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Abstract. We prove that the minimal size M(Πn) of a maximal matching in the permu-
tahedron Πn is asymptotically n!/3. On the one hand, we obtain a lower bound M(Πn) ≥
n!(n − 1)/(3n − 2) by considering 4-cycles in the permutahedron. On the other hand, we
obtain an asymptotical upper bound M(Πn) ≤ n!(1/3 + o(1)) by multiple applications of
Hall’s theorem (similar to the approach of Forcade for the hypercube [?]) and an exact up-
per bound M(Πn) ≤ n!/3 by an explicit construction. We also derive bounds on minimum
maximal matchings in products of permutahedra.
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1. Introduction

Matchings are a fundamental concept in mathematics and computer science. Different variants
of matchings can be used to model problems or as subroutines in algorithms. While perfect
matchings and maximum cardinality matchings are well understood, the landscape for small
maximal matchings is less clear. More specifically, given a graph G, we are interested in

M(G) := min {|M | |M is a maximal matching in G} .

(The quantity M(G) is also known as the edge domination number of G [?].)
For example, while a maximum cardinality matching can be found in polynomial time [?],

finding a minimum maximal matching is an NP-hard problem [?], even when the graph is regular
and bipartite [?]. Assuming the Unique Games Conjecture, it is also NP-hard to approximate
a minimum maximal matching with a constant better than two [?]. For general bounds, there
are a couple of results. First, M(G) ≥ m

2∆−1 where m is the number of edges and ∆ is the

maximum degree [?]. Second, m
∆L ≤M(G) ≤ m−∆L where m is the number of edges and ∆L
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is the maximum degree of the line graph of G [?]. Thus, it is natural to ask for estimates and
solutions for this problem for special graph classes.

Let Qn be the graph with 2n vertices corresponding to the binary strings of length n, and
where two vertices are adjacent if their corresponding strings differ in exactly one position. It is
the skeleton of the n-dimensional hypercube, and the cover graph of the Boolean lattice. Let Πn

be the graph with n! vertices corresponding to the permutations of [n], and where two vertices
are adjacent if they differ by a transposition of two adjacent elements. It is the skeleton of the
(n− 1)-dimensional permutahedron, and the cover graph of the weak order .

Concerning the minimal size of a maximal matching in the hypercubeQn, Forcade [?] showed that

lim
n→∞

1

2n
M(Qn) =

1

3
.

Our main contribution is an analogous result for the permutahedron Πn. We obtain the following
asymptotically tight bounds for M(Πn).

Theorem 1. The minimal size M(Πn) of a maximal matching of the permutahedron Πn is
bounded by

n− 1

3n− 2
n! ≤M(Πn) ≤ 1

3
n!.

The lower bound is obtained from a more general bound, where we argue in terms of the dis-
tribution of 4-cycles in any graph (Section 3). This generalizes Forcade’s lower bound argument
for the hypercube [?] and is better than the aforementioned lower bounds.

The upper bound is obtained by a simple and explicit construction, obtained by combining
maximal matchings of Π4 in subgraphs of Πn (Section 5). For any vertex, it takes linear time
in n to output its neighbor in the matching, if any.

We also discuss how Forcade’s argument for the upper bound for the hypercube [?] can be
packaged into a general framework for certain bipartite graphs (Section 4), based on Hall’s
theorem. Note that our general lower bound above works best on some regular graphs, while
this framework for the upper bound only works on some bipartite graphs. Hence, as a next step,
we focus on the bipartite regular graphs for which we can obtain asymptotically tight bounds.

For this, we turn to the Cartesian products of permutahedra. These objects also correspond
to a rich class of polytopes, namely the bipartite regular quotientopes [?]. While the general
bounds above are asymptotically tight in this case, we additionally give an explicit and tighter
upper bound construction, based on our construction for the permutahedron (Section 6).

