
INTERVAL HYPERGRAPHIC LATTICES

NANTEL BERGERON AND VINCENT PILAUD

Abstract. For a hypergraph H on [n], the hypergraphic poset PH is the transitive closure

of the oriented skeleton of the hypergraphic polytope 4H (the Minkowski sum of the standard
simplices 4H for all H ∈ H). Hypergraphic posets include the weak order for the permutahedron

(when H is the complete graph on [n]) and the Tamari lattice for the associahedron (when H is

the set of all intervals of [n]), which motivates the study of lattice properties of hypergraphic
posets. In this paper, we focus on interval hypergraphs, where all hyperedges are intervals

of [n]. We characterize the interval hypergraphs I for which PI is a lattice, a distributive lattice,

a semidistributive lattice, and a lattice quotient of the weak order.
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1. Introduction

Fix an integer n ≥ 1 and denote by (ei)i∈[n] the standard basis of Rn. The hypergraphic
polytope of a hypergraph H on [n] is the Minkowski sum 4H :=

∑
H∈H4H , where 4H is the

simplex given by the convex hull of the points eh for h ∈ H. The face lattice of 4H was described
combinatorially in terms of acyclic orientations of H in [BBM19]. Note that the singletons of H
are irrelevant for the combinatorics of 4H as they just contribute to translations. It is convenient
for us to assume that {i} ∈ H for all i ∈ [n].

The hypergraphic poset PH is the transitive closure of the skeleton of 4H oriented in the
direction ω := (n, n−1, . . . , 2, 1)− (1, 2, . . . , n−1, n) = (n−1, n−3, . . . , 3−n, 1−n). For instance,

• if H =
(
[n]
2

)
is the complete graph (or any hypergraph containing it), then 4H is the

permutahedron and PH is the weak order on permutations,
• if H = {[i, j] | 1 ≤ i ≤ j ≤ n} is the complete interval hypergraph, then4H is J.-L. Loday’s

associahedron [SS93, Lod04] and PH is the Tamari lattice on binary trees [Tam51].

In view of these two examples, we would like to characterize the hypergraphs H for which
PH is a lattice, a distributive lattice, a semidistributive lattice, a congruence-uniform lattice, a
(semi-)lattice quotient of the weak order on permutations, etc. These questions were settled

in [Pil24] for graphical zonotopes (i.e. when H ⊆
(
[n]
2

)
), and also partially studied in [BM21] for

graph associahedra [CD06] (i.e. when H is the set of all subsets of vertices that induce a connected
subgraph of a fixed graph on [n]).

In this paper, we study the case of interval hypergraphs I, i.e. when all hyperedges of I are
intervals of [n]. Note that the family of interval hypergraphic polytopes does not contain the
permutahedron, but contains

• the classical associahedron of [SS93, Lod04] when I contains all intervals of [n],
• the Pitman–Stanley polytope [SP02] when I is the set of all singletons {i} and all initial

intervals [i] for i ∈ [n],
• the freehedron of [San09] when I is the set of all singletons {i}, all initial intervals [i]

for i ∈ [n], and all final intervals [n] r [i] for i ∈ [n− 1],
• the fertilotopes of [Def23] when any two intervals of I are either nested or disjoint.

In fact, it follows from [BMCLD+23, PPPP23] that the interval hypergraphic polytopes are pre-
cisely the weak Minkowski summands of the classical associahedron (recall that a polytope P ⊂ Rn
is a weak Minkowski summand of a polytope Q ⊂ Rn if there exists a real λ ≥ 0 and a poly-
tope R ⊂ Rd such that λQ = P +R).

We obtain the following characterizations, where we assume that {i} ∈ I for all i ∈ [n] as
mentioned earlier. See Sections 4 to 7 and Figures 4 to 8 for illustrations.

Theorem A. For an interval hypergraph I, the poset PI is a lattice if and only if I is closed under
intersection (i.e. I, J ∈ I and I ∩ J 6= ∅ implies I ∩ J ∈ I).

Theorem B. For an interval hypergraph I, the poset PI is a distributive lattice if and only if for
all I, J ∈ I such that I 6⊆ J , I 6⊇ J and I ∩ J 6= ∅, the intersection I ∩ J is in I and is initial or
final in any K ∈ I with I ∩ J ⊆ K.

Theorem C. For an interval hypergraph I, the poset PI is a join semidistributive lattice if and only
if I is closed under intersection and for all [r, r′], [s, s′], [t, t′], [u, u′] ∈ I such that r < s ≤ r′ < s′,
r < t ≤ s′ < t′, u < min(s, t) and s′ < u′, there is [v, v′] ∈ I such that v < s and s′ < v′ < t′. A
symmetric characterization holds for meet semidistributivity.

Theorem D. For an interval hypergraph I, the poset morphism from the weak order to the poset PI
is a meet (resp. join) semilattice morphism if and only if I is closed under initial (resp. final)
subintervals (i.e. [i, k] ∈ I implies [i, j] ∈ I (resp. [j, k] ∈ I) for any 1 ≤ i < j < k ≤ n).

For instance, among the four above-mentioned families of interval hypergraphic polytopes,
we recover that the Pitman-Stanley polytope and all fertilotopes yield distributive lattices, the
associahedron yields a semidistributive (but not distributive) lattice which is a quotient of the
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weak order, while the freehedron is not even a lattice (this was actually the motivation for [PP23]
to construct alternative realizations of the skeleton of the freehedron).

Once Theorem A is established, an important step for Theorems B and C is to understand join
irreducible elements of PI. Section 6.1 provides a combinatorial description of the join irreducible
elements of the lattice PI for an arbitrary interval hypergraph I closed under intersections. To
prepare this slightly technical description, we already describe some join irreducible elements
of PI in Section 5.1, which happen to be all join irreducible elements of PI under the condition
of Theorem B.

The paper is organized as follows. In Section 2, we recall basic properties of hypergraphic
polytopes, we define hypergraphic posets, and we recall the natural poset morphism from the weak
order on permutations to the hypergraphic poset PI. In Section 3, we develop specific properties
of interval hypergraphic polytopes, in particular a simple characterization of their vertices and a
global description of the relations in their hypergraphic posets. In Section 4, we characterize the
interval hypergraphs I for which the interval hypergraphic poset PI is a lattice, proving Theorem A.
In Section 5, we describe a family of join irreducible elements of PI and we characterize the interval
hypergraphs I for which PI is a distributive lattice, proving Theorem B. In Section 6, we describe
all join irreducible elements of PI and we characterize the interval hypergraphs I for which PI is
a join (or meet) semidistributive lattice, proving Theorem C. In Section 7, we characterize the
interval hypergraphs I for which the poset morphism from the weak order on permutations to PI
is a join (or meet) semilattice morphism, proving Theorem D.

2. Hypergraphic posets

2.1. Hypergraphic polytopes. A hypergraph H on [n] := {1, . . . , n} is a collection of subsets
of [n]. By convention, we always assume that H contains all singletons {i} for i ∈ [n]. The
hypergraphic polytope 4H is the Minkowski sum

4H :=
∑
H∈H
4H ,

where 4H is the simplex given by the convex hull of the points eh ∈ Rn for h ∈ H.

Example 2.1. For the hypergraph H = {1, 2, 3, 4, 123, 134}, we have

e1

e2 e3

e1

e3

e4

4123 4134 4H = 41 +42 +43 +44 +4123 +4134

which is a 3-dimensional polytope sitting in R4. Note that as n ≤ 9 in all our examples, we
simplify notations and write 123 for the set {1, 2, 3}.

Remark 2.2. Note that the singletons hyperedges are irrelevant for our purposes. Namely,
adding to H the hyperedge {i} for some i ∈ [n] just translates the polytope 4H in the direction ei,
which does not affect the face structure of the polytope. For our conditions on hypergraphs of
Theorems A and B, it is convenient for us to assume that {i} ∈ H for all i ∈ [n]. When quoting
results from [BBM19], the reader will have to be mindful that they took the opposite convention.

2.2. Acyclic orientations, increasing flips, and hypergraphic posets. We now recall from
[BBM19, Thm. 2.18] a combinatorial model for the graph (VH, EH) of4H. As we are only interested
in the 1-skeleton of4H, we simplify some of the general definitions of [BBM19] which were designed
to deal with all faces of 4H.

Definition 2.3. An orientation of H is a map O from H to [n] such that O(H) ∈ H for all H ∈ H.
Equivalently, we often represent the orientation O as the set of pairs {(O(H), H) | H ∈ H}. The
orientation O is acyclic if there is no H1, . . . ,Hk with k ≥ 2 such that O(Hi+1) ∈ Hi r {O(Hi)}
for i ∈ [k − 1] and O(H1) ∈ Hk r {O(Hk)}.
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Figure 1. The polytope ∆H for H = {1, 2, 3, 4, 123, 134} has seven vertices cor-
responding to the acyclic orientations of H and eleven (oriented) edges corre-
sponding to the increasing flips between these orientations. The poset PH is the
transitive closure of the increasing flip graph.

Remark 2.4. The singleton {i} of H is always oriented O({i}) = i, and plays no role in deter-
mining the acyclicity of O since {i}r {O({i})} = ∅. We will therefore omit the singletons when
describing or drawing orientations (see also Example 3.3). If we list the non-singleton elements
(H1, H2, ...,Hk) of H in some fixed order, it is then convenient to describe an orientation O as the
tuple O = (O(H1), O(H2), . . . , O(Hk)).

Example 2.5. Using H = {1, 2, 3, 4, 123, 134} as in Example 2.1, we order the two non-singleton
(123, 134). There are 9 orientations of H, 7 of which are acyclic as displayed in Figure 1. For
instance, the orientation (O(123), O(134)) = (1, 3) is cyclic since O(123) = 1 ∈ 134 and O(134) =
3 ∈ 123 is a cycle with k = 2.

Definition 2.6. Two orientations O 6= O′ of H are related by an increasing flip if there ex-
ist 1 ≤ i < j ≤ n such that for all H ∈ H,

• if O(H) 6= O′(H), then O(H) = i and O′(H) = j, and
• if {i, j} ⊆ H, then O(H) = i ⇐⇒ O′(H) = j.

We denote such a flip by O ij O′.

Example 2.7. Figure 1 shows all the increasing flips between the acyclic orientations of the hy-
pergraph H = {1, 2, 3, 4, 123, 134} of Examples 2.1 and 2.5. For instance, (2, 3) 23 (3, 3) indicates
that there is an increasing flip from O = (2, 3) to O′ = (3, 3) with i = 2 < 3 = j.

The following correspondance was already observed in [BBM19, Thm. 2.18] (it even extends
to all faces of 4H, but we do not need this level of generality in this paper). We provide an
alternative short proof for convenience.

Proposition 2.8 ([BBM19, Thm. 2.18]). The graph of the hypergraphic polytope 4H oriented
in the direction ω := (n, n − 1, . . . , 2, 1) − (1, 2, . . . , n − 1, n) = (n − 3, n − 1, . . . , 1 − n, 3 − n) is
isomorphic to the increasing flip graph on acyclic orientations of H.

Proof. Recall that the face of a Minkowski sum
∑
i Pi minimizing a direction v is the Minkowski

sum of the faces of the summands Pi minimizing v.
The vertex of4H minimizing a generic direction v is ei for i ∈ H such that vi = min {vh |h∈H}.

An acyclic orientation of H corresponds to the choice of one vertex in each4H , and the orientation
is acyclic if and only if this choice corresponds to a generic orientation v, hence to a vertex of 4H.

The edges of 4H are oriented in the directions ei − ej for i, j ∈ H. The edges of 4H are
thus also oriented by ei − ej , and thus correspond to pairs of acyclic orientations which differ
by a flip. �

Finally, the main objects of this paper are the following posets.
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Definition 2.9. The hypergraphic poset PH is the transitive closure of the increasing flip graph
on acyclic orientations of H.

Example 2.10. For the hypergraph H = {1, 2, 3, 4, 123, 134} of Examples 2.1, 2.5 and 2.7, the
poset PH is represented in Figure 1 (right).

Remark 2.11. As seen in Figure 1 the edges in EH are not necessarily cover relations in PH. The
simplest case is given by H = {1, 2, 3, 123}, whose hypergraphic polytope is

4H = 41 +42 +43 +4123 =

(1)

(2)

(3)

13

12

23

and the left edge (1) 13 (3) of 4H is not a cover relation of PH.

