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G- AND c-VECTORS




TWO POLYGONS

Consider simultaneously two n-gons:
e the red polygon supports a reference triangulation,

e the blue polygon is the ground set.




G-VECTORS

For T, red triangulation, ¢, € T, and d, a blue diagonal, let

/

1 if &, slalomsond, €T, asaZ
£o(00 € To,8s) = —1 if 6, slaloms on &, € T, as an X

0 otherwise




G-VECTORS

For T, red triangulation, ¢, € T, and d, a blue diagonal, let

/

1 if d slaloms on 6, € T, asa Z
£o(00 € To,8s) = —1 if 6, slaloms on &, € T, as an X

0 otherwise




G-VECTORS

For T, red triangulation, ¢, € T, and d, a blue diagonal, let

/

1 if &, slalomsond, €T, asaZ
£o(00 € To,8s) = —1 if 6, slaloms on &, € T, as an X

0 otherwise

\

g(T,,d.) = g-vector of ), with respect to T, = [50 ((50 e'Tl,, 5.) } c R
- 0,€Ts

= alternating £1 along the zigzag crossed by d, in T,

g(TO7 (107 50)) — g<T07 (107 30)) — g<T07 (507 7°)> — g<TO7 (307 50)) —
€57, — €27, —€2.4, €5.7. €57, = €4.7,



G-VECTOR FAN

g(T,,ds) = g-vector of ), with respect to T, = [50 (50 e'Tl,, 5.) } cR'
- 0.€Ts

THM. For any red triangulation T, the collection of cones
FI(To) = {REOQ(TO, D.) ‘ De any blue dissection}

forms a complete simplicial fan, called g-vector fan of T..

Loday Hohlweg-Lange / Reading Hohlweg-P.-Stella



C-VECTORS

For T, red triangulation and T, blue triangulation
and two diagonals 6, € T, and 9, € T,, let

/

1 if 6, slaloms on 6, € Ty as a \
5.(50,5. € T.) =4q —1 ifé, slalomson d, € T, as an Z

0 otherwise

\

c(T,,0s € Ty) = c-vector of d, in T, with respect to T, = [5. ((50, e € T.) } e R
00€To

= =+ charac. vector of diagonals of T, crossed by opposite neighbors of J,

C(Ts, (De, 7o) € To) = (s, (5e,Te) € Ty) =
€27, T €47, T €57, —ey 7,




G- AND C-VECTORS

For T, red triangulation and T, blue triangulation

g(T,,d) = g-vector of J, with respect to T, = | & (50 eT,, (5.)

c(T,,0e € T,)

c-vector of 9, in T, with respect to T, = | &, ((50, 0o € T.)

L,

€5.7,
€ 7.+ ey + €57,




G- AND C-VECTORS

For T, red triangulation and T, blue triangulation

g(Ts, d) = g-vector of d, with respect to T, —

c(Ts,0s € Ty) = c-vector of d, in Ty with respect to T, =

_62040 65070 65070 o 64070
—€9 4, € 7.+ ey + €57, —ey 7,

PROP. The g-vectors g('T',, T,) and the c-vectors ¢(T,, T,) form dual bases.

PROP. Duality: g(T.,T) = —c(Ts, T.)!  and (T, Ts) = —g(Ts, T.)!




ASSOCIAHEDRA FOR a¢-VECTOR FANS

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('18)



1,-ZONOTOPE

T,-zonotope = Ziono(T,) = Minkowski sum of all c-vectors C(T.) = (., (1., T,)
Ziono(T,) = Z C.
ceC(T,)

PROP. For any diagonal v,, Zono(T,) has a facet defined by the inequality

(g(To;7e) | ) < w()

where w(~,) = number of red diagonals that cross ~,.




1.-ASSOCIAHEDRON

Define P(To, Te):= > w(de) c(Ts,de € T)
0e€T,

THM. For any red triangulation T,, the g-vector fan F9('T,) is the normal fan of

Asso(T,) = conv{p(T,, Ts) | Te blue triangulation}
= {:1: c R ‘ (g(Ts,0e) | ) < w(de) for any blue diagonal 5.} :

Hohlweg-P.-Stella, ('18)

Loday Hohlweg-Lange Hohlweg-P.-Stella




1.-ASSOCIAHEDRON

Define p(To, Te):= > w(de) c(Ts,de €T)
0e€T,

THM. For any red triangulation T,, the g-vector fan F9('T,) is the normal fan of

Asso(T,) = conv{p(T,, Ts) | Te blue triangulation}
= {:1: c R ‘ (g(Ts,0e) | ) < w(de) for any blue diagonal 5.} :

