-crossing s-arc diagrams correspond to
the non-crossing rope diagrams of Ds, and the subarc order coincide with the subrope
order of Ds (see [Pil21] for the definitions),

• the s-foam is the graphical arrangement of Ds, and the s-permutahedron is a graphical
zonotope ofDs (a Minkowski sum of positive dilates of the segments [ei, ej ] for all arcs (i, j)
of Ds, where the dilation factors are directly obtained from Remark 97).

6. Tropical geometry

In this section, we prove the results of Section 5 via tropical geometry.

6.1. Recollection 6: Polytopal subdivisions and tropical duality. Tropical geometry offers a con-
venient setting to dualize regular polyhedral subdivisions, in a sense that we define below. This
section is based on the work of Joswig in [Jos21, Chap. 1] and [Jos17] (except that we define the
tropical addition with max rather than min).

The tropical semiring is the set T :=R∪{∞} equipped with the tropical addition x⊕y := max(x, y)
and the tropical multiplication x � y :=x + y. A tropical polynomial on d variables is any func-
tion F : Rd → R of the form

F (x) =
⊕
i∈[n]

ci � xai = max {ci + 〈ai,x〉 | i ∈ [n]} ,

where n ∈ N and for all i ∈ [n], ci ∈ T and ai ∈ Zd. This is a convex piecewise affine function.
Note that F is not uniquely determined by the exponents ai and the coefficients ci.

The tropical hypersurface defined by F , or vanishing locus of F , is the set

T (F ) :=
{
x ∈ Rd | the maximum of F (x) is attained at least twice

}
.

It is the image codimension-2-skeleton of the dome

D(F ) :=
{

(x, y) ∈ Rd+1 | x ∈ Rd, y ∈ R, y ≥ F (x)
}

under the orthogonal projection that omits the last coordinate [Jos21, Coro. 1.6].
The cells of T (F ) are the projections of the faces of D(F ) (here we include the regions of Rd

delimited by T (F ) as its d-dimensional cells. In fact we are considering the normal complex NC(F )
defined in [Jos21, after Exm. 1.7]).

Note that the cells of T (F ) are invariant under multiplying all ci and ai by a same scalar λ ∈ R.
Let A = {a1, . . . ,an} be a point configuration in Rd with integer coordinates vertices, and

` : [n]→ R a lifting function. Such a point configuration together with its lifting function ` define:
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Figure 29. The congruence lattice of the s-weak order Ws for s = (1, 2, 0) (left) and s = (2, 1, 0)
(right), where each congruence ≡ is replaced by its quotientoplex Q≡. See also Figures 22 and 27.

<latexit sha1_base64="hP/0FsdPzydQiirvSvHWAoZDjBU="></latexit>
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Figure 30. The (1, 1, 2, 1)-permutahedron and the (1, 1, 2, 1)-associahedron.
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Figure 31. The (2, 1, 0, 1)-permutahedron and the (2, 1, 0, 1)-associahedron.
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Figure 32. The (1, 4, 3, 2)-permutahedron and the (1, 4, 3, 2)-associahedron.
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Figure 33. The (2, 3, 2, 1)-permutahedron and the (2, 3, 2, 1)-associahedron.
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• the regular subdivision S of A obtained by taking the image of the upper faces of
conv({(a1, `(1)), . . . , (an, `(n))}) by the projection that forgets the last coordinate,

• the tropical polynomial

F (x) =
⊕
i∈[n]

`(i)� xai = max {`(i) + 〈ai,x〉 | i ∈ [n]} ,

where x ∈ Rd.
We say that T (F ) is the tropical dual of the subdivision S with lifting function ` since we have

the following theorem.

Theorem 99 ([Jos21, Theorem 1.13]). There is a bijection between the k-dimensional cells of S
and the (d− k)-dimensional cells of T (F ), that reverses the inclusion order.

Remark 100. This duality corresponds to what P. McMullen calls strong duality in [McM03,
Sects. 6 & 7] (see in particular [McM03, Thm. 7.1]). It implies that the affine spans of dual cells
are orthogonal.