We conclude with an elementary yet relevant symmetry.

Proposition 2.12. For x ∈ n, define x↔ :=n−x+ 1. For H ⊆ [n], define H↔ := {h↔ | h ∈ H}.
For an hypergraph H, define H↔ := {H↔ | H ∈ H}. For an orientation O of H, define the ori-
entation O↔ of H↔ by O↔(H↔) :=O(H)↔. Then the map A 7→ A↔ is an anti-isomorphism
from PH to PH↔ .

Proof. Straightforward. �

2.3. Surjection map. The hypergraphic polytope 4H is a deformed permutahedron (aka. gener-
alized permutahedron [Pos09, PRW08], aka. polymatroid [Edm70]). This means that the normal
fan of 4 coarsens the normal fan of the permutahedron. Hence, there is a natural surjection from
the faces of the permutahedron to the faces of 4H, which was described in details in [BBM19,
Lem. 2.9]. Here, we focus on the surjection O from the permutations of [n] to the acyclic orienta-
tions of H.

Definition 2.13. For a permutation π of [n], the orientation Oπ of H is defined for all H ∈ H by

Oπ(H) :=π
(

min {j | π(j) ∈ H}
)
.

Proposition 2.14 ([BBM19, Lem. 2.9]). For any hypergraph H on [n],

• the map O is a surjection from the permutations of [n] to the acyclic orientations of H,
• two acyclic orientations A,B of H are related by a flip if and only if there are permuta-

tions πA, πB of [n] which differ by a simple transposition such that OπA
= A and OπB

= B.

In other words, the graph (VH, EH) of 4H is isomorphic to the graph obtained by contracting the
fibers of O in the graph of the permutahedron.

Corollary 2.15. The map O defines a poset morphism from the weak order on permutations to
the hypergraphic poset PH.

Finally, we describe the fibers of the surjection O : Sn → VH. Given an acyclic orienta-
tion A of H, define CA as the order on [n] obtained by the transitive closure of the union of the
orders {A(H) < h | h ∈ H r {A(H)}} for each H ∈ H. That is,

CA = Trans. cl.
⋃
H∈H A(H)

h∈Hr{A(H)}
. . .

.

This is a well defined partial order since A is acyclic. The following lemma is straightforward.

Lemma 2.16. For any acyclic orientation A of H, the preimage O−1(A) := {π | Oπ = A} is the
set of linear extensions of CA.
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Figure 2. The poset morphism O from the weak order (left) to the hypergraph-
ical poset PH (right), for H = {1, 2, 3, 4, 123, 134}. The fibers of O appear as blue
bubbles on the weak order, labeled by their acyclic orientation of H (left).

Example 2.17. Continuing with the hypergraph H = {1, 2, 3, 4, 123, 134} of Examples 2.1, 2.5,
2.7 and 2.10, let A be the acyclic orientation (2, 4). The order CA is the following

CA = Transitive closure

(
2

1 3

∪
4

1 3
)

=
42

1 3

The linear extensions of this order are the permutations 2413, 2431, 4213 and 4231. All other
fibers are represented in Figure 2.

3. Interval hypergraphic posets

In this paper, we focus on the following family of hypergraphs on [n].

Definition 3.1. An interval hypergraph I is an hypergraph on [n] where each I ∈ I is an interval
of the form I = [i, j] := {i, i+ 1, i+ 2, . . . , j − 1, j}.

Example 3.2. Our running example H = {1, 2, 3, 4, 123, 134} of Examples 2.1, 2.5, 2.7, 2.10
and 2.17, is not an interval hypergraph, as 134 is not an interval.

Example 3.3. The hypergraph I = {1, 2, 3, 4, 123, 23, 234, 1234} is an interval hypergraph and
O4132 = (1, 4, 3, 4) is an acyclic orientation of I (for the lexicographic order (123, 1234, 23, 234) of
the non-singletons). We will represent interval hypergraphs and their orientations graphically as
follows:

I =

1 2 3 4

O4132 =

1 2 3 4
• ••

•

As before, we omit to draw the singletons {i} for i ∈ [n]. See also Figure 3.

Example 3.4. We have represented further interval hypergraphic posets in Figures 4 to 8. These
figures illustrate in particular the following relevant families of interval hypergraphic posets men-
tioned in the introduction:

• if I = {[i, j] | 1 ≤ i ≤ j ≤ n} is the set of all intervals of [n], then PI is the Tamari lattice
corresponding to the classical associahedron of [SS93, Lod04]; see Figure 5;

• if I = {[1, i] | i ∈ [n]} is the set of initial intervals of [n], then PI is the boolean lattice
corresponding to the Pitman–Stanley polytope [SP02]; see Figure 6 (bottom right);

• if I = {[1, i] | i ∈ [n]} ∪ {[i, n] | i ∈ [n]} is the set of all initial or final intervals of [n],
then PI is a poset given by the freehedron of [San09], which is not even a lattice; see
Figure 4 (right);

• if any two intervals of I are either nested or disjoint, then PI is a distributive lattice given
by the fertilotope of [Def23]; see Figure 6 (top right and bottom) and Section 5.4.
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• ••

•
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• •
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{1, 2, 3, 4, 123, 23, 234, 1234}

Figure 3. The interval hypergraphical polytope 4I (top left), the fibers of the
corresponding map O (bottom left), and the interval hypergraphical poset PI
(right), for I = {1, 2, 3, 4, 123, 23, 234, 1234}.

Remark 3.5. Recall that a polytope P ⊂ Rn is a weak Minkowski summand of a poly-
tope Q ⊂ Rn if there exists a real λ ≥ 0 and a polytope R ⊂ Rd such that λQ = P + R.
Equivalently, P is a weak Minkowski summand of Q if the normal fan of Q refines the nor-
mal fan of P . The weak Minkowski summands of Q form a cone under Minkowski sum and
dilation [McM73], called the deformation cone of Q. For instance, the deformation cone of the
permutahedron is the cone of generalized permutahedra [Pos09, PRW08] (also known as submodu-
lar cone, or cone of polymatroids [Edm70]). Note that all hypergraphic polytopes are generalized
permutahedra. It follows from [BMCLD+23, PPPP23] that the deformation cone of the asso-
ciahedron of [SS93, Lod04] is a simplicial cone generated by the faces of the standard simplex
corresponding to intervals of [n]. In particular, the interval hypergraphic polytopes are precisely
the weak Minkowski summands of the associahedron [SS93, Lod04].

3.1. Acyclic orientations for interval hypergraphs. In this section we give a simple charac-
terization of the acyclic orientations of an interval hypergraph I.

Proposition 3.6. An orientation O of an interval hypergraph I is acyclic if and only if there is
no I, J ∈ I such that O(I) ∈ J r {O(J)} and O(J) ∈ I r {O(I)}. Graphically, there is no pattern

J ··· ···•
I ··· ···•

O(I)

O(J)

Proof. If the orientation O contains this pattern, it is clearly cyclic. Conversely, assume that O is
cyclic. Then we can find I1, . . . , Ik ∈ I with k ≥ 2 such that O(Ii+1) ∈ Ii r {O(Ii)} for i ∈ [k − 1]
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and O(I1) ∈ Ik r {O(Ik)}. Graphically

Ik ······
I3 •
I2 •
I1 •

Assume that k > 2 and is minimal for this property. Note that O(Ii) 6= O(Ii+1) for all i. By
symmetry, suppose O(I1) < O(I2). If there is i ∈ [k − 1] such that O(Ii+1) < O(Ii), then for the
smallest such i, we have

• either O(Ii−1) ∈ [O(Ii+1), O(Ii)] ⊆ Ii, so that O(Ii−1) ∈ Ii and O(Ii) ∈ Ii−1,
• or O(Ii+1) ∈ [O(Ii−1), O(Ii)] ⊆ Ii−1, so that we can drop Ii from our sequence, contra-

dicting the minimality of k.

We thus obtain O(I1) < · · · < O(Ik). As O(I1) ∈ Ik, we get O(Ik−1) ∈ [O(I1), O(Ik)] ⊆ Ik, so
that O(Ik−1) ∈ Ik and O(Ik) ∈ Ik−1. �

Remark 3.7. Proposition 3.6 fails when H is not an interval hypergraph. For instance, the orien-
tation O of the hypergraph H := {1, 2, 3, 12, 23, 13} defined by O(12) = 1, O(23) = 2 and O(13) = 3
has a 3-cycle but no 2-cycle.

3.2. Fibers of O for interval hypergraphs. One striking property for interval hypergraphs is
that the fibers of the surjection O are intervals in the weak order. To describe this we first need
to recall the following classical result of A. Björner and M. Wachs [BW91, Thm. 6.8]

Proposition 3.8 ([BW91, Thm. 6.8]). The set of linear extensions of a poset C on [n] forms an in-
terval [σ, τ ] of the weak order if and only if a C c =⇒ a C b or b C c, and a B c =⇒ a B b or b B c,
for every 1 ≤ a < b < c ≤ n. Moreover, the inversions of σ are the pairs (b, a) with a < b and a B b,
and the non-inversions of τ are the pairs (a, b) with a < b and a C b.

This statement was refined in [CPP19] to describe Tamari interval posets.

Proposition 3.9 ([CPP19, Coro. 2.24]). The set of linear extensions of a poset C on [n] forms
an interval [σ, τ ] of the weak order such that σ avoids the pattern 231 and τ avoids the pattern 213
if and only if a C c =⇒ a C b and a B c =⇒ b B c for every 1 ≤ a < b < c ≤ n.

Proposition 3.10. The fiber O−1(A) of any acyclic orientation A of an interval hypergraph I is
an interval of the weak order with minimum avoiding the pattern 231 and maximum avoiding the
pattern 213 (in other words, a Tamari interval).

Proof. From Lemma 2.16, the fiber O−1(A) is the set of linear extensions of CA, so that we use
the characterization of Proposition 3.9 to prove Proposition 3.10. Let 1 ≤ a < b < c ≤ [n].
If we have a CA c, then, by definition of CA, there must be a sequence I1, . . . , Ik ∈ I such
that a = A(I1), A(Ii+1) ∈ Ii for all i ∈ [k − 1], and c ∈ Ik. As

⋃
i∈[k] Ii is an interval containing a

and c and a < b < c, it contains also b. Hence, there is i ∈ [k] such that b ∈ Ii, and the
sequence I1, . . . , Ii proves that a CA b. The case a BA c is similar and implies that b BA c. �

Example 3.11. For the hypergraph I = {1, 2, 3, 4, 123, 23, 234, 1234} of Example 3.3, the fibers
of the surjection map O are represented in Figure 3 (bottom left).

Remark 3.12. Proposition 3.10 fails when H is not an interval hypergraph. For H := {1, 2, 3, 13},
there are two fibers {123, 213, 132} and {231, 312, 321} which are not intervals of the weak order.

3.3. Source characterization for interval hypergraphs. We now characterize the compar-
isons in the poset PI in terms of the comparisons of the sources for each I ∈ I.

Proposition 3.13. For any acyclic orientations A and B of an interval hypergraph I,
A ≤ B in PI ⇐⇒ A(I) ≤ B(I) for all I ∈ I.

Proof. The forward direction is immediate as it holds for increasing flip by Definition 2.6 and any
cover of PI is an increasing flip. For the backward direction, assume that A(I) ≤ B(I) for all I ∈ I.
The proof works by induction on | {I ∈ I | A(I) < B(I)} |.
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Choose J ∈ I such that A(J) < B(J) and for any I ∈ I with A(I) < B(I), we have B(I) < B(J),
or B(I) = B(J) and A(I) ≤ A(J).

Let O be the orientation of I obtained from A by flipping A(J) to B(J) as described in Defini-
tion 2.6. We claim that O is acyclic and that O(I) ≤ B(I) for all I ∈ I. We conclude by induction
that O ≤ B, and thus A ≤ O ≤ B as desired.