Theorem 2. Let n1, . . . , nk ≥ 2 be integers, and let n :=n1 + · · ·+ nk. Let Π be the Cartesian
product of Πn1 , . . . ,Πnk

. Then

n− k
3n− 3k + 1

|V (Π)| ≤ M(Π) ≤

{(
1
3 +O(n−1/2)

)
|V (Π)| if Π is a hypercube,

1
3 |V (Π)| otherwise.

2. Notation and preliminaries

In this section, we introduce the notation used throughout this paper. We denote the disjoint
union by t.
Matchings. A matching M in a graph G := (V,E) is a subset of E such that every vertex in V
is incident to at most one edge in M . A vertex in V is covered (resp. exposed) if it is incident
to one (resp. no) edge in M . The matching M saturates a subset X of V if all vertices in X are
covered. A maximal matching is a matching that is maximal with respect to inclusion.
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Permutations. Let Sn denote the symmetric group, that is, the group of permutations of [n] :=
{1, . . . , n}. We write a permutation σ in one-line notation, meaning as a word σ1 . . . σn. For
a permutation σ, let inv(σ) denote its inversion set , i.e., the set of pairs (i, j) such that i < j
and σi > σj . For i ∈ [n− 1], let τi := (i i+ 1) be the simple transposition that only exchanges i
and i+ 1. We obtain στi from σ by swapping the entries at positions i and i+ 1.
Permutahedra. The permutahedron Πn is the Cayley graph of Sn for the simple transposi-
tions {τ1, . . . , τn−1}. In other words, its vertices are the permutations of [n] and its edges are
the pairs of permutations {σ, σ′} such that σ = σ′τi for some i ∈ [n − 1]. In particular, Πn

is (n − 1)-regular. Moreover, every edge in Πn corresponds to a unique transposition τi for
i ∈ [n− 1], and we call such an edge a τi-edge. For i 6= j in [n− 1], we call τiτj-cycle any cycle
obtained by alternating between τi-edges and τj-edges. The τiτj-cycles are 4-cycles if |i− j| > 1
and 6-cycles otherwise.

3. Lower bound for general graphs

In this section, we derive a lower bound for the size of a maximal matching in a graph G
in terms of the number of its 4-cycles (Proposition 1). Our bound specializes to that of [?] for
the hypercube (Example 1). Applied to the permutahedron, this yields an asymptotically tight
lower bound (Corollary 1).

Definition 1. For α ∈ Z>0, we say that a graph G is α-heavy if, for every edge e in G, there
are at least α induced 4-cycles such that e is the only common edge of any two of these cycles.

Proposition 1. If G = (V,E) is α-heavy and has average degree d and maximum degree ∆,
then any maximal matching of G has cardinality at least

d

4∆− α− 2
|V |.

Proof. Let M be a maximal matching in G. An M -edge is an edge in M . A 1-edge (resp. 2-edge)
is an edge in G that is incident to exactly one M -edge (resp. two M -edges). Note in particular
that 1- and 2-edges are not in M since they are adjacent to some M -edges. We denote by m0,
m1 and m2 the number of M -edges, 1-edges, and 2-edges, respectively.

Since G has average degree d and all edges are either M -edges, 1-edges, or 2-edges, we obtain

(1) d|V | = 2(m0 +m1 +m2).

Double counting the number of adjacent pairs of edges with precisely one M -edge, we obtain

(2) m1 + 2m2 ≤ 2(∆− 1)m0,

since each 1-edge (resp. 2-edge) is adjacent to one (resp. two) M -edges, while each M -edge is
adjacent to at most 2(∆− 1) edges that are either 1- or 2-edges.

Finally, double counting the number of adjacent pairs of edges with one M -edge and one 2-
edge, we obtain

(3) αm0 ≤ 2m2.

Indeed, each 2-edge is adjacent to precisely two M -edges. Conversely, consider an M -edge e and
a 4-cycle C that contains e. One of the two edges of C adjacent to e must be a 2-edge, since
otherwise we could add the remaining edge of C to M to create a larger matching, contradicting
the maximality of M . The inequality (3) thus follows from the fact that G is α-heavy.