We now look at the case of Minkowski sum. We consider a family of point configurations
A1, . . . ,Ak in Rd such that for all j ∈ [k],Aj = {aj,1, . . . ,aj,mj} is a point configuration in Rd with
integer coordinate vertices and `j : [mj ] → R is an associated lifting function. Their Minkowski
sum is the point configuration A :=

∑
Ai = {a1,i1 + . . .+ ak,ik | (i1, . . . , ik) ∈ [m1]× . . .× [mk]}

in Rd with the lifting function ` : [m1]× . . .× [mk]→ R such that `(i1, . . . , ik) =
∑
j∈[k] `j(ij).

The corresponding tropical polynomial is

F (x) =
⊕

(i1,...,ik)
∈[m1]×...×[mk]

`(i1, . . . , ik)� x
∑
j∈[k] aj,ij =

⊕
(i1,...,ik)

∈[m1]×...×[mk]

⊙
j∈[k]

`j(ij)� xaj,ij

=
⊙
j∈[k]

⊕
ij∈[mj ]

`j(ij)� xaj,ij =
⊙
j∈[k]

Fj(x),

where Fj is the tropical polynomial associated to Aj with lifting `j .

Lemma 101 ([Jos17, Lem. 6]). Let F be a tropical polynomial obtained as a factorization F =
⊙

j∈[k] Fj.

Then, the vanishing locus T (F ) is obtained by taking the union of the vanishing loci T (Fj)
for j ∈ [k] and the cells of T (F ) are the intersections of the cells of all T (Fj) for j ∈ [k].
We say that these cells are induced by the arrangement of tropical hypersurfaces {T (Fj) | j ∈ [k]}.

We have the following statement as a consequence of the previous discussion on Minkowski sum
and of Theorem 99.

Theorem 102. The tropical dual of the mixed subdivision S of a Minkowski sum of point configu-
rations {Aj | j ∈ [k]} each with a lifting function `j is the polyhedral complex of cells induced by
the arrangement of tropical hypersurfaces {T (Fj) | j ∈ [k]}.

6.2. Shard tropical hypersurfaces and polynomials.

Definition 103. Let α := (i, j, A,B, t) be an s-arc, and α̃ := (i, j, A,B) the corresponding classical
arc. For each α̃-alternate matching µ := {i1 < j1 < . . . < iq < jq} in Mα̃, we define the lifting
`α(µ) := − (r − 1)1i1=i −

∑
p∈[q]

∑
k∈B∩]ip,jp[ max(0, sk − 1).

This lifting gives rise to the tropical polynomial

Fα(x) =
⊕
µ∈Mα̃

`α(µ)� xχµ ,

with associated tropical hypersurface T (Fα).
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Lemma 104. The lifting `α induces the trivial subdivision of the shard polytope SPα̃. Moreover,
the unique minimal cell of T (Fα) is the following subspace, of dimension n− (j − i):

Cmin
α :=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi − xj = r − 1 +
∑
k∈B

max(0, sk − 1),

xi − xa = r − 1 +
∑

k∈B∩]i,a[

max(0, sk − 1) for all a ∈ A,

xi − xb = r − 1 +
∑

k∈B∩]i,b[

max(0, sk − 1) for all b ∈ B.


Proof. A minimal cell of T (Fα) is the locus where the maximum of Fα is attained at a maximal
subset S of Mα. Let x be a point in such a cell. We see that

• {∅, {i < j}} ⊆ S implies that xi − xj = r − 1 +
∑
k∈B max(0, sk − 1),

• for all a ∈ A, {∅, {a < j}} ⊆ S implies that xa − xj =
∑
k∈B∩]a,j[ max(0, sk − 1),

• for all b ∈ B, {∅, {i < b}} ⊆ S implies that xi − xb = r − 1 +
∑
k∈B∩]i,b[ max(0, sk − 1),

and if all these equations are satisfied then {∅, µ} ⊆ S for any µ ∈ Mα. Hence there is a unique
minimal cell of T (Fα), where the maximum of Fα is attained for all µ ∈ Mα̃, and it is equal
to Cmin

α . �

Proposition 105. For any s-arc α, the tropical hypersurface T (Fα)

• contains the shard Σα,
• is contained in the union of the shards Σβ over all subarcs β of α.