We first prove that O is acyclic. Otherwise, we would have I, I ′ ∈ I such that O(I) ∈ I ′r{O(I ′)}
and O(I ′) ∈ I r {O(I)}. As A is acyclic, we have A(I) 6= O(I) or A(I ′) 6= O(I ′), but not both
since O(I) 6= O(I ′). Hence, we can assume by symmetry that O(I) = A(I) while A(I ′) = A(J)
and O(I ′) = B(J). Up to updating J to I ′, we can thus also assume that I ′ = J . As B is acyclic,
we have B(I) 6= O(I). Since A(I) = O(I) 6= B(I), our choice of J ensures that

• either B(I) < B(J). We then obtain that A(I) ≤ B(I) < B(J). As A(I) = O(I) ∈ I ′ = J
and B(J) ∈ J , we thus get that B(I) ∈ J . Moreover, B(J) = O(I ′) ∈ I. As B(I) 6= B(J),
we obtain a contradiction with the acyclicity of B.

• or B(I) = B(J) and A(I) ≤ A(J). We then have A(I) ≤ A(J) ≤ B(J) = B(I) so
that A(J) ∈ I. As A(I) = O(I) ∈ I ′ = J and A(I) 6= A(J), we obtain a contradiction
with the acyclicity of A.

We now prove that O(I) ≤ B(I) for all I ∈ I. We thus consider I ∈ I and distinguish two cases:

• Assume first thatA(I) = A(J) andB(J) ∈ I. By Definition 2.6, we then haveO(I) = B(J).
Moreover, as I is an interval and contains A(J) and B(J), it contains [A(J), B(J)] ⊆ J .
As B is acyclic, this implies that B(I) /∈ [A(J), B(J)[. As A(J) = A(I) ≤ B(I), we thus
obtain that O(I) = B(J) ≤ B(I).

• Otherwise, we have O(I) = A(I) ≤ B(I). �

Remark 3.14. Note that the forward direction holds for arbitrary hypergraphs. We are not sure
whether the backward direction holds for arbitrary hypergraphs.

3.4. Flips and cover relations for interval hypergraphs. In this section, we exploit Propo-
sition 3.6 to provide a simple description of the flips and cover relations of PI for an interval
hypergraph I.

Proposition 3.15. Consider an acyclic orientation A of an interval hypergraph I, an increasing
flip A ij B (in the sense of Definition 2.6), and let k := max {max(I) | I ∈ I and A(I) = i}.
Then B is acyclic if and only if there is no J ∈ I with j ∈ J r {A(J)} and A(J) ∈ ]i, k]. A
symmetric statement holds for decreasing flips.

Proof. We prove the result for increasing flips, the result for decreasing flips follows by the sym-
metry of Proposition 2.12.

Assume first that there is J ∈ I with j ∈ J r {A(J)} and A(J) ∈ ]i, k]. Let I ∈ I be such
that A(I) = i and k = max(I). Then B(J) = A(J) ∈ ]i, k] = ]A(I),max(I)] ⊆ I and B(I) = j ∈ J
and B(I) = j 6= A(J) = B(J) implies that B is cyclic.

Conversely, assume thatB is cyclic. By Proposition 3.6, there are I, J ∈ I withB(I) ∈ J r {B(J)}
and B(J) ∈ I r {B(I)}. As A is acyclic, we have i = A(I) 6= B(I) = j or i = A(J) 6= B(J) = j,
but not both since B(I) 6= B(J). By symmetry, we can assume that i = A(I) 6= B(I) = j
and A(J) = B(J). We obtain that j = B(I) ∈ J r {B(J)} = J r {A(J)}. Moreover, we
have i < A(J) as otherwise A(J) = B(J) ∈ I and A(I) = i ∈ [A(J), j] = [A(J), B(I)] ⊆ J
and A(I) 6= A(J) would contradict the acyclicity of A. As A(J) = B(J) ∈ I r {B(I)}, we obtain
that i < A(J) < max(I). We conclude that A(J) ∈ ]i, k] since max(I) ≤ k as A(I) = i. �

Proposition 3.16. Consider an acyclic orientation A of an interval hypergraph I and i ∈ [n]
such that there is I ∈ I with i = A(I) < max(I). Then there exists j > i such that the orientation
of I obtained by flipping i to j is acyclic. A symmetric statement holds with a decreasing flip
if i = A(I) > min(I).

Proof. We prove the result for increasing flips, the result for decreasing flips follows by the sym-
metry of Proposition 2.12.
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Let k := max {max(I) | I ∈ I and A(I) = i} and consider

X :=
⋃
J∈I

A(J)∈]i,k]

J r {A(J)}.

Assume that X = ]i, k], and consider a minimal j ∈ ]i, k] for the poset CA. As j ∈ X, there
is J ∈ I such that A(J) ∈ ]i, k] and j ∈ J r {A(J)}. Hence, we have A(J) CA j and A(J) ∈ ]i, k],
a contradiction. We conclude that there is j ∈ ]i, k] r X. By Proposition 3.15, the orientation
obtained from A by flipping of i to j is acyclic. �

Remark 3.17. Proposition 3.16 fails when H is not an interval hypergraph. For instance, for
the hypergraph H = {1, 2, 3, 4, 123, 134} of Examples 2.1, 2.5, 2.7, 2.10 and 2.17, and the acyclic
orientation A defined by A(123) = 2 and A(134) = 1, we have 2 = A(123) < max(123), but no
increasing flip from A to an acyclic orientation of H flips 2.

Proposition 3.18. An increasing flip A ij B between two acyclic orientations of an interval
hypergraph I is a cover relation of PI if and only if

]i, j[ ⊆
⋃
J∈I

A(J)∈]i,j]

J r {A(J)}.

Proof. Let k := max {max(I) | I ∈ I and A(I) = i} and I ∈ I be such thatA(I) = i and k = max(I).
Note that i < j ≤ k since A ij B is a flip.

Assume first that there is ` ∈ ]i, j[ r
⋃
A(J)∈]i,j] J r {A(J)}. We claim that there is no J ∈ I

with ` ∈ J r A(J) and A(J) ∈ ]i, k]. Indeed, by definition of `, we would have A(J) > j.
Then B(I) = j ∈ [`, A(J)] ⊆ J and B(J) = A(J) ∈ ]i, k] ⊆ I and B(I) = j < A(J) = B(J)
contradicts the acyclicity of A. We conclude from Proposition 3.15 that the orientation C of I
obtained by flipping i to ` is acyclic. This implies that A ij B is not a cover relation as it is
obtained transitively from A i` C and C `j B.

Conversely, assume that A ≤ B is not a cover relation. Then there is a flip A i` C,
where C is an acyclic orientation of I such that A < C < B. Since A ij B is a flip, we
have A(K) = C(K) = B(K) for any K ∈ I, except if A(K) = i and B(K) = j. Hence, there
is K ∈ I such that A(I) = i < C(I) = ` < j = B(I). Since A i` C is a flip, we obtain
from Proposition 3.15 that there is no J ∈ I with ` ∈ J r {A(J)} and A(J) ∈ ]i, k] ⊆ ]i, j].
Hence, ` ∈ ]i, j[ r

⋃
A(J)∈]i,j] J r {A(J)}. �

4. Interval hypergraphic lattices

In this section, we prove Theorem A which we first introduce properly:

Definition 4.1. An interval hypergraph I is closed under intersection if I, J ∈ I and I ∩ J 6= ∅
implies I ∩ J ∈ I.

Definition 4.2. A poset P is a lattice if any subset of P admits a join (least upper bound) and
a meet (greatest lower bound).

Theorem A. For an interval hypergraph I on [n] (with our convention that {i} ∈ I for all i ∈ [n]),
the poset PI is a lattice if and only if I is closed under intersection.

Example 4.3. The interval hypergraphic posets of Figure 4 are not lattices, while those of Fig-
ures 5 to 8 are lattices.

Example 4.4. The hypergraphic poset of {1, 2, 3, 12, 23, 123} (resp. of {1, 2, 3, 12, 123}) is a lattice.
In general, the hypergraphic poset of all intervals (resp. all initial intervals) is the Tamari lattice
(resp. the boolean lattice). See Figures 5 and 6 (bottom right).

Example 4.5. The hypergraphic posets of {1, 2, 3, 4, 123, 234} and of {1, 2, 3, 4, 12, 123, 1234, 234, 34}
are not lattices. In general, the hypergraphic poset of all initial and final intervals is not a lattice.
See Figure 4.
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1 2 3 4
• •

1 2 3 4
• •

1 2 3 4
••

1 2 3 4
• •

1 2 3 4
••

1 2 3 4
• •

1 2 3 4
• •

1 2 3 4
••
• •

•

1 2 3 4
••
• ••

1 2 3 4
••
• •

•

1 2 3 4
••
••
•

1 2 3 4
••
• ••

1 2 3 4
• ••

••

1 2 3 4
••
••

•

1 2 3 4
••

••
•

1 2 3 4
• •
••
•

1 2 3 4
• •

••
•

1 2 3 4
••

••
•

1 2 3 4
• •

••
•

{1, 2, 3, 4, 123, 234} {1, 2, 3, 4, 12, 123, 1234, 234, 34}

Figure 4. Two interval hypergraphic posets which are not lattices.

4.1. If PI is a lattice, then I is closed under intersection. We are now ready to show the
forward implication of Theorem A. See Figure 4 for an illustration.

Proposition 4.6. If I is an interval hypergraph such that the poset PI is a lattice, then I is closed
under intersection.

Proof. See Example 4.7 for the smallest example of the proof. By contradiction, assume we have
I, J ∈ I such that ∅ 6= I ∩ J 6∈ I. Define 1 ≤ a < b < c < d ≤ n by

a := b− 1, b := min(I ∩ J), c := max(I ∩ J), d := c+ 1.

Note that b 6= c since I contains all singletons, hence 1 ≤ a < b < c < d ≤ n. By symmetry, we
assume that a ∈ I r J and d ∈ J r I. Let X be the word formed by the complement of {a, b, c, d}
in [n] written in increasing order. We now construct four permutations

πA := bacdX, πB := acdbX, πC := dbacX, πD := cdbaX,
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1 2 3
• •
•

1 2 3
• ••

1 2 3
••
•

1 2 3
• ••

1 2 3
• •
•

1 2 3 4
• •

•• •
•

1 2 3 4
••
••

••

1 2 3 4
• ••
• ••

1 2 3 4
• •

•• •
•

1 2 3 4
••

•••
•

1 2 3 4
• •

•• ••

1 2 3 4
• ••

••
•

1 2 3 4
• •

•• ••

1 2 3 4
• • •
• ••

1 2 3 4
• •
••
••

1 2 3 4
••

•• ••

1 2 3 4
• • •
• ••

1 2 3 4
• • •

• •
•

1 2 3 4
• •

••
••

{1, 2, 3, 12, 23, 123} {1, 2, 3, 4, 12, 23, 34, 123, 234, 1234}

Figure 5. The Tamari lattice (semidistributive lattice, but not distributive).

and consider the four distinct acyclic orientations

A :=OπA
, B :=OπB

, C :=OπC
, D :=OπD

.

We display below the four orientations highlighting only the intervals I and J :

A = •
•

I
J

a b c d

B = •
•

I
J

a b c d

C = •
•
I
J

a b c d

D = •
•

I
J

a b c d

We have that πA < πC , πA < πD and πB < πD in the weak order. Corollary 2.15 implies that
A < C, A < D and B < D in PI. We moreover claim that B < C but this does not follow directly
from the weak order since πB 6< πC . To show our claim, consider πE = adcbX and πF = adbcX.
For any K ∈ I such that a, d 6∈ K, we cannot have both c, d ∈ K, since this would imply that
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K = [c, d] = I ∩ J 6∈ I, a contradiction. This shows that E = OπE
= OπF

= F . Now we have
πB < πE and πF < πC which gives B < E = F < C.

If the poset PI is a lattice and A ≤ C A ≤ D, B ≤ C and B ≤ D, there is M such that A ≤M ,
B ≤ M , M ≤ C and M ≤ D (anything between A ∨ B and C ∧ D works). Let πM be any
permutation such that M = OπM

and let

m = π
(

min {i | πM (i) ∈ I ∪ J}
)
.

If m < b, then M(I) = m < b = A(I) and the easy forward implication of Proposition 3.13
implies that A 6≤ M . By similar arguments b ≤ m < c would imply B 6≤ M , b < m ≤ c would
imply M 6≤ C, and c < m would imply M 6≤ D. This is a contradiction to the existence of m. �

Example 4.7. For the hypergraph {1, 2, 3, 4, 123, 234} illustrated in Figure 4 (left), we have a = 1,
b = 2, c = 3, d = 4 and

A =
1 2 3 4
•• B =

1 2 3 4
• • C =

1 2 3 4
• • and D =

1 2 3 4
•• .

