WIGGLYHEDRA

A. BAPAT (The Australian National University)V. PILAUD (Universitat de Barcelona)

arxiv:2407.11632

DMG Seminar Berlin — October 9, 2024

TRIANGULATIONS & ASSOCIAHEDRA

ASSOCIAHEDRON

<u>Associahedron</u> = polytope whose face lattice is isomorphic to the lattice of crossing-free sets of internal diagonals of a convex (n + 3)-gon, ordered by reverse inclusion

THREE FAMILIES OF REALIZATIONS

Gelfand–Kapranov–Zelevinsky ('94) Billera–Filliman–Sturmfels ('90)

Loday ('04) Hohlweg–Lange ('07) Hohlweg–Lange–Thomas ('12) Hohlweg–Pilaud–Stella ('18) Pilaud–Santos–Ziegler ('24)

Chapoton–Fomin–Zelevinsky ('02) Ceballos–Santos–Ziegler ('11)

THREE FAMILIES OF REALIZATIONS

Gelfand–Kapranov–Zelevinsky ('94) Billera–Filliman–Sturmfels ('90)

CHAP.–FOM.–ZEL.'S ASSOCIAHEDRON

Chapoton–Fomin–Zelevinsky ('02) Ceballos–Santos–Ziegler ('11)

LODAY'S ASSOCIAHEDRON

Loday ('04)

HOHLWEG & LANGE'S ASSOCIAHEDRA

Can also replace Loday's (n+3)-gon by others...

Hohlweg–Lange ('07)

HOHLWEG & LANGE'S ASSOCIAHEDRA

Hohlweg–Lange ('07)

PSEUDOTRIANGULATIONS & PPT POLYTOPE

crossing-free

crossing-free pointed

Pocchiola–Vegter ('96) Rote-Santos-Streinu ('08) Capoyleas–Pach ('92) Jonsson ('05)

Rote-Santos-Streinu ('08)

Jonsson ('05)

P.–Santos ('09)

flip = exchange an internal edge with the common bisector of the two adjacent cells

associahedron

pseudotriangulation polytope

multiassociahedron

Rote-Santos-Streinu ('03)

DUALITY

P.–Pocchiola ('12)

DUALITY

P.–Pocchiola ('12)

DUALITY

P.–Pocchiola ('12)

WIGGLY PSEUDOTRIANGULATIONS & WIGGLY COMPLEX

WIGGLY COMPLEX

<u>wiggly dissection</u> = set of pairwise <u>non-crossing</u> and <u>pointed</u> wiggly arcs on n + 2 points

wiggly complex WC_n = simplicial complex of wiggly dissections

WIGGLY COMPLEX

<u>wiggly dissection</u> = set of pairwise <u>non-crossing</u> and <u>pointed</u> wiggly arcs on n + 2 points

wiggly complex WC_n = simplicial complex of wiggly dissections

$$f(WC_1) = (1, 2)$$

$$f(WC_2) = (1, 9, 21, 14)$$

$$f(WC_3) = (1, 24, 154, 396, 440, 176)$$

$$f(WC_4) = (1, 55, 729, 4002, 10930, 15684, 11312, 3232)$$

$$f(WC_5) = (1, 118, 2868, 28110, 140782, 400374, 673274, 662668, 352728, 78384)$$

 $h(WC_1) = (1, 1)$ $h(WC_2) = (1, 6, 6, 1)$ $h(WC_3) = (1, 19, 68, 68, 19, 1)$ $h(WC_4) = (1, 48, 420, 1147, 1147, 420, 48, 1)$ $h(WC_5) = (1, 109, 1960, 11254, 25868, 25868, 11254, 1960, 109, 1)$

WIGGLY PSEUDOTRIANGULATIONS

c cell in a wiggly dissection with boundary ∂_c <u>degree</u> $\delta_c = 1/2 \#$ arcs on $\partial_c + 2 \#$ connected components of $\partial_c - 1$ pseudotriangle = cell of degree 3 pseudoquadragle = cell of degree 4

PROP. The inclusion maximal wiggly pseudodissections are the pseudotriangulations, and contain 2n - 1 internal arcs and n cells. Bapat-P. (24⁺)

WIGGLY FLIP GRAPH

PROP. Any wiggly pseudoquadrangle has exactly two wiggly diagonals, and they either cross or are non pointed. Bapat-P. (24⁺)

WIGGLY FLIP GRAPH

PROP. Any wiggly pseudoquadrangle has exactly two wiggly diagonals, and they either cross or are non pointed. Bapat-P. (24⁺)

WIGGLY FLIP GRAPH

PROP. The wiggly flip graph WFG_n is (2n - 1)-regular and connected. Bapat–P. (24⁺)

WIGGLY PERMUTATIONS & WIGGLY LATTICE

WIGGLY PERMUTATIONS

WIGGLY PSEUDOTRIANGULATIONS \longleftrightarrow WIGGLY PERMUTATIONS

PROP. The wiggly pseudotriangulations and wiggly permutations are in bijection.

Bapat–P. (24⁺)

permutation of 2n avoiding $(2j-1)\cdots i\cdots (2j)$ for $j \in [n]$ and i < 2j-1 $(2j)\cdots k\cdots (2j-1)$ for $j \in [n]$ and k > 2j

WIGGLY PSEUDOTRIANGULATIONS \longleftrightarrow WIGGLY PERMUTATIONS

PROP. This bijection induces a directed graph isomorphism between

- the wiggly increasing flip graph on wiggly pseudotriangulations,
- the Hasse diagram of the wiggly lattice on wiggly permutations.