Proof. Note that this proposition is the analogue of [PPR23, Proposition 48], where the normal
fan of the shard polytope SPα is replaced by the tropical hypersurface T (Fα). The proof is very
similar and relies on [PPR23, Lemma 49].

We consider an s-shard α := (i, j, A,B, t). We recall that the s-shard of α is the polyhedron

Σα =


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi − xj = r − 1 +
∑
k∈B

max(0, sk − 1),

xi − xa ≥ r − 1 +
∑

k∈B∩]i,a[

max(0, sk − 1) for all a ∈ A,

xi − xb ≤ r − 1 +
∑

k∈B∩]i,b[

max(0, sk − 1) for all b ∈ B.



=


x ∈ Rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(r − 1)−
∑
k∈B

max(0, sk − 1) + xi − xj = 0,

−
∑

k∈B∩]a,j[

max(0, sk − 1) + xa − xj ≤ 0 for all a ∈ A,

−(r − 1)−
∑

k∈B∩]i,b[

max(0, sk − 1) + xi − xb ≤ 0 for all b ∈ B.


This corresponds to the locus where the maximum of Fα is attained for both µ = {i < j} and µ = ∅,
which shows that Σα ⊆ T (Fα). Indeed, for any x ∈ Σα and µ := {i1<. . .<jq} ∈ Mα̃r{{i < j}, ∅},
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we have

`α(µ) + 〈χµ,x〉 = −(r − 1)1i1=i +
∑
p∈[q]

− ∑
k∈B∩]ip,jp[

max(0, sk − 1) + xip − xjp



= −(r − 1)1i1=i +
∑
p∈[q]


−

∑
k∈B∩]ip,jp[

max(0, sk − 1) + xip − xjp

−(r − 1)−
∑
k∈B

max(0, sk − 1) + xi − xj



= −(r − 1)1i1=i +
∑
p∈[q]


−(r − 1)−

∑
k∈B∩]i,jp[

max(0, sk − 1) + xi − xjp

−
∑

k∈B∩]ip,j[

max(0, sk − 1) + xip − xj


≤ 0.

Now we want to show that any codimension 1 cell of T (Fα) is contained in a shard Σβ for a
certain subarc β of α. It follows from Lemma 104 that these cells are in correspondence with the
edges of the shard polytope SPα̃.

Let x ∈ T (Fα), that attains the maximum of Fα at exactly two α̃-alternate matchings µ1 and µ2.
This implies that there is an edge between the vertices χµ1

and χµ2
in the shard polytope SPα̃

and we are in one of the four cases of [PPR23, Lemma 49]. We give the details for the first one
and for the others we only specify β, the computations are similar:

(1) If µ1 = H < i′ < j′ < K and µ2 = H < K, we define β := (i′, j′, A′, B′, r′) with A′ :=A ∩
]i′, j′[, B′ :=B ∩ ]i′, j′[ and r′ := r if i′ = i or r′ := 1 otherwise. Then we have:
• 0 = `α(µ1)+〈χµ1

,x〉−`α(µ2)+〈χµ2
,x〉 = −(r−1)1i′=i−

∑
k∈B∩]i′,j′[ max(0, sk − 1)+

xi′ − xj′ .
• for any a ∈ A′,

0 < `α(µ1) + 〈χµ1
,x〉 − `α(µ3) + 〈χµ3

,x〉

= −(r − 1)1i′=i −
∑

k∈B∩]i′,a[

max(0, sk − 1) + xi′ − xa,

where µ3 denotes the α̃-alternate matching µ3 :=H < a < j′ < K.
• for any b ∈ B′,

0 < `α(µ1) + 〈χµ1
,x〉 − `α(µ3) + 〈χµ3

,x〉

= −
∑

k∈B∩[b,j′[

max(0, sk − 1) + xb − xj′

= (r − 1)1i′=i +
∑

k∈B∩]i′,b[

max(0, sk − 1) + xb − xi′ ,

where µ3 denotes the α̃-alternate matching µ3 :=H < i′ < b < K.
(2) If µ1 = H < i′ < j1 < K and µ2 = H < i′ < j2 < K with j1 < j2, we define

β := (j1, j2, A
′, B′, sj1) with A′ :=A ∩ ]j1, j2[, B′ :=B ∩ ]j1, j2[.