We have A,B ≤ C,D and there is no M with A,B ≤ M ≤ C,D, so that A and B have no join,
and C and D has no meet.

Remark 4.8. Proposition 4.6 fails when H is not an interval hypergraph. For instance, the
hypergraph H := {1, 2, 3, 4, 5, 1234, 2345, 23, 24, 34} is not closed under intersection, while its hy-
pergraphic poset PH is a lattice.

4.2. Properties of PI when I is closed under intersection. For the backward implication of
Theorem A, we need to investigate the properties of interval hypergraphs that are closed under
intersection. Recall from Proposition 3.10 that the fiber O−1(A) of any acyclic orientation A of I
is an interval [π↓A, π

↑
A] in the weak order. In the following we will keep this convention that π↓A

and π↑A respectively denote the minimum and the maximum of the interval O−1(A).

Theorem 4.9. If I is an interval hypergraph closed under intersection, then the following are
equivalent for two acyclic orientations A and B of I:
(a) A ≤ B in PI,
(b) A(I) ≤ B(I) for all I ∈ I,
(c) π↓A ≤ π

↑
B in the weak order,

(d) i BA j implies i 6CB j for all i < j.

Proof. The equivalence (a)⇐⇒ (b) was established in Proposition 3.13.

For the equivalence (c)⇐⇒ (d), Propositions 3.8 and 3.10 show that the inversion set of π↓A
is {(j, i) | i < j, i BA j} while the inversion set of π↑B is {(j, i) | i < j, i 6CB j}. The equivalence
of (c)⇐⇒ (d) thus follows from the characterization of the weak order in terms of inclusion of
inversion sets.

The implication (c) =⇒ (a) follows from Corollary 2.15. Thus we only need to prove (b) =⇒ (d).
For a contradiction, assume that A(I) ≤ B(I) for all I ∈ I and that we have some i < j

such that i BA j and i CB j. Choose one such pair with j − i minimal. Since i BA j there
are I1, . . . , Ia ∈ I such that j = A(I1), A(Ip+1) ∈ Ip for all p ∈ [a − 1], and i ∈ Ik. Since i CB j
there are J1, . . . , Jb ∈ I such that i = B(J1), B(Jq+1) ∈ Jq for all q ∈ [` − 1], and j ∈ J`. Note
that i BA A(Ip) for all p ∈ [a] and that B(Jq) CB j for all q ∈ [b]. Moreover, as

⋃
p∈[a] Ip

and
⋃
q∈[b] Jq are both intervals containing i and j, we have i CB k BA j for all i ≤ k ≤ j. By

minimality of j − i, we thus obtain that A(Ip) /∈ ]i, j[ for p ∈ [a] and B(Jq) /∈ ]i, j[ for q ∈ [b].
Hence, [i, j] is contained in some Ip and some Iq. As A and B are acyclic, we obtain that a = 1 = b.

We can thus assume that we have I, J ∈ I such that i = B(J) ∈ I and j = A(I) ∈ J .
As I is closed under intersection, we have {i, j} ⊆ K := I ∩ J ∈ I. We have A(K) = j, as
otherwise A(I) = j ∈ K an A(K) ∈ K ⊆ I and A(I) 6= A(K) would contradict the acyclicity
of A. Similarly, we have B(K) = i. We conclude that B(K) = i < j = A(K) and K ∈ I
contradicting (b). �
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Remark 4.10. The implication (a) =⇒ (c) in Theorem 4.9 fails when I is not closed under
intersection. For instance, for I = {1, 2, 3, 4, 123, 234} and the acyclic orientations

1 2 3 4
• • ≤

1 2 3 4
• • ≤

1 2 3 4
• •

A B C

we have [π↓A, π
↑
A] = [1324, 1342], [π↓B , π

↑
B ] = [1423, 4132] and [π↓C , π

↑
C ] = [4213, 4231], so π↓A 6≤ π

↑
C .

4.3. If I is closed under intersection, then PI is a lattice. We now conclude the proof of
Theorem A. This is a corollary of Theorem 4.9.

Proposition 4.11. If I is an interval hypergraph closed under intersection, then the poset PI is
a lattice where

A ∨B = Oπ↓
A∨π

↓
B

and A ∧B = Oπ↑
A∧π

↑
B
.

Proof. Consider four acyclic orientations A,B,C,D of I such that A ≤ C, A ≤ D, B ≤ C

and B ≤ D. Theorem 4.9 implies that π↓A ≤ π
↑
C , π↓A ≤ π

↑
D, π↓B ≤ π

↑
C and π↓B ≤ π

↑
D. Hence

π↓A ≤ π
↓
A ∨ π

↓
B , π↓B ≤ π

↓
A ∨ π

↓
B , π↓A ∨ π

↓
B ≤ π

↑
C , π↓A ∨ π

↓
B ≤ π

↑
D,

which implies by Corollary 2.15 that

A ≤ Oπ↓
A∨π

↓
B
, B ≤ Oπ↓

A∨π
↓
B
, Oπ↓

A∨π
↓
B
≤ C, Oπ↓

A∨π
↓
B
≤ D.

This implies that A and B admit a join

A ∨B ≤ Oπ↓
A∨π

↓
B
.

As A ≤ A ∨ B and B ≤ A ∨ B, Theorem 4.9 ensures that π↓A ≤ π↑A∨B and π↓B ≤ π↑A∨B , so

that π↓A ∨ π
↓
B ≤ π

↑
A∨B . By Corollary 2.15, this implies

Oπ↓
A∨π

↓
B
≤ A ∨B.

This shows the result for the join ∨. The proof for the meet ∧ is similar. �

Example 4.12. For the hypergraph {1, 2, 3, 4, 123, 23, 234, 1234} of Example 3.3 and Figure 3,
we have

1 2 3 4
••
•• ∨

1 2 3 4
••

•• = O2134∨1324 = O3214 =

1 2 3 4
••
••

and

1 2 3 4
••
•• ∧

1 2 3 4
••

•• = O2431∧1342 = O1234 =

1 2 3 4
••
••

Remark 4.13. Proposition 4.11 fails when H is not an interval hypergraph. For instance, the hy-
pergraph H := {1, 2, 3, 4, 12, 13, 24, 34} is closed under intersection, while its hypergraphic poset PH
is not a lattice. More generally, all hypergraphs H with |H| ≤ 2 for all H ∈ H are closed under
intersection, and the graphical zonotopes whose oriented skeleta are lattices were characterized
in [Pil24].

Remark 4.14. In fact, our proof of Proposition 4.11 is a general statement about quasi lattice
maps. Namely, if L is a lattice and P a poset, and Ψ : L → P is a poset morphism such

that Ψ−1(A) = [π↓A, π
↑
A] is an interval for all A ∈ P , and A ≤ B implies π↓A ≤ π↑B , then P is

a lattice where A ∨ B = Ψ(π↓A ∨ π
↓
B) and A ∧ B = Ψ(π↑A ∧ π

↑
B). Note that lattice maps satisfy

the stronger condition that A ≤ B implies π↓A ≤ π↓B and π↑A ≤ π↑B . It would be interesting to
characterize the quasi lattice maps of the weak order. Note that the lattice maps of the weak
order where described by N. Reading in [Rea04, Rea15].
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Proposition 4.15. For an interval hypergraph I closed under intersection, any acyclic orienta-
tions A1, . . . Aq of I, and any I ∈ I, we have( ∨

p∈[q]

Ap

)
(I) = min

(
I r

( ⋃
p∈[q]

⋃
J∈I

Ap(J)∈I

[min(J), Ap(J)[
))

.

Proof. Let O be the orientation of I defined by the formula of the statement. We first prove that O
is acyclic. Otherwise, Proposition 3.6 ensures the existence of I, J ∈ I such that O(I) ∈ Jr{O(J)}
and O(J) ∈ I r {O(I)}. Assume by symmetry that O(I) < O(J). As O(I) ∈ J and O(J) > O(I),
there exists p ∈ [q] and K ∈ I such that Ap(K) ∈ J and min(K) ≤ O(I) < Ap(K) ≤ O(J). As I
is an interval containing O(I) and O(J), and O(I) < Ap(K) ≤ O(J), it also contains Ap(K). We
thus obtain that Ap(K) ∈ I and min(K) ≤ O(I) < Ap(K) contradicting our definition of O.

We now prove thatO =
∨
p∈[q]Ap. For p ∈ [q] and I ∈ I, we haveAp(I) ∈ I, henceO(I) ≥ Ap(I),

so that O ≥ Ap by Proposition 3.13. Consider now an acyclic orientation O′ of I such that Ap ≤ O′
for all p ∈ [q]. Assume that there are I, J ∈ I and p ∈ [q] such that Ap(J) ∈ I. Then Ap(J) ∈
I ∩ J ∈ I, so that Ap(I ∩ J) = Ap(J) by acyclicity of Ap. By Proposition 3.13, we thus ob-
tain O′(I ∩ J) = Ap(J). By acyclicity of O′, this implies that O′(I) /∈ [min(I ∩ J), Ap(J)[, so
that O′(I) /∈ [min(J), Ap(J)[. We conclude that O(I) ≤ O′(I). Hence, O ≤ O′ by Proposi-
tion 3.13. �

5. Distributive interval hypergraphic lattices

In this section, we prove Theorem B which we first introduce properly:

Definition 5.1. We say that an interval hypergraph I is distributive if for all I, J ∈ I such
that I 6⊆ J , I 6⊇ J and I ∩ J 6= ∅, the intersection I ∩ J is in I and is initial or final in any K ∈ I
with I ∩ J ⊆ K.

Definition 5.2. A lattice (L,≤,∨,∧) is distributive if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ L (the two conditions are in fact equivalent). Equivalently, L is distributive if and
only if it is isomorphic to the inclusion lattice on lower sets of its poset of join irreducible elements.

Theorem B. For an interval hypergraph I on [n] (with our convention that {i} ∈ I for all i ∈ [n]),
the poset PI is a distributive lattice if and only if I is distributive.

Example 5.3. The interval hypergraphic posets of Figure 6 are distributive lattices, while those
of Figures 4, 5, 7 and 8 are not.

Example 5.4. The hypergraphic poset of {1, 2, 3, 12, 123} is a distributive lattice (it is square). In
general, the hypergraphic poset of all initial intervals is the boolean lattice, which is distributive.
See Figure 6 and Section 5.4 for more examples of distributive hypergraphs.

Example 5.5. The hypergraphic poset of {1, 2, 3, 12, 23, 123} is a semidistributive but not dis-
tributive lattice (it is a pentagon). In general, the hypergraphic poset of all intervals is the Tamari
lattice, which is semidistributive but not distributive. See Figure 5.

5.1. Some join irreducible acyclic orientations. In this section, we assume that I is an
interval hypergraph closed under intersection so that the hypergraph poset PI is a lattice by
Proposition 4.11. Our first task will be to identify some join irreducible acyclic orientations of I (a
complete but more technical description of all join irreducible acyclic orientations of I will appear
later in Section 6.1). The following notations are illustrated in Examples 5.10 to 5.14 below.

Notation 5.6. Define JI :=
⋃
I∈I

I r {min(I)}.



16 N. BERGERON AND VINCENT PILAUD

1 2 3 4
• •
•

1 2 3 4
••
•

1 2 3 4
• ••

1 2 3 4
• •

•

1 2 3 4
••
•

1 2 3 4
••

•

1 2 3 4
• • •

1 2 3 4
••
•

1 2 3 4
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••
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• •

1 2 3 4
••
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{1, 2, 3, 4, 123, 23, 234} {1, 2, 3, 4, 123, 1234}
boolean lattice distributive lattice

1 2 3 4
• ••

1 2 3 4
• •
•

1 2 3 4
• ••

1 2 3 4
• ••

1 2 3 4
• ••

1 2 3 4
• •
•

1 2 3 4
• ••

1 2 3 4
• ••

1 2 3 4
••
•

1 2 3 4
••
•

1 2 3 4
• ••

1 2 3 4
••

•

1 2 3 4
• •
•

1 2 3 4
••

•

1 2 3 4
• • •

1 2 3 4
• •

•

{1, 2, 3, 4, 12, 34, 1234} {1, 2, 3, 4, 12, 123, 1234}
boolean lattice boolean lattice

Figure 6. Four distributive interval hypergraphic lattices.
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Notation 5.7. For j ∈ JI, we let

Jj =
⋂
I∈I

j∈Ir{min(I)}

I,

(note that Jj ∈ I since I is closed under intersection), and we set µj := min(Jj) and νj := max(Jj).
By definition min(I) ≤ µj < j ≤ νj ≤ max(I) for any I ∈ I such that j ∈ I r {min(I)}.