The sum (1) + 2(2) + (3) gives d|V | ≤ (4∆− α− 2)m0. �

Example 1. For the n-dimensional hypercube Qn, we have d = ∆ = n and α = n− 1 so
that m ≥ |V |n/(3n− 1), recovering the bound in [?].
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Inner nodes n Vertices Edges Matching Independent

2 2 1 1 1
3 5 5 2 2
4 14 21 5 6
5 42 84 14 16
6 132 330 44 50

Table 1. The sizes of minimum maximal matchings and maximum independent
sets in the associahedron for n ≤ 6.

In general, the lower bound of Proposition 1 works best when the graph is regular (i.e., d = ∆)
and α = ∆ − c, for some constant c, ideally c = 1 (as in the case of the hypercube). Applying
Proposition 1 to the permutahedron yields the following bound.

Corollary 1. Every maximal matching of Πn has at least n!(n− 1)/(3n− 2) edges.

Proof. This is a direct application of Proposition 1 since Πn is (n−1)-regular and (n−4)-heavy.
Indeed, any edge e of Πn is a τi-edge for some i ∈ [n− 1]. For any j ∈ [n− 1] with |i− j| > 1,
let Cj be the 4-cycle obtained by alternating τi- and τj-edges, starting with e. Then e is the
only common edge of any two Cj and Ck with j 6= k, and there are at least n − 4 such cycles
given by the different j ∈ [n− 1] r {i− 1, i, i+ 1}. �

Remark 1. Besides the hypercubes and the permutahedra, Proposition 1 can also be applied
to the graphs of other classical polytopes:

Associahedra.: The associahedron is the graph whose vertices are the binary trees with n
internal nodes and whose edges are tree rotations. It is regular with degree n−1 and (n−
5)-heavy, so that any maximal matching in the associahedron has at least (n−1)

(3n−1)(n+1)

(
2n
n

)
edges. Using integer linear programming we calculated the minimum size of maximal
matchings in the associahedron for n ≤ 6; see Table 1. Since exposed vertices form an
independent set, we also included the maximal size of an independent set.

Coxeter permutahedra.: A Coxeter permutahedron is the convex hull of a generic point
under the action of a finite Coxeter group W [?, ?]. It is regular of degree n and (n− δ)-
heavy, where n is the rank of W and δ is the maximal degree of the Dynkin diagram
ofW , hence any maximal matching in the Coxeter permutahedron has at least n

3n+δ−2 |W |
edges.

In contrast, it does not apply as such to all graphical zonotopes, since they can fail to be α-heavy
(some edges might appear in no 4-cycle). For graphical zonotopes, we would need an improved
version of Proposition 1 averaging the number of disjoint 4-cycles containing an edge.

4. Upper bound for bipartite graphs

In this section, we obtain an upper bound on the minimal size of a maximal matching of
certain bipartite graphs (Proposition 2). Our approach is similar to that of [?] for the hypercube
(Example 2). Applied to the permutahedron, this yields an asymptotically tight upper bound
(Corollary 2). The proof of Proposition 2 uses Hall’s classical matching theorem.

Theorem 3 (Hall’s theorem [?]). Let G be a bipartite graph with two parts X and Y . Then G
has a matching that saturates X if and only if for every X ′ ⊆ X, the number of neighbors of X ′

in Y is at least |X ′|.

Proposition 2. Consider a graph G := (V,E) such that
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(i) V = V0
⋃̇
. . .
⋃̇
V` and E ∩ (Vi × Vj) 6= ∅ implies |i− j| = 1,

(ii) for any 0 ≤ i < b`/2c and X ⊆ Vi, the number of neighbors of X in Vi+1 is at least |X|,
(iii) for any d`/2e < i ≤ ` and X ⊆ Vi, the number of neighbors of X in Vi−1 is as least |X|.

Then G admits a maximal matching of cardinality at most

|V |/3 + 6 max{|Vb`/2c|, |Vd`/2e|}.