Hohlweg-P.-Stella, ('18)

O

Loday Hohlweg-Lange Hohlweg-P.-Stella




UNIVERSAL ASSOCIAHEDRON

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans ('18)



UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T,, the g-vector fan F9('T,) is the normal fan of
Asso(T,) = conv{p(T,, Ts) | Ty blue triangulation}

where

p(T., T,) Zw c(Ts, 80 € Td) Z (Zw e (05, 0 eT)) es € R

0e€ T 0€ETs  0e€T,
Hohlweg-P.-Stella ('18)

—> the J,-coordinate of p(T,,T,) does not really depends on T,




UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T,, the g-vector fan F9('T,) is the normal fan of
Asso(T,) = conv{p(T,, Ts) | Ty blue triangulation}

where

p(T., T,) Zw c(Ts, 80 € Td) Z (Zw e (05, 0 eT)) e; € R

0e€ T 0€ETs  0e€T,
Hohlweg-P.-Stella ('18)

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso.,(n) as the convex hull of the points

pun Y (YW *Ceo 50,5 ET)> €5, € RXO

0oEXs  0e€ETe

over all blue triangulations T,.

Then for any red triangulation T, the g-vector fan F9(T,) is the normal fan of the pro-

jection Aisso(T,) of the universal associahedron Asso,,(n) on the coordinate plane R'-.
Hohlweg-P.-Stella ('18)




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

pun Y (S‘W 5. (50,5 ET)) €5, € R

06EXs  0e€ET,

over all blue triangulations T,.

Then for any red triangulation T, the g-vector fan F9('T,) is the normal fan of the pro-

jection Aisso(T,) of the universal associahedron Asso,,(n) on the coordinate plane R'-.
Hohlweg-P.-Stella ('18)

1




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

)= > (2wl

0EXs  0e€ET,

Pun(T 8. 50,5 cT )) es. € R*

over all blue triangulations T,.

Then for any red triangulation T, the g-vector fan F9(T

T.) of the universal associahedron Asso,,(n) on the coordinate plane R'-.
Hohlweg-P.-Stella ('18)

») is the normal fan of the pro-

jection Aisso(

n acrlrl]rgieer;stlc;r;aclfe dimension | # vertices | # facets | # vertices / facet | # facets / vertex
1 2 1 2 2 1 1

2 5 4 5 5 4 4

3 9 8 14 60 9 <. <10 30 < - <42
4 14 13 42 3960 14 <. <28 3463 < - < 4244




UNIVERSAL ASSOCIAHEDRON

THM. Let X, be the set of all internal red diagonals.
Define the universal associahedron Asso,,(n) as the convex hull of the points

pun Y (S‘W 5. 50,5 ET)) €5, < R

0EXs  0e€ETe

over all blue triangulations T,.

Then for any red triangulation T, the g-vector fan F9('T,) is the normal fan of the pro-

jection Aisso(T,) of the universal associahedron Asso,,(n) on the coordinate plane R'-.
Hohlweg-P.-Stella ('18)

THM. The origin is the vertex barycenter of the universal associahedron Asso,,(n).
Hohlweg-P.-Stella ('18)

CORO. For any red triangulation T,, the origin is the vertex barycenter of the
T,-associahedron Asso(T,).
Hohlweg-P.-Stella ('18)




SECTIONS AND PROJECTIONS

Manneville-P., Geometric realizations of the accordion complex ('19)



SECTIONS AND PROJECTIONS

THM. For any red triangulation T, the g-vector fan F9('T,) is the normal fan of the pro-
jection Aisso(T,) of the universal associahedron Asso,,(n) on the coordinate plane R'-.

What happens if we project on other coordinate planes?
No clue in general, but...

For a red dissection D,, define

Assso(D,) = projection of Asso,,(n) on the coordinate plane R""

Since normal fan of projections are sections of normal fans,
normal fan of Asso(D,) = section of the normal fan of Asso,,(n) by the plane R
= subfan of the normal fan of Asso,,(n) induced by the rays in R"-

= subfan of the normal fan of Asso(T,) induced by the rays in R
for a triangulation T, containing D,



ACCORDION COMPLEX

LEM. For a red dissection D, contained in a red triangulation T, and a blue diagonal .,
g(T.,0,) € RP> <= 4§, never crosses a cell of D, through two non-consecutive edges

D.-accordion diagonal = diagonal of the blue solid polygon that crosses an accordion of D,