Notation 5.8. For j ∈ JI, consider the acyclic orientation Aj :=O(µj ,µj+1,...,j), obtained as the
image by the surjection map O of Definition 2.13 of the cycle permutation

(µj , µj + 1, . . . , j) = 12 · · · (µj − 1)j µj · · · (j − 1)(j + 1) · · ·n
obtained from the identity permutation by placing j just before µj . Note that that for all J ∈ I

Aj(J) =

{
j if j ∈ J and min(J) = µj ,

min(J) otherwise.

Notation 5.9. For i, j ∈ JI, we write i 4 j if and only if Ji = Jj and i ≤ j.

Example 5.10. For the hypergraph I = {1, 2, 3, 12, 123}, we have JI = {2, 3} and the correspond-
ing acyclic orientations are

A2 =
1 2 3
•• and A3 =

1 2 3
• •

and are incomparable.

Example 5.11. For the hypergraph I = {1, 2, 3, 12, 23, 123} illustrated in Figure 5 (left), we
have JI = {2, 3} and the corresponding acyclic orientations are

A2 =
1 2 3
••
•

and A3 =
1 2 3
• ••

and are incomparable.

Example 5.12. For the hypergraph I := {1, 2, 3, 12, 23, 34, 123, 234, 1234} illustrated in Figure 5 (right),
we have JI = {2, 3, 4}, and the corresponding acyclic orientations are

A2 =

1 2 3 4
••
••

••
A3 =

1 2 3 4
• ••
• ••

and A4 =

1 2 3 4
• •

•• •
•

and are incomparable.

Example 5.13. For the hypergraph I := {1, 2, 3, 4, 123, 23, 234} illustrated in Figure 6 (top left),
we have JI = {2, 3, 4}, and the corresponding acyclic orientations are

A2 =

1 2 3 4
••
• A3 =

1 2 3 4
• ••

and A4 =

1 2 3 4
• •

•

and are incomparable.

Example 5.14. For the hypergraph I := {1, 2, 3, 4, 123, 1234} illustrated in Figure 6 (top right),
we have JI = {2, 3, 4}, and the corresponding acyclic orientations are

A2 =

1 2 3 4
••

A3 =

1 2 3 4
••

and A4 =

1 2 3 4
• •

and we have A2 < A3.

Lemma 5.15. For i 6= j ∈ JI, we have Ai 6= Aj.

Proof. If i 6= j, then we have Ai(Jj) ∈ {µj , i} while Aj(Jj) = j /∈ {µj , i}. �

Lemma 5.16. For i, j ∈ JI, we have Ai ≤ Aj ⇐⇒ i 4 j.
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Proof. By Proposition 3.13 we have Ai ≤ Aj if and only if Ai(I) ≤ Aj(I) for all I ∈ I. The
forward direction is thus a direct consequence of the following four observations:

• if µi 6= µj , then Ai(Ji) = i > µi = min(Ji) = Aj(Ji),
• if νi < νj , then j /∈ Ji r {µi}, so that Ai(Ji) = i > µi = min(Ji) = Aj(Ji),
• if i > j, then Ai(Ji) = i > j ≥ Aj(Ji),
• i ≤ j implies that µi ≤ µj and νi ≤ νj .

For the backward direction, assume i 4 j, and consider I ∈ I. As i < j, Ai(I) ∈ {min(I), i}
and Aj(I) ∈ {min(I), j}, we have Ai(I) ≤ Aj(I) except if Ai(I) = i and Aj(I) = min(I).
As Ai(I) = i, we would have i ∈ I and min(I) = µi. As Aj(I) = min(I) and min(I) = µi = µj ,
we would have j /∈ I. This contradicts the fact that νi = νj . �

Lemma 5.17. For any j ∈ JI and any acyclic orientation A of I, we have

• A ≤ Aj ⇐⇒ A = min(PI) or A = Ai with i 4 j,
• Aj ≤ A ⇐⇒ j ≤ A(Jj).

Proof. By Proposition 3.13, A ≤ Aj implies that A(I) ≤ Aj(I) for all I ∈ I. For I, I ′ ∈ I such
that j ∈ I ∩ I ′ and min(I) = min(I ′) = µj , we have A(I) = A(I ′) since A is acyclic. If A < Aj , we
conclude that there is i ∈ [µj , j[ such that A(I) = i if j ∈ I and min(I) = µj , and A(I) = min(I)
otherwise. Hence, A = min(PI) or A = Ai. The first point thus follows from Lemma 5.16.

For the second point, Aj ≤ A implies j = Aj(Jj) ≤ A(Jj) by Proposition 3.13. Conversely,
if j ≤ A(Jj), then for any I ∈ I,

• if j ∈ I and min(I) = µj , we have Aj(I) = j ≤ A(I) (by acyclicity of A),
• otherwise, Aj(I) = min(I) ≤ A(I).

Hence, Aj ≤ A by Proposition 3.13. �

Proposition 5.18. If I is an interval hypergraph closed under intersections, then the acyclic
orientation Aj is join irreducible for any j ∈ JI.

Proof. By Lemma 5.17, the lower set of Aj in PI is the chain min(PI) < Ai1 < · · · < Aip < Aj
where {i1 < · · · < ip} = {i ∈ JI | Ji = Jj and i < j}. Hence, Aj is join irreducible. �

Corollary 5.19. If I is an interval hypergraph closed under intersections, then the map j 7→ Aj
is an injective poset morphism from (JI,4) to the subposet of join irreducibles of PI.

Proof. Immediate from Lemmas 5.15 and 5.16 and Proposition 5.18. �

In the next two propositions, we assume I is closed under intersections.

Proposition 5.20. For any two lower sets X and Y of (JI,4), if
∨
x∈X

Ax =
∨
y∈Y

Ay then X = Y .

Proof. Assume
∨
x∈X

Ax =
∨
y∈Y

Ay and let x ∈ X. Then x = Ax(Jx) ≤
( ∨
x∈X

Ax
)
(Jx) =

( ∨
y∈Y

Ay
)
(Jx).

From the description of the join of Proposition 4.15, we thus obtain that there exists y ∈ Y
and J ∈ I such that Ay(J) ∈ Jx and min(J) < x ≤ Ay(J). As min(J) 6= Ay(J), we obtain
that Ay(J) = y and min(J) = µy. We get that µy < x ≤ y ≤ νx, hence that x ∈ Jy r {µy}
and y ∈ Jx r {µx} so that Jx = Jy. As x ≤ y, we conclude that x 4 y, so that x ∈ Y . We thus
obtained that X ⊆ Y , and thus X = Y by symmetry. �

Proposition 5.21. max(PI) =
∨
j∈JI

Aj.

Proof. Assume by contradiction max(PI) 6=
∨
j∈JI

Aj =: A. Then there is I ∈ I withA(I) < max(I).

Let j :=A(I)+1. As j ∈ Ir{min(I)}, we have A(Jj) ∈ Jj ⊆ I and A(I) = j−1 ∈ Jj . As Aj ≤ A,
we have A(I) = j − 1 < j = Aj(Jj) ≤ A(Jj) so that A(I) 6= A(Jj). We thus obtain that A is
cyclic, a contradiction. �

Corollary 5.22. For any interval hypergraph I closed under intersection, PI contains a distributive
sublattice containing min(PI) and max(PI).
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5.2. If I is distributive then PI is distributive. We now prove the backward direction of
Theorem B. The following strengthen Proposition 3.16.

Proposition 5.23. For a distributive interval hypergraph I, an acyclic orientation A of I, and J ∈ I
such that j :=A(J) 6= min(J), there exists i such that

min(J) ≤ i ≤ max {max(I) | I ∈ I, min(I) = min(J), max(I) < j}
and the orientation obtained from A by flipping j to i is acyclic.

Proof. Let I ∈ I be maximal such that min(I) = min(J) and max(I) < j, and let i :=A(I). Let O
be the orientation obtained from A by flipping j to i as in Definition 2.6. If O is cyclic, there
exists K,K ′ ∈ I such that O(K) ∈ K ′, O(K ′) ∈ K, and O(K) 6= O(K ′). As A is acyclic, we have
either A(K) 6= O(K) or A(K ′) 6= O(K ′), but not both since O(K) 6= O(K ′). We can thus assume
that A(K) = O(K) while A(K ′) = j and O(K ′) = i. If j ∈ K, then we have A(K) 6= j = A(K ′)
(otherwise, O(K) = i = O(K ′)), and A(K) = O(K) ∈ K ′ and A(K ′) = j ∈ K, contradicting
the acyclicity of A. As i ∈ K and j /∈ K, we obtain that max(K) < j. As A(I) = i ∈ K
and A(K) = O(K) 6= O(K ′) = i = A(I), we have K 6⊆ I by acyclicity of A. If min(I) < min(K),
then I 6⊆ K and I 6⊇ K and I ∩K 3 i, and K is neither initial nor final in J , contradicting the
distributivity of I. If min(K) < min(J) and min(K ′) < min(J), then we have J 6⊆ K and J 6⊇ K
and J ∩ K 3 i, and J ∩ K is neither initial nor final in K ′, contradicting the distributivity
of I. As I is closed under intersection and we have A(K) = O(K) ∈ K ′, we can thus assume
that min(I) = min(K). We thus obtain that K ⊆ I. As A(K) = O(K) 6= O(K ′) = i = A(I), this
contradicts the acyclicity of A. We conclude that O is acyclic, which proves the statement. �

Remark 5.24. Proposition 5.23 fails when I is not distributive. For instance, for the interval
hypergraph I = {1, 2, 3, 12, 23, 123} of Example 5.11 and Figure 5 (left), for the interval J = 23
and for the acyclic orientation

A =
1 2 3
• ••

Proposition 5.25. If I is a distributive interval hypergraph, then the map j 7→ Aj is a poset
isomorphism from (JI,4) to the subposet of join irreducibles of PI.

Proof. We have already seen in Corollary 5.19 that j 7→ Aj is an injective poset morphism. We thus
just need to show that the distributivity of I implies the surjectivity of this morphism. Consider
an increasing flip A ij B. If there is J ∈ I such that B(J) /∈ {min(J), j}, then A(J) = B(J) and
Proposition 3.16 ensures that B admits a decreasing flip flipping B(J) to some k < B(J) = A(J).
If there is J ∈ I such that B(J) = j and min(J) < µj , then the distributivity of I implies
that max(I) < µj for any I ∈ I such that min(I) = min(J) and max(I) < j (otherwise, I 6⊆ Jj
and I 6⊇ Jj and µj ∈ I ∩ Ji ⊆ J , and I ∩ Jj is neither initial nor final in J , contradicting the
distributivity of I). Hence, Proposition 5.23 ensures that B admits a decreasing flip flipping j
to some k < µj . As B is acyclic, there is no J ∈ I such that B(J) = min(J) = µj and j ∈ J .
We conclude that if B admits a single decreasing flip, then B(J) = j if j ∈ J and min(J) = µj ,
and B(J) = min(J) otherwise, so that B = Aj . �

Remark 5.26. We will see in Lemma 5.29 that the surjectivity in Proposition 5.25 systematically
fails when I is not distributive. See Example 5.30 for an example.

Proposition 5.27. If I is a distributive interval hypergraph, then the maps

Φ : A 7→ {j ∈ JI | Aj ≤ A} and Ψ : X 7→
∨
x∈X

Ax

are inverse bijections between the acyclic orientations of I and the lower sets of (JI,4). Hence PI
is a distributive lattice.

Proof. In a finite lattice, any element can always be written as the join of the join irreducible
elements below it. Proposition 5.25 thus implies that Ψ(Φ(A)) = A. The statement follows since
Ψ is injective by Proposition 5.20. �
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Corollary 5.28. If I is a distributive hypergraph, then PI is a Cartesian product of chains.

Proof. The poset (JI,4) is a disjoint union of chains, hence its lattice of lower sets is a Cartesian
product of chains. �

5.3. If PI is distributive then I is distributive. We now prove the forward direction of The-
orem B. We first show that the surjectivity in Proposition 5.25 systematically fails when I is not
distributive.