Proof. For k ∈ [` − 1], we write G−k (resp. G+
k , resp. G±k ) for the subgraph of G induced

by Vk−1 ∪ Vk (resp. Vk ∪ Vk+1, resp. Vk−1 ∪ Vk ∪ Vk+1). For 0 < k < b`/2c, we obtain by two
applications of Theorem 3 (Hall’s theorem) using (ii) that

• there exists a matching M−k of G−k which saturates Vk−1,

• there exists a matching M+
k of G+

k so that a vertex of Vk is covered in M+
k if and only

if it is exposed in M−k .

Therefore, the union M±k :=M−k ∪M
+
k is a matching of G±k which covers both Vk−1 and Vk.

Moreover, |M±k | = |Vk| since all edges of M±k are incident to Vk. Similarly, for d`/2e < k < `,

there is a matching M±k of G±k which covers both Vk and Vk+1, and with |M±k | = |Vk|.
Let p ∈ [3] be such that

∑
k∈[`], k≡p (mod 3) |Vk| ≤ |V |/3. Let M be the union of the match-

ings M±k for k ∈ [`− 1] r {b`/2c, d`/2e} with k ≡ p (mod 3). Note that M is a matching (since

the graphs G±k for k ≡ p (mod 3) are vertex disjoint) and that |M | ≤ |V |/3 (since |M±k | = |Vk|).
Let M ′ be a maximal matching containing M . Since M±k covers Vk−1 and Vk when 0 < k < b`/2c
(resp. Vk and Vk+1 when d`/2e < k < `), all edges of M ′rM are incident to V0∪Vb`/2c∪Vb`/2c−1∪
Vd`/2e∪Vd`/2e+1∪V`. As (ii) and (iii) imply that |Vk| ≤ max{|Vb`/2c|, |Vd`/2e|} for all k, we indeed
obtained a maximal matching M ′ with |M ′| ≤ |V |/3 + 6 max{|Vb`/2c|, |Vd`/2e|}. �

Example 2. The n-dimensional hypercube Qn satisfies the assumptions of Proposition 2.
For 0 ≤ k ≤ n, denote by Vk the set of binary strings of length n with precisely k occur-
rences of 1. If X ⊆ Vk and Y denotes its neighborhood in Vk+1, we have (n−k)|X| = (k+1)|Y |,
which proves (ii) and (iii) in Proposition 2. It follows that Qn admits a maximal matching of

cardinality at most 2n/3 + 6
(

n
bn/2c

)
= 2n/3

(
1 + O(n−1/2)

)
. This was precisely the approach

of [?].

Finally, we observe that Proposition 2 yields an asymptotically tight bound for the minimal
size of a maximal matching in the permutahedron.

Corollary 2. The permutahedron Πn satisfies the assumptions of Proposition 2. Hence, it
admits a maximal matching of cardinality at most

n!
(1

3
+

6√
2π
n−3/2 + o(n−3/2)

)
.

Proof. Recall that we denote by inv(σ) :=
{

(i, j) ∈ [n]2
∣∣ i < j and σi > σj

}
the inversion set

and by asc(σ) := {i ∈ [n− 1] | σi < σi+1} the ascent set of a permutation σ of [n]. For 0 ≤ k ≤(
n
2

)
=: `, we denote by Vi := {σ ∈ Sn | | inv(σ)| = k} the set of permutations with precisely k

inversions. Let RSn be the real vector space with basis indexed by Sn. Consider the linear map
U : RSn → RSn defined by U(σ) =

∑
i∈asc(σ) i · στi. Gaetz and Gao [?] showed that U `−2k is

an isomorphism between RVk and RV`−k for 0 ≤ k ≤ bk/2c. This immediately implies that U
is injective.