D.-accordion dissection = set of non-crossing D.-accordion diagonals

D.-accordion complex = simplicial complex of D.-accordion dissections

dissection D,  D.-accordion diagonal two maximal D,-accordion dissections



ACCORDIOHEDRON

THM. For any red dissection D,, the projection Asso(D.) of the universal associahe-
dron Asso,,(n) on the coordinate plane R"- realizes the D.-accordion complex.
Manneville-P., ('19)




PROJECTIONS OF PROJECTIONS

PROP. If D, C D, then
o F9(D,) is the section of F9(D!) with the coordinate plane (es. | 6, € D),
o therefore, 79(D,) is also realized by the projection of Asso(D,) on (es, | 6, € D.).
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EXTENSIONS TO CLUSTER ALGEBRAS

Fomin-Zelevinsky, Cluster Algebras I, 11, I, IV ('02-"07)



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped

into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {z1,...,x,}, combinatorical data B (matrix or quiver)
cluster mutation = ({:1;1, R 7R B) ({5171, R R ,uk(B))
{i ] bir>0} {i | bir<0}
(
—bi]’ If ]{ - {Z,]}
(Mk(B))Z] = < b@'j + ‘b2k| . bk;j if k ¢ {Z,]} and b;;. - bkj > ()
\ bi otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

Fomin-Zelevinsky, Cluster Algebras 1, II, 11l, IV ('02-"07)



CLUSTER MUTATION

QD



CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION




CLUSTER MUTATION GRAPH

(x1 + x3)(1 + x2)

T1X2X3



CLUSTER ALGEBRA FROM TRIANGULATIONS

One constructs a cluster algebra from the triangulations of a polygon:

diagonals — cluster variables
triangulations I clusters
flip “o mutation
a a

b&d —> bEd S xy = ac + bd



CLUSTER MUTATION GRAPH

aé
?‘A ”‘.‘
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é




CLUSTER ALGEBRAS

THM. (Laurent phenomenon) Fomin-Zelevinsky ('02)
All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

THM. (Classification) Fomin-Zelevinsky ('03)
Finite type cluster algebras are classified by the Cartan-Killing classification for finite
type crystallographic root systems.

for a root system ®, and an acyclic initial cluster X = {xy,...,z,}, there is a bijection
. 0
cluster variables of 45 <—— O 1 =dTU-A
F(xy,....x 0
= (d d”) ——  B=diag+ -+ dyaoy
1 n
xl o o o ‘/’Un
o .
cluster of Ag s X-cluster in - _;

6 .
cluster complex of Ay <+—— X-cluster complex in & _,




COXETER UNIVERSAL ASSOCIAHEDRON

g- and c-vectors of cluster variables are defined using principal coefficients
universal c-vectors are defined using universal coefficients

THM. T finite type Dynkin diagram and A : cluster vars — R exchange submodular.
Define the universal I'-associahedron Asso,,(I") as the convex hull of the points

pun Z h Cun T & 2)

TeEY

for all seeds X in the cluster algebra of type I'.

Then for any initial seed ¥, the g-vetor fan F9(%,) is the normal fan of the projec-

tion Aisso(X,) of the universal associahedron Asso,,(I') on the coordinate plane R'.
Hohlweg-P.-Stella (

@@




NON-KISSING COMPLEX

Briistle-Douville-Mousavand-Thomas-Yildinm, Combinatorics of gentle algebras ('20)
Palu—P.—Plamondon, Non-kissing complexes and 7-tilting for gentle algebras ('21)



GENTLE QUIVERS AND STRINGS

®

2

gentle quiver ) =

® e quiver () = oriented graph (Qy, Q1, s, 1)
e relations I = forbid certain paths

(] where

@ e forbidden paths all of length 2
e locally at each vertex, subgraph of >0<



GENTLE QUIVERS AND STRINGS

gentle quiver ) =
e quiver () = oriented graph (Qy, Q1, s, 1)

® @
e relations I = forbid certain paths
(4 where
e forbidden paths all of length 2
0 ® ® e locally at each vertex, subgraph of >0<

€1

string 0 = a}'...q; with a; € Qy, g, € {—1,1}
such that
£
o {(a)f) = s(a)
e contains no factor 7 or 77! for any path m € I
1

o ®

e contains no aa~ ! or ata for any arrow o € )4



BLOSSOMING QUIVERS AND WALKS

®
7

®
0 v
6)\
Y
O

@)