Lemma 5.29. If an interval hypergraph I is closed under intersection but not distributive, there
is a join irreducible acyclic orientation A such that A 6≤ Aj for all j ∈ JI.

Proof. As I is closed under intersection but not distributive, there are I, J,K ∈ I with I 6⊆ J , I 6⊇ J ,
∅ 6= I ∩ J ⊆ K, and I ∩ J is neither initial nor final in K. By symmetry, we can assume
that min(I) < min(J) ≤ max(I) < max(J). As I ∩ J is neither initial nor final in K, we
have min(K) < min(J) ≤ max(I) < max(K). As I is closed under intersection, we can even assume
that min(I) = min(K) and max(J) = max(K). Let i := min(I) = min(K) and j := min(J r I).
Let A :=O(i,...,j) be the acyclic orientation of I obtained as the image by the surjection map O of
Definition 2.13 of the cycle permutation (i, . . . , j) = 12 · · · (i− 1)j i · · · (j− 1)(j+ 1) · · ·n. In other
words,

A(K) =

{
j if j ∈ J and min(J) ≥ i
min(J) otherwise.

We claim that the flip of j to i is the only decreasing flip from A. Let B be an acyclic orientation
of I obtained by a decreasing flip from A. Let H ∈ I be such that B(H) < A(H). Since A(H) ∈
{min(H), j}, we have A(H) = j, so that i ≤ min(H) ≤ B(H) < A(H) = j. If B(H) 6= i,
then B(K) = B(H) ∈ I (since B(H) ∈ K and A(K) = j) and B(I) ≤ A(I) = min(I) = i ∈ K
(since j /∈ I), contradicting the acyclicity of B. We conclude that B(H) = i, so that B is indeed
obtained from A by flipping j to i.

Finally, as A(K) = j while Aj(K) = min(K) < j, we have A 6≤ Aj for all j ∈ JI by Proposi-
tion 3.13. �

Example 5.30. Following on Remark 5.24, the join irreducible acyclic orientations of the interval
hypergraph I = {1, 2, 3, 12, 23, 123} of Example 5.11 and Figure 5 (left) are

A2 =
1 2 3
••
•

A3 =
1 2 3
• ••

and A =
1 2 3
• ••

Proposition 5.31. If I is an interval hypergraph such that PI is a distributive lattice, then I is
distributive.

Proof. If I is not closed under intersection, then PI is not even a lattice by Proposition 4.6. If I is
closed under intersection but not distributive, consider the join irreducible acyclic orientation A
of Lemma 5.29. As A 6≤ Aj for all j ∈ JI, and max(PI) =

∨
j∈JI

Aj = A ∨
∨
j∈JI

Aj , we obtain
that PI is not distributive. �

Corollary 5.32. For an internal hypergraph I, the poset PI is a distributive lattice if and only if
it is a Cartesian product of chains.

5.4. Schröder hypergraphs. As an illustration of this section, we now consider a special family
of distributive hypergraphs which were already considered in [Def23].

Definition 5.33. Let S be a Schröder tree (i.e. a rooted plane tree where each internal node has
at least two children) with n leaves labeled by [n] from left to right. Label each node of S by the
set of leaves of its subtree. We say that the hypergraph IS formed by all singletons and the labels
of the nodes of S is a Schröder hypergraph.
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Example 5.34. All but the top left interval hypergraphs of Figure 6 are Schröder hypergraphs.
The corresponding Schröder trees are given by:

S

1234

123

1234

3412

1234

123

12

IS {1, 2, 3, 4, 123, 1234} {1, 2, 3, 4, 12, 34, 1234} {1, 2, 3, 4, 12, 123, 1234}

Example 5.35. For instance, for the left comb C, the Schröder hypergraph IC consists of all
singletons and all initial intervals. The hypergraphic polytope 4IC is the Pitman–Stanley poly-
tope [SP02].

Proposition 5.36. An interval hypergraph I is a Schröder hypergraph if and only if I ⊆ J or I ⊇ J
or I ∩ J = ∅ for all I, J ∈ I.

Proof. Consider first two nodes i and j of a Schröder tree S, and let I and J be the corresponding
labels. Then I ⊆ J if i is a descendant of j, I ⊇ J if i is a ancestor of j, and I ∩ J = ∅ otherwise.

Conversely, consider an interval hypergraph I where any two hyperedges are nested or disjoint.
Then the inclusion poset on I is a Schröder tree S with IS = I. �

Remark 5.37. Proposition 5.36 implies that Schröder hypergraphs are building sets, so that
Schröder hypergraphic polytopes are nestohedra [FS05, Pos09]. In fact, the latter were already
considered in the literature under the name fertilotopes [Def23].

Corollary 5.38. Any Schröder hypergraph is a distributive interval hypergraph, hence the Schröder
hypergraphic posets are distributive lattices.

Proof. The distributivity condition of Definition 5.1 is clearly fulfilled as any I ⊆ J or I ⊇ J
or I ∩ J = ∅ for all I, J ∈ I. �

Proposition 5.39. Given a Schröder tree S, the poset of join irreducible acyclic orientations
on IS is isomorphic to a disjoint union of chains. More precisely, it has one chain for each node n
of S, whose elements are the leaves of n and the leftmost leaves of the children of n, except the
leftmost leaf below n.

Proof. This description is a specialization of the description of the join irreducible poset of dis-
tributive interval hypergraphic posets from Section 5.1. �

6. Semidistributive interval hypergraphic lattices

In this section, we prove Theorem C which we first introduce properly:

Definition 6.1. We say that an interval hypergraph I is join semidistributive if it is closed under
intersection and for all [r, r′], [s, s′], [t, t′], [u, u′] ∈ I such that r < s ≤ r′ < s′, r < t ≤ s′ < t′,
u < min(s, t) and s′ < u′, there is [v, v′] ∈ I such that v < s and s′ < v′ < t′.

Definition 6.2. A lattice (L,≤,∨,∧) is join semidistributive if

a ∨ b = a ∨ c implies a ∨ (b ∧ c) = a ∨ b
for all a, b, c ∈ L. Equivalently, L is join semidistributive if and only if for any cover relation al b
in L, the set {c ∈ L | a ∨ c = b} admits a unique minimal element kalb. The meet semidistribu-
tivity is defined dually. A lattice L is semidistributive if it is both meet and join semidistributive.

Remark 6.3. In general, the set {c ∈ L | a ∨ c = b} might have more than one minimal element.
Note however that any minimal element of {c ∈ L | a ∨ c = b} is always join irreducible. Indeed,
Assume that a∨ c = b and c = d∨e. Then a 6= a∨d or a 6= a∨e since a < b = a∨ c = a∨ (d∨e) =
(a ∨ d) ∨ (a ∨ e). Moreover, a ∨ d ≤ b and a ∨ e ≤ b since a ≤ b and d ≤ c ≤ b and e ≤ c ≤ b.
As al b is a cover relation of L, we conclude that a ∨ d = b or a ∨ e = b so that c is not minimal.
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• ••
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{1, 2, 3, 4, 123, 23, 234, 1234} {1, 2, 3, 4, 23, 34, 1234}
semidistributive lattice, semidistributive lattice,

but not distributive but not distributive

Figure 7. Two interval hypergraphic lattices which are semidistributive but not
distributive.

Remark 6.4. Although we will not insist on this aspect in this paper, the join semidistributivity
is equivalent to the existence of canonical join representations. A join representation of b ∈ L is
a subset J ⊆ L such that b =

∨
J . Such a representation is irredundant if b 6=

∨
J ′ for any strict

subset J ′ ( J . The irredundant join representations of b ∈ L are ordered by J ≤ J ′ if and only if
for any j ∈ J there is j′ ∈ J ′ with j ≤ j′. The canonical join representation of b is the minimal
irredundant join representation of b for this order when it exists. The lattice L is semidistributive
if and only if any element of L admits a canonical join representation. Moreover, the canonical
join representation of b is given by b =

∨
alb kalb, where a ranges over all elements of L covered

by b.

Theorem C. For an interval hypergraph I on [n] (with our convention that {i} ∈ I for all i ∈ [n]),
the poset PI is a join semidistributive lattice if and only if I is join semidistributive. Under the
symmetry of Proposition 2.12, a dual characterization holds for meet semidistributive.

Example 6.5. Figure 6 shows four distributive (hence semidistributive) interval hypergraphic
lattices. Figure 7 shows two interval hypergraphic lattices which are semidistributive but not
distributive. Figure 8 shows two interval hypergraphic lattices which are not semidistributive.
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{1, 2, 3, 4, 12, 23, 34, 1234} {1, 2, 3, 4, 12, 23, 234, 1234}
lattice but neither join meet semidistributive lattice,

nor meet semidistributive but not join semidistributive

Figure 8. Two interval hypergraphic lattices which are not semidistributive.

Example 6.6. The hypergraphic poset of {1, 2, 3, 12, 23, 123} is a semidistributive (but not dis-
tributive) lattice (it is a pentagon). In general, the hypergraphic poset of all intervals is the Tamari
lattice, which is semidistributive but not distributive. See Figure 5.

6.1. All join irreducible acyclic orientations. In this section, we assume that I is an interval
hypergraph closed under intersection so that the hypergraph poset PI is a lattice by Proposi-
tion 4.11, and we describe all the join irreducible elements of PI. The following notations are
illustrated in Examples 6.12 to 6.17 below.

Notation 6.7. For 1 ≤ i < j ≤ n such that there exists I ∈ I with {i, j} ⊆ I, we let

Jij =
⋂
I∈I
{i,j}⊆I

I

(note that Jij ∈ I since I is closed under intersection), and we set µij := min(Jij) and νij := max(Jij).
By definition min(I) ≤ µij ≤ i < j ≤ νij ≤ max(I) for any I ∈ I such that {i, j} ⊆ I.

Notation 6.8. Define IJ I to be the set of pairs (i, j) where 1 ≤ i < j ≤ n are such that there
exists I ∈ I with {i, j} ⊆ I and (i, j) satisfies the relation

i = max
(

[µij , j[ r
⋃
J∈I

J⊆[µij ,j[

(
J r {min(J)}

))
.
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Notation 6.9. For (i, j) ∈ IJ I, consider the acyclic orientation Aij :=O(µij ,µij+1,...,j), obtained
as the image by the surjection map O of Definition 2.13 of the cycle permutation

(µij , µij + 1, . . . , j) = 12 · · · (µij − 1)j µij · · · (j − 1)(j + 1) · · ·n

obtained from the identity permutation by placing j just before µij . Note that that for all J ∈ I

Aij(J) =

{
j if j ∈ J and min(J) ≥ µij ,
min(J) otherwise.

Remark 6.10. In Notations 5.7 and 5.8, we defined the interval Jj , the index µj , and the join
irreducible Aj for j ∈ JI. The set

Xj = [µj , j[ r
⋃
J∈I

J⊆[µj ,j[

(
J r {min(J)}

)
is nonempty as it contains at least µj . Let µi ≤ ij := maxXj . Then we have

µijj = µj and Jijj = Jj .

Furthermore, the pair (ij , j) ∈ IJ I since it satisfies all the conditions of Notation 6.8. Compar-
ing Notation 5.8 and Notation 6.9 we see that Aj = Aijj . Moreover, for all (k, j) ∈ IJ I, we must
have k ≤ ij . See Examples 6.12 to 6.17 below.

Notation 6.11. For (i, j), (k, `) ∈ IJ I, we write (i, j) 4 (k, `) if and only j ≤ ` and ` ∈ Jij
and µij ≥ µk`. Note in particular that i ≥ k and j = ` implies (i, j) 4 (k, `).

Example 6.12. For the hypergraph I := {1, 2, 3, 12, 23, 123} of Examples 5.11 and 5.30 and Fig-
ure 5 (left), we have IJ I = {(1, 2), (2, 3), (1, 3)}, and the join irreducible acyclic orientations are

A12 = A2 =
1 2 3
••
•

A23 = A3 =
1 2 3
• ••

and A13 =
1 2 3
• ••

and we have A23 < A13. Note that A12 = A2, A23 = A3 from Section 5.1, while A13 = A is the
join irreducible acyclic orientation not covered by the description of Section 5.1.