Consider now a subset X of Vk and its neighborhood Y in Vk+1. Since U is injective, the
image by U of the subspace of RVi generated by X has dimension |X|. But by definition of U ,
this image is contained in the subspace of RVk+1 generated by Y , which has dimension |Y |.
Hence, we obtain that |X| ≤ |Y |. This shows (ii), and the proof of (iii) is symmetric.
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Finally, Mn := max{|Vb`/2c|, |Vd`/2e|} is known as the Kendall-Mann number (A000140), the
row maximum of table of Mahonian numbers (A008302). It is known (it follows for instance

from [?]) that Mn ∼ 6nn−1/en ∼ n! · n−3/2 · 6/
√

2π, which yields our asymptotic bound. �

Remark 2. By using Hall’s theorem, the proof of Proposition 2 is not constructive. For the
application to the hypercube in Example 2, we can make it constructive by using a symmetric
chain decomposition in the hypercube. (Note that this decomposition is a well known concept
in partial order theory; we define it here in graph theoretic terms.) A symmetric chain in
the n-dimensional hypercube is a path (xt, xt+1, . . . , xn−t) for some t ∈ bn/2c such that xi
has exactly i occurrences of 1 for i ∈ {t, . . . , n − t}. A symmetric chain decomposition in the
hypercube is a partition of its vertices into symmetric chains. Greene and Kleitman [?] described
a simple construction of such a decomposition as follows. For a binary word x, we interpret the
0s in x as opening brackets and the 1s as closing brackets. For example, if x = 1000110, we
interpret x as )((())(. By matching the opening and closing brackets in the natural way, we can
obtain the symmetric chain containing x by flipping the rightmost unmatched 1 or the leftmost
unmatched 0, until no more unmatched bits can be flipped. In the example above, the chain
that contains x is (0000110, 1000110, 1100110, 1100111). The chains in this decomposition can
be used to explicitly describe the matchings M+

k and M−k in the proof of Proposition 2 for the
hypercube. For the permutahedron, however, it is unknown whether an analogous symmetric
chain decomposition exists, and as far as we are aware, there is no constructive proof of (ii)
and (iii).

5. Explicit construction for permutahedra

In this section, we construct an explicit maximal matching of size n!/3 in the permutahe-
dron Πn. This bound is constructive and tighter than the upper bound in Corollary 2, and
thus gives an alternative proof that the lower bound of Corollary 1 is asymptotically tight. Our
construction involves three steps:

(1) We first define two maximal matchings M+ and M− of Π4 with 8 edges.
(2) We then construct a matching M of Πn with n!/3 edges by transporting M+ and M−

to certain maximal matchings in each subgraph of Πn induced by permutations with a
fixed suffix of length n− 4.

(3) We finally prove that M is maximal.

5.1. Two maximal matchings of Π4. We consider the two matchings M+ and M− in Π4 of
Fig. 1. Note that

• both M+ and M− are maximal matchings of Π4 with 8 edges,
• the sets E+ and E− of exposed vertices of M+ and M− are disjoint.

5.2. Combining maximal matchings. We now combine copies of the matchings M+ and M−

to create a matching M of Πn with n!/3 edges. Let S be the set of duplicate-free strings in [n] of
length n− 4. For s ∈ S, denote by Πs the subgraph of Πn induced by permutations with suffix s.
Note that Πn =

⊔
s∈S Πs. Denote by s̄ = {s̄1 < s̄2 < s̄3 < s̄4} the set of elements in [n] that do

not occur in s. For a permutation π of [4], let s̄π := s̄π1 s̄π2 s̄π3 s̄π4 and define φs(π) := s̄πs ∈ Πs.

Observe that φs defines a graph isomorphism from Π4 to Πs. Define ε(s) := (−1)| inv(s)|+Σ(s̄),
where Σ(s̄) := s̄1 + s̄2 + s̄3 + s̄4 and inv(s) :=

{
(i, j) ∈ [n− 4]2

∣∣ i < j and si > sj
}

is the inversion
set of s. Finally, define

M :=
⊔
s∈S

φs(M
ε(s)).

http://oeis.org/A000140
http://oeis.org/A008302
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Figure 1. Matching edges (red) and exposed vertices (blue) for M+ (left) and
M− (right). All other edges are colored according to the exchange position.