@)

blossoming quiver Q% =

add blossoms to complete each vertex to

Pt



BLOSSOMING QUIVERS AND WALKS

¥ ¥
o o
N7~
® ® )
o ! blossoming quiver Q% =
o add blossoms to complete each vertex to >0<
OW ® v
o
® ® c\t;

walk w = maximal string in Q*

from blossoms to blossoms




KISSING




NON-KISSING COMPLEX

KISS

[reduced| non-kissing complex K. (Q) =

e vertices = [bending] walks in Q%
(that are not self-kissing)
e faces = collections of pairwise

non-kissing [bending] walks in Q%




NON-KISSING VS NON-CROSSING

Palu—P.—Plamondon,
Non-kissing and non-crossing complexes for locally gentle algebras ('19)



DUAL DISSECTIONS

BB &

S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S



DUAL DISSECTIONS

@ WO‘“TWO% UL @ UL ' LLLLLLL @y LUl ¢
\wl.l% . .\ ‘ ‘/

4 3

).IIII\I\I|.|IIII\I\I|Q|IIIIHH|’|IIII\I\I.(

S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S

blossom vertices = white vertices, alternating with V U V* along the boundary of &




DUAL DISSECTIONS

oLk Ife) JULIL @ UL O UL @ il
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S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S

blossom vertices = white vertices, alternating with V U V* along the boundary of &
B-curve = curve which at each endpoint either reaches a blossom point or infinitely circles

around a puncture of S



ACCORDIONS

oy,

)

£
o™

©

O O { O 2y L
, \ 7 ¥ O o
%"‘M %‘M %.M D v @ O e, @, e C

D-accordion = B-curve « such that whenever o meets a face f of D,

&%, = e O‘mo%r >/-o.<
\ Co < .\E J \\ / \

(i) it enters crossing an edge a of f and leaves crossing an edge b of f
(ii) the two edges a and b of f crossed by o are consecutive along the boundary of f,
(iii) «, a and b bound a disk inside f that does not contain f*.

D-accordion complex = simplicial complex of pairwise non-crossing sets of D-accordions




SLALOMS

ey,

oS

%QM

)'IIIH|H"'IIIHIH'O'IIIIH\I'.'IIIIHH'C

/\

D rrrrer @ vt O o @ T €

3

D*-slalom = B-curve o of S such that, whenever o crosses an edge a* of D* contained in

two faces f*, ¢* of D*, the marked points f and ¢ lie on opposite sides of « in the union

of f* and ¢* glued along a*.

D*-slalom complex = simplicial complex of pairwise non-crossing sets of D*-slaloms




D-ACCORDIONS = D*-SLALOMS

N b yyywowowow%% T
g./ \\.E 4 \
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®. f»o‘“.wo% 3 UL gy LLLLLLI' () LLLLLLLL gy LLLLLLLL ¢
0O 0.
[ 4 o

. 4
| M.é«@d* > @ O @, €

(D, D*)-non-crossing complex = D-accordion complex = D*-slalom complex

3




QUIVER OF A DISSECTION

quiver Qp of a dissection =

e vertices = edges of D (boundary edges are blossom vertices)

e arrows = two consecutive edges around a face of D
e relations = three consecutive edges around a face of D

: O“QWO%
o i /'\

S

a
Y

%.M

K.

VAN

)‘II\I\I\I"'II\I\I\I'O'IHHHI'.'IIHHH'C
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D rrrrrrr @ o O e @ e
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QUIVER OF A DISSECTION

quiver Qp of a dissection =

e vertices = edges of D (boundary edges are blossom vertices)

e arrows = two consecutive edges around a face of D

e relations = three consecutive edges around a face of D

e
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SURFACE OF A GENTLE QUIVER

surface S; of quiver ) = surface obtained from the blossoming quiver Q% as follows:

(i) for each arrow o € QF, consider a lozenge

(i) for any a, B € Q¥ with t(a) = s(f),

/\<
proceed to the following identifications:

e if af € I, then glue E'(a) with E3(S
o if af ¢ I, then glue E! () with ES

f Oz)

O“‘WO 3 LU gy ALy LU @y AL

IS e
%%E A




NON-CROSSING VS NON-KISSING

PROP. The two previous constructions are inverse to each other and define bijections:
pairs of dual dissections on a surface «— gentle quivers

)'IIII\I\I"'IIII\I\I'O'IIII\IH'."IIII\I\I'(

e

\

PROP. It defines isomorphisms between:

non-crossing complex of dissections «— non-kissing complex of gentle quiver

Palu—P.—Plamondon ('19)



END OF THE TALK

non-kissing complex IC,,x(Q) =

; . . N |_
o vertices = walks in Q% (that are not self-kissing) ( >
e faces = collections of pairwise non-kissing walks in Q% ® ®