Example 6.13. For the hypergraph I := {1, 2, 3, 12, 23, 34, 123, 234, 1234} of Example 5.12 and Fig-
ure 5 (right), we have IJ I = {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}, and the join irreducible
acyclic orientations are

A12 =

1 2 3 4
••
••

••
A23 =

1 2 3 4
• ••
• ••

A34 =

1 2 3 4
• •

•• •
•

A13 =

1 2 3 4
• ••

••
•

A24 =

1 2 3 4
• •

•• ••
A14 =

1 2 3 4
• •

•• ••

and we have A23 < A13 and A34 < A24 < A14.

Example 6.14. For the hypergraph I := {1, 2, 3, 4, 123, 23, 234, 1234} illustrated in Figure 7 (left),
we have IJ I = {(1, 2), (2, 3), (2, 4), (1, 4)}, and the join irreducible acyclic orientations are

A12 =

1 2 3 4
••
•• A23 =

1 2 3 4
• ••
•

A24 =

1 2 3 4
• •

••
A14 =

1 2 3 4
• •

••

and we have A24 < A14.
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Example 6.15. For the hypergraph I := {1, 2, 3, 4, 23, 34, 1234} illustrated in Figure 7 (right), we
have IJ I = {(1, 2), (2, 3), (3, 4), (2, 4)}, and the join irreducible acyclic orientations are

A12 =

1 2 3 4
• •
• A23 =

1 2 3 4
••

• A34 =

1 2 3 4
• •• A24 =

1 2 3 4
• ••

and we have A12 < A24 and A34 < A24.

Example 6.16. For the hypergraph I := {1, 2, 3, 4, 12, 23, 34, 1234} illustrated in Figure 8 (left),
we have IJ I = {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4)}, and the join irreducible acyclic orientations are

A12 =

1 2 3 4
••
•• A23 =

1 2 3 4
• ••
•

A34 =

1 2 3 4
• •

••

A13 =

1 2 3 4
• ••

•
A14 =

1 2 3 4
• •

••

and we have A23 < A13 and A34 < A14.

Example 6.17. For the hypergraph I := {1, 2, 3, 4, 12, 23, 234, 1234} illustrated in Figure 8 (right),
we have IJ I = {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4)}, and the join irreducible acyclic orientations are

A12 =

1 2 3 4
••
•• A23 =

1 2 3 4
• ••
•

A13 =

1 2 3 4
• ••

•

A24 =

1 2 3 4
• •

••
A14 =

1 2 3 4
• •

••

and we have A23 < A13 and A24 < A14.

Lemma 6.18. For (i, j) 6= (k, `) ∈ IJ I, we have Aij 6= Ak`.

Proof. Assume that Aij = Ak`. As j = Aij(Jij) = Ak`(Jij) ∈ {`, µij} and µij < j, we obtain
that j = ` = Ak`(Jij) hence that µij ≥ µk`. By symmetry, we have µij = µk`. As j = ` and
µij = µk`, we obtain that i = k by definition of IJ I. We conclude that (i, j) = (k, `). �

Lemma 6.19. For (i, j), (k, `) ∈ IJ I, we have Aij ≤ Ak` ⇐⇒ (i, j) 4 (k, `). In particular j = `
implies that Aij and Ak` are comparable in PI.

Proof. By Proposition 3.13 we have Aij ≤ Ak` if and only if Aij(I) ≤ Ak`(I) for all I ∈ I.
For the forward direction, assume that Aij ≤ Ak`. As j = Aij(Jij) ≤ Ak`(Jij) ∈ {`, µij}

and µij < j, we obtain that j ≤ ` and Ak`(Jij) = `, hence ` ∈ Jij and µij ≥ µk`.
For the backward direction, assume that j ≤ `, ` ∈ Jij and µij ≥ µk`. Assume by means of

contradiction that there is I ∈ I such that Aij(I) > Ak`(I). As Aij(I) ∈ {j,min(I)} and Ak` ∈
{`,min(I)}, and j ≤ `, we must have Aij(I) = j and Ak`(I) = min(I). As Aij(I) = j, we
have j ∈ I and µij ≤ min(I), hence {i, j} ⊆ [µi,j , j] ⊆ I so that ` ∈ Jij ⊆ I by minimality of Jij .
As Ak`(I) 6= ` and ` ∈ I, we obtain that min(I) < µk`. We thus obtain that µij ≤ min(I) < µk`
contradicting our assumption that µij ≥ µk`. �

Proposition 6.20. If I is an interval hypergraph closed under intersection, then the acyclic ori-
entation Aij is join irreducible for any (i, j) ∈ IJ I.

Proof. As Aij 6= min(PI), we just need to prove that it covers a single acyclic orientation in PI.
We consider a cover relation A k` Aij in PI and prove that i = k and j = `.

By definition, there is I ∈ I such that {k, `} ⊆ I and A(I) = k while Aij(I) = `. Since
Aij(I) ∈ {j,min(I)} and Aij(I) = ` > k ≥ min(I), we obtain that j = `.

Assume now that i < k. Then there is J ∈ I with J ⊆ [µij , j[ and k ∈ Jr{min(J)}. We obtain
that A(J) = Aij(J) = min(J) ∈ [µij , j[⊆ I and A(I) = k ∈ J and A(J) 6= A(I), contradicting the
acyclicity of A.
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Assume now that k < i. Since A k` Aij is a cover relation, the decreasing analogue of
Proposition 3.18 implies that

]k, `[ ⊆
⋃
J∈I

Aij(J)∈[k,`[

(
J r {Aij(J)}

)
.

As i ∈ ]k, `[, there is J ∈ I withAij(J) ∈ [k, `[ = [k, j[ and i ∈ Jr{Aij(J)}. AsAij(J) ∈ {j,min(J)}
by definition of Aij , we obtain that Aij(J) = min(J). If j ≤ max(J), then Aij(I) = ` ∈ J
and Aij(J) ∈ [k, `[ ⊆ I and Aij(I) 6= Aij(J) contradict the acyclicity of Aij . As I is closed
under intersection, we can thus assume that J ⊆ [µij , j[, up to intersecting J with Jij . We con-
clude that J ⊆ [µij , j[ and i ∈ J r {Aij(J)} = J r {min(J)}, contradicting the definition of i in
Notation 6.8. �

Proposition 6.21. If I is an interval hypergraph closed under intersection, then the map (i, j) 7→ Aij
is a bijection from IJ I to the join irreducible acyclic orientations of I.

Proof. Consider a join irreducible acyclic orientation B of I and let A ij B be the only increasing
flip which ends at B. Let I ∈ I be such that A(I) = i and B(I) = j. Observe that B(J) ∈
{min(J), j} for any J ∈ I by Proposition 3.16.

We first prove that (i, j) ∈ IJ I. Let

X := [µij , j[ r
⋃
J∈I

J⊆[µij ,j[

(
J r {min(J)}

)
.

Since B(I) = j and min(I) ≤ µi,j , Proposition 3.15 ensures that there is no J ∈ I such
that i ∈ J r {B(J)} and B(J) ∈ [µi,j , j[, which yields i ∈ X (using that B(J) ∈ {min(J), j}).
Moreover, for any k ∈ ]i, j[, Proposition 3.18 ensures that there is J ∈ I such that B(J) ∈ [i, j[
and k ∈ Jr{B(J)}. Since [i, j[ ⊆ [µij , j[ and B(J) = min(J), we obtain that k /∈ X. We conclude
that i = max(X), so that (i, j) ∈ IJ I.

We now prove that B = Aij . As already observed, we have B(J) ∈ {min(J), j} for any J ∈ I.
Assume first that there is J ∈ I such that j ∈ J and min(J) ≥ µij , but B(J) 6= j. Then
B(J) = min(J) ∈ [µij , j[ ⊆ I r {B(I)} and B(I) = j ∈ J , which contradicts the acyclicity of B.
Assume now that there is J ∈ I such that min(J) < µij but B(J) = j, and consider such a J
with min(J) minimal. For any K ∈ I with A(K) ∈ [min(J), j[, we have j /∈ K by acyclicity
of B, so that A(K) = min(K) ≥ min(J), thus min(J) /∈ K r {min(K)}. Proposition 3.15 thus
ensures that the orientation C obtained from B by flipping j to min(J) is acyclic. Moreover,
as min(J) < µij , we have min(J) /∈ Jij , so that C(Jij) = B(Jij) = j > i = A(Jij). We obtain
that C < B but C 6≤ A contradicting our assumption that B is join irreducible. We conclude
that B(J) = j if j ∈ J and min(J) ≥ µij , and B(J) = min(J) otherwise, so that B = Aij . �

6.2. If I is semidistributive then PI is semidistributive. We now prove the backward direc-
tion of Theorem C.

Proposition 6.22. If I is a join (resp. meet) semidistributive interval hypergraph, then PI is a
join (resp. meet) semidistributive lattice.

Proof. We prove the result for join semidistributivity, the result for meet semidistributivity follows
by the symmetry of Proposition 2.12.

Assume by means of contradiction that I is a semidistributive interval hypergraph for which PI
is not join semidistributive. By Remark 6.3, there exist a cover relation A pq B of PI and
some (i, j), (k, `) ∈ IJ I such that Aij and Ak` are both minimal in PI with A∨Aij = B = A∨Ak`.
Assume by symmetry that j ≤ `. As Aij 6≤ Ak`, we obtain by Lemma 6.19 that j < `, and
that ` /∈ Jij or µij < µk`.

As Aij 6≤ A but Aij ≤ B, there is U := [u, u′] ∈ I such that A(U) < Aij(U) ≤ B(U) by Proposi-
tion 3.13. Since A and B only differ by the flip of p to q, this implies that A(U) = p while B(U) = q.
Moreover, by definition of Aij , we must have Aij(U) = j, hence j ∈ U and µij ≤ u. We conclude
that µij ≤ u ≤ p < j ≤ q ≤ u′. Similarly, µk` ≤ u ≤ p < ` ≤ q ≤ u′.

Observe that for any V ∈ I such that A(V ) ∈ ]p, q], we have
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• p < min(V ) as otherwise A(U) = p ∈ V r {A(V )} while A(V ) ∈ ]p, q] ⊆ U r {A(U)}
would contradict the acyclicity of A,

• if j ∈ V , then A(V ) = B(V ) ≥ Aij(V ) = j.

Since A pq B is a cover relation of PI, Proposition 3.18 implies that there is S := [s, s′] ∈ I
such that A(S) ∈ ]p, q] and j ∈ S r {A(S)}. From the observation above, we have p < s
and A(S) ≥ j. We claim that we can moreover assume that s′ < `. Indeed, suppose that s′ ≥ `.
As µk` ≤ p < s ≤ j < ` ≤ s′, we obtain that k < s ≤ j < `. Hence, there exists I ∈ I such
that j ∈ I ⊆ [k, `[. As I is closed under intersection, we can replace S by S ∩ I which proves
the claim. Hence, we have found S := [s, s′] ∈ I with p < s ≤ j ≤ A(S) ≤ s′ < ` ≤ q, and we
choose such an S so that s is minimal.

As A(S) ∈ S ⊆ ]p, q[, Proposition 3.18 implies that there is T := [t, t′] ∈ I such that A(T ) ∈ ]p, q]
and A(S) ∈ T r {A(T )}. We have A(T ) ≥ j, as otherwise j ∈ [A(T ), A(S)] ⊆ T and A(T ) < j
would contradict the observation above. We deduce that A(T ) > s′ as otherwise A(T ) ∈ [j, s′] ⊆ S
and A(S) ∈ T r {A(T )} would contradict the acyclicity of A. Hence, we have found T := [t, t′] ∈ I
with p < t ≤ s′ < t′, and we choose such a T so that t′ is minimal.

As µij ≤ p < s and j ∈ S, we have i < s, from which we deduce that there is R := [r, r′] ∈ I such
that R ⊆ [µi,j , j[ and s ∈ R r {r}. As r′ < j ≤ s′, we have r < s ≤ r′ < s′, and we choose such
an R so that r is minimal. Assume for a moment that t ≤ r. Then t < s, which by minimality
of s in our choice of S implies that ` ∈ T . If ` /∈ Jij , then Jij ∩ T contradicts the minimality of t′

in our choice of T . Hence, ` ∈ Jij which implies that µij < µk`. We conclude that i < k < j < `,
as µk` ≤ p < t and ` ∈ T . As I is closed under intersection, i < k < j < ` implies that (i, j) ∈ IJ I.
As i < k, we have Akj < Aij ≤ B. Moreover, Akj(Jkj) = j > µkj = A(Jkj), so that A 6≤ Akj .
Hence, Akj ∨A = B and Akj < Aij contradicting the minimality of Aij . We conclude that r < t.