Example 3. For instance, Fig. 2 illustrates the matching M when n = 5. Its edges are

(23451, 24351) (13542, 15342) (12453, 14253) (12534, 15234) (12345, 13245)
(24531, 42531) (15432, 51432) (14523, 41523) (15324, 51324) (13425, 31425)
(25341, 52341) (14352, 41352) (15243, 51243) (13254, 31254) (14235, 41235)
(32541, 35241) (31452, 34152) (21543, 25143) (21354, 23154) (21435, 24135)
(34251, 43251) (34512, 43512) (24153, 42153) (23514, 32514) (23145, 32145)
(35421, 53421) (35142, 53142) (25413, 52413) (25134, 52134) (24315, 42315)
(43521, 45321) (41532, 45132) (42513, 45213) (31524, 35124) (32415, 34215)
(52431, 54231) (53412, 54312) (51423, 54123) (52314, 53214) (41325, 43125)

and its exposed vertices are

12354 13524 21345 23541 31245 34125 41253 43215 51234 53241
12435 14325 21453 24513 31542 34521 42135 45123 51342 54132
12543 14532 21534 25314 32154 35214 42351 45231 52143 54213
13452 15423 23415 25431 32451 35412 43152 45312 53124 54321

Theorem 4. The set M is a maximal matching in Πn of size n!/3.

Proof. We have |M | =
∑

s∈S |M ε(s)| = 8|S| = n!/3 since M =
⊔
s∈S φs(M

ε(s)). Moreover, M

is a matching since Πn =
⊔
s∈S Πs and any edge of φs(M

ε(s)) lies in Πs. We thus just need to
prove that M is maximal, and this is the purpose of the next section. �

Remark 3. For later use, we point out that we can in fact define two maximal match-
ings M• :=

⊔
s∈S φs(M

ε(s)) and M◦ :=
⊔
s∈S φs(M

−ε(s)) of the permutahedron Πn of size n!/3.
The sets of exposed vertices E• and E◦ of these matchings M• and M◦ are given by

E• =
⊔
s∈S

φs(E
ε(s)) and E◦ =

⊔
s∈S

φs(E
−ε(s)).

Hence, E• ∩ E◦ = ∅ since E+ ∩ E− = ∅.
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Figure 2. Matching edges (red) and exposed vertices (blue) for the matching M
when n = 5. All other edges are colored according to the exchange position. The
coordinates of the embedding were communicated to us by Nathan Carter. An
animated 3d version can be found at https://tinyurl.com/

maximalMatchingPermutahedron.

5.3. Proof of maximality. In this section, we prove that M is maximal. Assume by means of
contradiction that M admits two exposed vertices σ, σ′ ∈ Sn with σ = στi for some i ∈ [n− 1].
Let s be the suffix formed by the last n − 4 letters of σ, and π be the permutation of [4] such
that σ = φs(π). Similarly, let s′ and π′ be such that σ′ = φs′(π

′).

If i < 4, then s = s′ so that σ and σ′ belong to the same Πs = Πs′ . This contradicts the
maximality of M ε(s). If i > 4, then s̄ = s̄′ and | inv(s)| = | inv(s′)| ± 1, so that ε(s) 6= ε(s′).

As s̄ ∈ Eε(s) and s̄′ ∈ Eε(s′), this contradicts that E+ ∩ E− = ∅.
We can thus assume from now on that i = 4. Assume moreover without loss of generality

that σ4 < σ5 and set t := | {j ∈ [3] | σ4 < σj < σ5} |. For j ∈ [3], we have s̄πj = σj = σ′j = s̄′π′j
.