Bapat–P. (24⁺)

WIGGLY FAN

G- AND C-VECTORS

<u>*c*-vector</u> of $\alpha \in T$ = you don't want to know...

PROP. For any wiggly pseudotriangulation T, the g-vectors $\{g(\alpha) \mid \alpha \in T^{\circ}\}$ and the *c*-vectors $\{c(\alpha, T) \mid \alpha \in T^{\circ}\}$ form dual bases. Bapat-P. (24⁺)

WIGGLY FAN

THM. The cones $\langle \boldsymbol{g}(\alpha) \mid \alpha \in D \rangle$ for all wiggly dissections D form a complete simplicial fan WF_n (in $\sum_{i=1}^{2n} x_i = 0$). Bapat-P. (24⁺)

Main observation:

 $\underline{\text{incompatibility degree}} \ \delta(\alpha, \alpha') =$

- $\bullet~0$ if α and α' are pointed and non-crossing,
- $\bullet \ 1$ is α and α' are not pointed,
- \bullet the number of crossings of α and α' if they are crossing.

 $\kappa(\alpha) =$ <u>incompatibility number</u> of $\alpha = \sum_{\alpha'} \delta(\alpha, \alpha')$.

Main observation:

Hence, κ satisfies all wall-crossing inequalities of the wiggly fan...

THM. The wiggly fan WF_n is the normal fan of a simplicial (2n - 1)-dimensional polytope, called the wigglyhedron W_n , and defined equivalently as

- intersection of the halfspaces $\{ \boldsymbol{x} \in \mathbb{R}^{2n} \mid \langle \boldsymbol{g}(\alpha) \mid \boldsymbol{x} \rangle \leq \kappa(\alpha) \}$ for all wiggly arcs α ,
- convex hull of $p(T) := \sum_{\alpha \in T} \kappa(\alpha) c(\alpha, T)$ for all wiggly pseudotriangulations T. Bapat-P. (24⁺)

THM. The wigglyhedron W_n is a simple (2n-1)-dimensional polytope such that

- the wiggly complex WC_n is the boundary complex of the polar of W_n ,
- the Hasse diagram of the wiggly lattice is a linear orientation of the graph of W_n .

Bapat–P. (24⁺)

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between • δ -triangulations = triangulation of the δ -gon, whose vertex at abscissa *i* has ordinate positive if $\delta_i = +$ and negative if $\delta_i = -$ • δ -permutations = permutation of [n] avoiding for i < j < k $\cdots j \cdots ki \cdots$ if $\delta_i = +$ and $\cdots ik \cdots j \cdots$ if $\delta_i = -$ • δ -wiggly pseudotriangulations = wiggly pseudotriangulation containing the arcs $(0, j, [1, j], \emptyset)$ for $\delta_i = +$ and $(0, j, \emptyset, [1, j])$ for $\delta_i = -$ • δ -wiggly permutations = wiggly permutation σ of [2n] such that $\delta_i = + \implies \sigma^{-1}(i) \leq \sigma^{-1}(2j-1) \text{ and } \delta_i = - \implies \sigma^{-1}(2j) \leq \sigma^{-1}(i)$ Bapat-P. (24^+) **35**21 **5**42**13**

1435

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- $\bullet~\delta\mbox{-triangulations}$
- $\bullet~\delta\mbox{-}{\rm permutations}$

4312

4123

- $\bullet~\delta\mbox{-wiggly pseudotriangulations}$
- δ -wiggly permutations

Bapat–P. (24⁺)

86542137

8642135

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- $\bullet~\delta\mbox{-triangulations}$
- $\bullet~\delta\mbox{-}{\rm permutations}$
- $\bullet~\delta\mbox{-wiggly pseudotriangulations}$
- δ -wiggly permutations

THM. For $\delta = \delta_1 \dots \delta_n \in \{+, -\}^n$, there are lattice isomorphisms between

- $\bullet~\delta\mbox{-triangulations}$
- δ -permutations
- $\bullet~\delta\mbox{-wiggly pseudotriangulations}$
- δ -wiggly permutations

Bapat–P. (24⁺)

PROP. The δ -associahedron $Asso_{\delta}$ is normally equivalent to the face of the wigglyhedron W_n corresponding to the wiggly pseudodissection formed by the δ -wiggly arcs. Bapat-P. (24⁺)

SOME OPEN PROBLEMS

OPEN PROBLEM 1: GRAPH PROPERTIES OF WIGGLYHEDRON

Q1a. Is the wiggly flip graph Hamiltonian? [NB: wiggly permutations do not form a zigzag language]

Q1b. What is the diameter of the wiggly flip graph?

OPEN PROBLEM 2: WIGGLY PSEUDOTRIANGULATIONS AND DUALITY

Q2. Is there a dual interpretation of wiggly pseudotriangulations?

OPEN PROBLEM 3: WIGGLY PSEUDOTRIANGULATIONS OF POINT SETS

${m P}$ arbitrary point set in the plane

wiggly complex WC_{P} = simplicial complex of non-crossing and pointed wiggly edges

```
Q3a. Is WC<sub>P</sub> the boundary complex of a simplicial polytope?
[NB: aligned points \Rightarrow wigglyhedron general position \Rightarrow Rote–Santos–Streinu]
```

Q3b. Is the graph of WC_{P} Hamiltonian?

THANK YOU