We have thus found R := [r, r′], S := [s, s′], T := [t, t′] and U := [u, u′] in I with r < s ≤ r′ <
s′, r < t ≤ s′ < t′, and u ≤ p < min(s, t) and s′ < q ≤ u′. As I is join semidistributive,
there is V := [v, v′] ∈ I such that v < s and s′ < v′ < t′. As I is closed under intersection, it
contains T ∩ V = [max(v, t), v′]. But max(v, t) ≤ s′ < v′ < t′ which contradicts the minimality
of t′ in our choice of T . �

6.3. If PI is semidistributive then I is semidistributive. We now prove the forward direction
of Theorem C.

Proposition 6.23. If I is an interval hypergraph such that PI is a join (resp. meet) semidistribu-
tive lattice, then I is join (resp. meet) semidistributive.

Proof. We prove the result for join semidistributivity, the result for meet semidistributivity follows
by the symmetry of Proposition 2.12.

First, we can assume that I is closed under intersection, otherwise PI is not even a lattice by
Proposition 4.6. Assume now that there is [r, r′], [s, s′], [t, t′], [u, u′] ∈ I such that r < s ≤ r′ < s′,
r < t ≤ s′ < t′, u < min(s, t) and s′ < u′, and there is no [v, v′] ∈ I such that v < s and s′ < v′ < t′.
Let

j := max
(

[u, t′[r
⋃
J∈I

J⊆[u,t′[

(
J r {min(J)}

))
and i :=µjt′ := max {min(I) | {j, t′} ⊆ I ∈ I} .

Note that i ≤ j < s < s′ < t′. We further assume below that i < j, the argument for i = j is
similar and even slightly simpler.

Consider the three permutations

πA := 1 · · · (i− 1) j i · · · (j − 1) (j + 1) · · · (s− 1) t′ s′ s · · · (s′ − 1) (s′ + 1) · · · (t′ − 1) (t′ + 1) · · ·n
πB := 1 · · · (i− 1) s′ i · · · (s′ − 1) (s′ + 1) · · ·n
πC := 1 · · · (i− 1) t′ i · · · (t′ − 1) (t′ + 1) · · ·n

(written in one line notation), and let A :=OπA
, B :=OπB

and C :=OπC
be the corresponding

acyclic orientations of I.
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Claim 1: A∨B = A∨C. Note that πA = π↓A. Indeed, πA has only 3 descents ji, t′s′ and s′s. Let τ ,
σ and ρ denote the permutations obtained from πA by exchanging ji, t′s′ and s′s, respectively.
Then

Oτ (Jjt′) = i 6= j = X(Jjt′), Oσ([t, t′]) = s′ 6= t′ = X([t, t′]) and Oρ([s, s′]) = s 6= s′ = X([s, s′]).

Hence, πA is indeed the minimal permutation for A. Similarly, πB = π↓B and πC = π↓C .
We therefore obtain from Proposition 4.11 that A ∨B = OπA∨πB

and A ∨ C = OπA∨πC
. As

πA ∨ πB = 1 · · · (i− 1) t′ s′ j i · · · (j − 1) (j + 1) · · · (s′ − 1) (s′ + 1) · · · (t′ − 1) (t′ + 1) · · ·n
πA ∨ πC = 1 · · · (i− 1) t′ j i · · · (j − 1) (j + 1) · · · (s− 1) s′ s · · · (s′ − 1) (s′ + 1) · · · (t′ − 1) (t′ + 1) · · ·n

and there is no [v, v′] ∈ I such that v < s and s′ < v′ < s′ by assumption, we have A∨B = A∨C.

Claim 2: A ≥ B ∧ C. For any interval I, we have

B(I) =

{
s′ if s′ ∈ I and i ≤ min(I),

min(I) otherwise
and C(I) =

{
t′ if t′ ∈ I and i ≤ min(I),

min(I) otherwise

Hence, (B ∧ C)(I) = min(I) except maybe if [s′, t′] ⊆ I and i ≤ min(I). For such I, we actually
have that

• (B ∧ C)(I) ≤ j since B(I) = s′ and C(J) = min(J) for all J ⊆ [u, t′[ and using the
definition of j,
• A(I) = j since j ∈ I and i ≤ min(I).

Hence, we obtain that A(I) ≥ (B ∧ C)(I) for all I ∈ I so that A ≥ B ∧ C by Proposition 3.13.

Claim 3: A∨B = A∨C 6= A = A∨(B∧C). The first equality holds by Claim 1. The last equality
holds by Claim 2. The inequality holds since A(Jjt′) = j while (B ∧ C)(Jjt′) ≥ C(Jjt′) = t′. We
conclude that PI is not semidistributive. �

Example 6.24. For the hypergraph I := {1, 2, 3, 4, 12, 23, 34, 1234} illustrated in Figure 8 (right),
we have

r r′ s s′ t t′ u u′ i j
1 2 2 3 3 4 1 4 1 1

and

A =

1 2 3 4
• • •
•

B =

1 2 3 4
• ••

•
C =

1 2 3 4
• •

••

so that

A ∨B = A ∨ C =

1 2 3 4
• • •
•

6= C = C ∨
1 2 3 4
• •

••
= A ∨ (B ∧ C).

Example 6.25. For the hypergraph I := {1, 2, 3, 4, 12, 23, 234, 1234} illustrated in Figure 8 (right),
we have

r r′ s s′ t t′ u u′ i j
1 2 2 3 2 4 1 4 1 1

and

A =

1 2 3 4
• • •
•

B =

1 2 3 4
• ••

•
C =

1 2 3 4
• •

••

so that

A ∨B = A ∨ C =

1 2 3 4
• •
•• 6= A = A ∨

1 2 3 4
• • •
•

= A ∨ (B ∧ C).
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7. Quotient interval hypergraphic lattices

In this section, we prove Theorem D which we first introduce properly:

Definition 7.1. We say that an interval hypergraph I is closed under initial (resp. final) subin-
tervals if [i, k] ∈ I implies [i, j] ∈ I (resp. [j, k] ∈ I) for any 1 ≤ i < j < k ≤ n.

Remark 7.2. Note that if an interval hypergraph I containing all singletons {i} for i ∈ [n] is
closed under initial (resp. final) subintervals, then it is also closed under intersection. Indeed, for
any 1 ≤ i < j < k < ` ≤ n with [i, k] ∈ I and [j, `] ∈ I, we have [j, k] ∈ I since it is an initial
(resp. final) interval of [j, `] (resp. of [i, k]). Hence, we do not need to add the closed by intersection
condition.

Definition 7.3. A map φ between two meet semilattices (L,≤,∧) and (L′,≤′,∧′) is a meet
semilattice morphism if φ(a ∧ b) = φ(a) ∧′ φ(b) for all a, b ∈ L. Equivalently, if

• each fiber F of φ is order convex (meaning that a < b < c and a, c ∈ F implies b ∈ F ) and
admits a unique minimal element,

• the map π↓ : L → L sending an element a to the minimal element b with φ(a) = φ(b) is
order preserving.

The join semilattice morphisms are defined and characterized dually.

Theorem D. For an interval hypergraph I on [n], the poset morphism O from the weak order
on Sn to the interval hypergraphic poset PI is a meet (resp. join) semilattice morphism if and only
if I is closed under initial (resp. final) subintervals.

Proof. We only prove the meet semilattice morphism, the result for the join semilattice morphism
follows by the symmetry of Proposition 2.12.

Assume first that I is not closed under initial subintervals, and let 1 ≤ i < j < k ≤ n be such
that [i, j] /∈ I while [i, k] ∈ I. Note that we can assume that k = j + 1. Let ω := ijkX, σ := jikX,
τ := kijX, and ρ := kjiX, where X is an arbitrary permutation of [n] r {i, j, k}. Since I is closed
under intersection and contains [i, k] but not [i, j] and k = j+1, any J ∈ I containing {i, j} also con-
tains k. Hence, we have Oτ = Oρ, so that π↑(τ) ≤ ρ. Moreover, since [i, k] ∈ I, we have Oω < Oσ.
By Proposition 4.11, we obtain that Oσ ∧ Oτ = Oπ↑(σ)∧π↑(τ) ≥ Oσ∧ρ = Oσ > Oω = Oσ∧τ . Hence,
O is not a meet semilattice morphism.

Conversely, assume that I is closed under initial subintervals. We prove by induction on the
length of τ that σ ≤ τ implies π↓(σ) ≤ π↓(τ). If τ = π↓(τ), we have π↓(σ) ≤ σ < τ = π↓(τ).
If there is a permutation ρ such that σ < ρ < τ , then we have π↓(σ) ≤ π↓(ρ) by induction, so
that we just need to show that π↓(ρ) ≤ π↓(τ). We can thus assume that σl τ is a cover relation,
with τ 6= π↓(τ). Let τ ′ l τ be such that Oτ = Oτ ′ . Let p, q ∈ [n − 1] be such that σ (resp. τ ′)
is obtained from τ by exchanging its entries at positions p and p + 1 (resp. q and q + 1). We
distinguish three cases:

If |p − q| > 1. Consider σ′ = σ ∧ τ ′. As Oτ = Oτ ′ , we have min(τ−1(I)) 6= q or τ(q + 1) /∈ I for
any I ∈ I. Since |p − q| > 1, it implies that min(σ−1(I)) 6= q or σ(q + 1) /∈ I. Hence we obtain
that Oσ = Oσ′ . Since σ′ < τ ′ < τ , we obtain by induction that π↓(σ′) ≤ π↓(τ ′). As Oσ = Oσ′

and Oτ = Oτ ′ , we conclude that π↓(σ) ≤ π↓(τ).

If p = q − 1. Then σ = XjkiY , τ = XkjiY and τ ′ = XkijY for some letters 1 ≤ i < j < k ≤ n
and some words X,Y on [n]. Let σ′ :=XjikY , σ′′ :=XijkY and τ ′′ :=XikjY . If Oσ 6= Oσ′ ,
then there exist 1 ≤ u ≤ i < k ≤ v ≤ n such that [u, v] ∈ I and q = min

(
σ−1([u, v])

)
. As I

is closed under final subintervals, we have [u, j] ∈ I and q = min
(
τ−1([u, j])

)
, which contradicts

that Oτ = Oτ ′ . If Oσ′ 6= Oσ′′ , then there exists 1 ≤ u ≤ i < j ≤ v ≤ n such that [u, v] ∈ I
and p = min

(
σ′−1([u, v])

)
. This would imply that q =

(
τ−1([u, v])

)
, contradicting that Oτ = Oτ ′ .

Since σ′′ < τ ′ < τ , we obtain by induction that π↓(σ′′) ≤ π↓(τ ′). As Oσ = Oσ′ = Oσ′′

and Oτ = Oτ ′ , we conclude that π↓(σ) ≤ π↓(τ).

If p = q + 1. Then σ = XkijY , τ = XkjiY and τ ′ = XjkiY for some letters 1 ≤ i < j < k ≤ n
and some words X,Y on [n]. Let σ′ :=XikjY , σ′′ :=XijkY and τ ′′ :=XjikY . If Oσ 6= Oσ′ , then
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there exist 1 ≤ u ≤ i < k ≤ v ≤ n such that [u, v] ∈ I and q = min
(
σ−1([u, v])

)
. This would

imply that p = min
(
τ−1([u, v])

)
, which contradicts that Oτ = Oτ ′ . If Oσ′ 6= Oσ′′ , then there

exists i < u ≤ j < k ≤ v ≤ n such that [u, v] ∈ I and p = min
(
σ′−1([u, v])

)
. This would imply

that q =
(
τ−1([u, v])

)
, contradicting that Oτ = Oτ ′ . Since σ′′ < τ ′ < τ , we obtain by induction

that π↓(σ′′) ≤ π↓(τ ′). As Oσ = Oσ′ = Oσ′′ and Oτ = Oτ ′ , we conclude that π↓(σ) ≤ π↓(τ). �

Corollary 7.4. For an interval hypergraph I on [n], the poset morphism O from the weak order
on Sn to the interval hypergraphic poset PI is a lattice morphism if and only if I is closed under
subintervals. In this case, PI is a Cartesian product of Tamari lattices.
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