Hence, we have

(4) πj =

{
π′j + 1 if σ4 < σj < σ5,

π′j otherwise.

https://tinyurl.com/maximalMatchingPermutahedron
https://tinyurl.com/maximalMatchingPermutahedron
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Observing E+ and E− in Fig. 1, we therefore obtain that (π, π′) belongs to

• {(13̄4̄2̄, 12̄3̄4̄), (4̄3̄12̄, 3̄2̄14̄)} if ε(s) = ε(s′) = +,
• {(2̄3̄41̄, 1̄2̄43̄), (43̄2̄1̄, 42̄1̄3̄)} if ε(s) = ε(s′) = −,
• {(214̄3̄, 213̄4̄), (13̄42̄, 12̄43̄), (214̄3̄, 213̄4̄), (4̄123̄, 3̄124̄), (43̄12̄, 42̄13̄), (342̄1̄, 341̄2̄)} if ε(s) =

+ and ε(s′) = −,
• {(124̄3̄, 123̄4̄), (2̄3̄4̄1̄, 1̄2̄3̄4̄), (2̄341̄, 1̄342̄), (4̄213̄, 3̄214̄), (4̄3̄2̄1̄, 3̄2̄1̄4̄), (432̄1̄, 431̄2̄)} if ε(s) =
− and ε(s′) = +.

In each such pair (π, π′), we have overlined the positions j ∈ [4] where πj 6= π′j . Hence,

as t = |
{
j ∈ [3]

∣∣∣ πj 6= π′j

}
— by Eq. (4), we obtain from this case analysis that

(5) ε(s) = ε(s′) ⇐⇒ t is even.

Observe now that since σ = σ′τ4 and σ4 < σ5, we have

| inv(s)| = | inv(s′)|+ σ5 − σ4 − t− 1 and Σ(s̄) = Σ(s̄′) + σ4 − σ5.

Hence, as ε(s) just records the parity of | inv(s)|+ Σ(s̄), we obtain that

(6) ε(s) = ε(s′) ⇐⇒ t is odd.

This concludes the proof since (5) and (6) contradict each other.

6. Cartesian products of permutahedra

In this section, we prove Theorem 2 concerning minimum maximal matchings in Cartesian
products of permutahedra. Let us first recall the definition.

Definition 2. The Cartesian product G�H of two graphs G and H is the graph with vertex set
V (G)×V (H) and edge set {(u, v)(u′, v) | uu′ ∈ E(G), v ∈ V (H)}∪{(u, v)(u, v′) | u ∈ V (G), vv′ ∈ E(H)}.

We start with the lower bound.

Proposition 3. Let n1, . . . , nk be integers with n1 ≥ · · · ≥ nk ≥ 2 and n1 ≥ 3. Let n :=n1 +
· · ·+ nk and Π := Πn1 � . . .�Πnk

. Then any maximal matching of Π has cardinality at least

n− k
3n− 3k + 1

V (Π).

Proof. First, Π is (n−k)-regular since each Πni is (ni− 1)-regular. Next, we prove by induction
on i ∈ [k] that Gi := Πn1 � . . .�Πni is (Ni − i − 3)-heavy, for Ni :=n1 + · · · + ni. For the base
case i = 1, this follows from the proof of Corollary 1. For the inductive step i ≥ 2, note that
Gi = Gi−1 �Πni . Hence, we can write each vertex of Gi as (x, y), where x and y are vertices in
Gi−1 and Πni , respectively. Let e be an edge of Gi between two vertices (x, y) and (x′, y′). By
the definition of a Cartesian product, either x = x′ or y = y′.

Firstly consider the case that x = x′. By the proof of Corollary 1, there are ni − 4 cycles of
Πni such that x′y′ is the only common edge of any two such cycles. Adding x as a prefix to
all vertices to these cycles, we obtain a collection C1 of ni − 4 cycles in Gi. Further, for each
neighbor z of x in Gi−1, (x, x′), (z, x′), (z, y′), (x′, y′) forms a cycle in Gi. Applying this argument
for all Ni−1 − (i − 1) neighbors of x in Gi−1, we obtain another collection C2 of Ni−1 − (i − 1)
cycles in Gi. Together, both collections form a set of ni − 4 +Ni−1 − (i− 1) = Ni − i− 3 cycles
in Gi such that e is the only common edge of any two such cycles.