(3) If µ1 = H < i1 < j′ < K and µ2 = H < i2 < j′ < K, we define β := (i1, i2, A
′, B′, r′) with

A′ :=A ∩ ]i1, i2[, B′ :=B ∩ ]i1, i2[ and r′ := r if i1 = i or r′ := 1 otherwise.
(4) If µ1 = H < i1 < j1 < i2 < j2 < K and µ2 = H < i1 < j2 < K, we define

β := (j1, i2, A
′, B′, sj1) with A′ :=A ∩ ]i1, j2[, B′ :=B ∩ ]i1, j2[.

We see that in all cases β is a subarc of α and x ∈ Σβ . �

As a corollary of Proposition 105, Lemma 101 and Theorem 102 we obtain directly the following
statement.

Theorem 106. For any congruence ≡ of the s-weak order, the quotient foam F≡ is the polyhedral
complex induced by the arrangement of tropical hypersurfaces {T (Fα) | α ∈ A≡}. In particular,
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it is the tropical dual of the regular subdivision of the Minkowski sum of the point configura-
tions

{
χµ
∣∣ µ ∈Mα̃

}
with lifting function `α, over all α ∈ A≡.

Theorem 107. For any congruence ≡ of the s-weak order, for any λ := (λα)α∈A≡ with λα > 0, the
cells of the quotientoplex Q≡(λ) are the cells of the regular subdivision of the Minkowski sum of
the point configurations

{
λαχµ

∣∣ µ ∈Mα̃

}
with lifting function λα`α, over all α ∈ A≡.

Proof. Let α := (i, j, A,B, r) ∈ A. Lemma 104 implies that the cells of T (Fα) are exactly the
translation of the cones of the normal fan of the shard polytope λαSPα̃ by any vector x ∈ Cmin

α .
This means that the minimal cell of T (Fα) that contains a point y is the tropical dual of the face
of λαSPα̃ with lifting function λα`α, maximized in the direction y − x for any x ∈ Cmin

α .
Let q ∈ Λs. The tropical dual of the local shard polytope λαS

q
α with lifting function λα`α is

the minimal cell of T (Fα) that contains the insertion fiber FTq (described in Example 16). Indeed,

the point y := − q is in FTq , the point x := −
∑
`∈]i,j]

(
qi + r− 1 +

∑
k∈B∩]i,l[ max(0, sk − 1)

)
e`−∑

`∈[i]∪]j,n] q`e` is in Cmin
α , and y − x =

∑
`∈]i,j]

(
qi − q` + r − 1 +

∑
k∈B∩]i,`[ max(0, sk − 1)

)
e` is

a direction along which the face Sqα is maximized in the polytope SPα̃ (Definition 87).
This implies that the tropical dual of the sum

∑
α∈A λαS

q
α with lifting function λα`α for each

summand is the minimal cell of the arrangement {T (Fα) | α ∈ A≡} that contains FTq .
Reciprocally, we only need to check that each minimal cell C of the arrangement {T (Fα) | α ∈ A≡}

is the tropical dual of a sum
∑
α∈A λαS

q
α for a certain q ∈ Λs. It follows from Theorem 106 that

such a C is a minimal cell of F≡, thus it is also a minimal cell of the s-foam Fs, that is of the
form FTq for a q ∈ Λs. It follows from the previous discussion that C is the tropical dual of the
sum λα

∑
α∈A S

q
α. �

Remark 108. Proposition 92 is a consequence of Theorem 107, Theorem 106 and Remark 100.
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