Secondly, we use a similar argument for the case y = y′. By the inductive hypothesis, there
are Ni−1− (i− 1)− 3 cycles of Gi−1 such that {x′, y′} is the only common edge of any two such
cycles. Further, y has ni − 1 neighbors in Πni . Together, these induce Ni − i − 3 cycles in Gi
that pairwise share e as the only common edge.
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The preceding two paragraphs complete the inductive proof. This implies that Π is (n−k−3)-
heavy. Together with Proposition 1 and the fact that Π is (n − k)-regular, we then obtain the
statement of the proposition. �

The main tool for the upper bound is the following proposition.

Proposition 4. Let G :=H �B be the Cartesian product of a graph H and a bipartite graph
B. Suppose that H has maximal matchings N• and N◦ such that |N•| = |N◦| and every
vertex of H is covered by N• or N◦. Then G has maximal matchings M• and M◦ such that
|M•| = |M◦| = |N•| · |V (B)| and every vertex of G is covered by M• or M◦.

Proof. For b ∈ V (B), let Hb be the subgraph of G induced by V (H)× {b} ⊆ V (G). Let N•b and
N◦b be maximal matchings in Hb corresponding to N• and N◦, respectively. Let B• and B◦ be
the parts of B. Set

M• :=
⋃
b∈B•

N•b ∪
⋃
b∈B◦

N◦b , and M◦ :=
⋃
b∈B•

N◦b ∪
⋃
b∈B◦

N•b .

Clearly, M• and M◦ are matchings in G, as they only use matching edges inside Hb. For the
cardinalities, we have

|M•| = |N•| · |B•|+ |N◦| · |B◦| = |N•| · |V (B)| = |N◦| · |B•|+ |N•| · |B◦| = |M◦|.

Moreover, M• is maximal since the exposed vertices of N•b and N◦b′ are disjoint if bb′ ∈ E(B)
(and similarly, M◦ is maximal). Finally, M• ∪M◦ covers V (G) since N•b ∪N◦b covers V (H) for
each b ∈ B. �

Remark 4. Note that Proposition 4 extends straightforward to a Cartesian product G :=H �K
of two graphsH andK such that there are maximal matchingsM1, . . . ,Mk ofG and a coloring f :
V (K)→ [k] such that Mf(u) ∪Mf(v) covers V (H) for any edge uv of K.

The upper bound in Theorem 2 then follows from Example 2 and the following proposition.

Proposition 5. Let n1, . . . , nk ≥ 2 be integers with n1 ≥ 3. Then the Cartesian product
Π := Πn1 � . . .�Πnk

has a maximal matching of size |V (Π)|/3.

Proof. We show by induction on i ∈ [k] that Gi := Πn1 � . . .�Πni has maximal matchings M•i
and M◦i of size |V (Gi)|/3 such that every vertex in G is covered by M•i or M◦i . For i = 1, this
follows from Theorem 4 and Remark 3. For the induction step, assume that the above statement
holds for Gi−1. By Proposition 4, using that Πni is bipartite, we obtain maximal matchings M•i
and M◦i of size |V (Gi)|/3 in Gi such that every vertex in Gi is covered by M•i or M◦i . In
particular, Π = Gk has a maximal matching of size |V (Π)|/3, which proves the claim. �

7. Open questions

We conclude with a few open questions.

• Is there a simple or constructive proof for conditions (ii) and (iii) of Proposition 2 for
the permutahedron? Is there a symmetric chain decomposition in the permutahedron?
See Remark 2.
• Can we get upper and lower bounds on the size of a minimum maximal matching for

larger classes of polytopes generalizing the permutahedron and associahedron, in partic-
ular quotientopes (even only bipartite quotientopes or regular quotientopes), graphical
zonotopes, graph associahedra, or Coxeter permutahedra?
• What can be said about minimal maximal matchings in Cartesian products in general?
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