... generalizing the associahedron

Flip graph Associahedron Tamari lattice




DISTINGUISHED ARROWS AND FLIPS

McConville, Lattice structures of grid Tamari orders ('17)
Palu—P.—Plamondon, Non-kissing complexes and 7-tilting for gentle algebras ('21)



DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K (Q)




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K (Q)

a € Qq
F,={weF|acw}




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K1 (Q)

a € Q)
F,={weF|acw}

w <, w' countercurrent order at «




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K1 (Q)

a € Q)
F,={weF|acw}

w <, w' countercurrent order at «

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K1 (Q)

a € Q)
F,={weF|acw}

w <, w' countercurrent order at «

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}

PROP. For any facet F' € K, (Q),
e cach bending walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of K (Q)

a € Qq
F,={weF|aecuw}

w <, w' countercurrent order at o

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}

PROP. For any facet F' € K, (Q),
e cach bending walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.

CORO. K,(Q) is pure of dimension |Q|.




FLIPS

F facet of K, (Q) (ie. maximal collection of pairwise non-kissing walks)



FLIPS

F facet of K, (Q) (ie. maximal collection of pairwise non-kissing walks)

AW

w € F we want to “flip”



FLIPS

i A
OT‘M‘

@) @) ©

F facet of K, (Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 6} = da(w, F)



FLIPS

F facet of K, (Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 8} =da(w, F)

o, 8" € @y such that d’'a € I and 5'/5 € I
/

A%

M



FLIPS

oTﬂ»—fo

F facet of K, (Q) (ie. maximal collection of pairwise non-kissing walks)
w € F we want to “flip”

{a,f} = da(w, F)

o, 8" € @y such that d’'a € I and 5'/5 € I
p=dw(c, F)and v =dw(f', F)
w=v|,v|opw,:




FLIPS

F facet of K,(Q) (ie. maximal collection of pairwise non-kissing walks)
w € F we want to “flip”

{a, B} = da(w, F)

o, 8" € @y such that d’'a € I and 5'/5 € I
p=dw(a, F)and v =dw(g', F)
w=v|,v|o pw,-|

W=l vl oviw, ]




FLIPS

is the only such walk.

, [l

w' kisses w but no other walk of F'. Moreover, w

PROP.




flip graph =




GENTLE ASSOCIAHEDRA

Palu—P.—Plamondon, Non-kissing complexes and 7-tilting for gentle algebras ('21)



G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{v1,...,0,}} of Qv = > e, € R
i€lm]
g-vector g(w) of awalk w = Meaks() — Mdeeps(w)
c-vector c(w € F') of a walk w in a non-kissing facet ' = &(w, F') mgy(, r)
L e o [ [ e o [
0 0
L /000 0 O0—1 I /000 0 O0—1
=3 >
= 6T\ 2(0000—10\ 2(0010—10
31010 1 0 O 310100 0 O
4100 0-10 0 4101 1—-10 0
51001 0 1 0 51001 0 0 O
6\100000) 6\100000)
g(F) c(F)
/d&((ﬂ,F)\
peak \ / elw, F) =1
Py ®
/ \ deep —H— G —— (v, F) = —1



G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{v1,...,0,}} of Qv = > e, € R
i€[m]
g-vector g(w) of awalk w = Meaks() — Mdeeps(w)
c-vector c(w € F') of a walk w in a non-kissing facet ' = &(w, F') mgy(, r)
L e o [ [ e o
0 0
L /000 0 O0—1 L /000 0 O
9
N = 2(0000—10\ 2(0010—1
31010 1 0 O 310100 0
4100 0-10 0 4101 1-10
51001 0 1 0 51001 0 0
6\100000) 6\10000
g(F) c(F)

PROP. For any non-kissing facet F', the sets of vectors
gF)={gw)|weF} and c(F)={clwelF)|weF}

form dual bases. Palu—P.—Plamondon ('21)




G-VECTOR FAN

THM. For any gentle quiver @, the collection of cones

[ )
OE. io FI(Q)={Rxg(F) | F € K(Q)}

o forms a compl. simpl. fan, called g-vector fan of Q.

stereographic projection
from (1,1, 1)




NON-KISSING ASSOCIAHEDRON

kissing number kn(w) = Z number of times w and w’ kiss

<A}/

THM. For a gentle quiver Q with finite non-kissing complex K..(Q),
the two sets of R% given by

(i) the convex hull of the points

an clw e F),

weF

for all non-kissing facets F' € K, (Q),

(ii) the intersection of the halfspaces o f
C

H=(w {mERQO ‘ (g(w) \m)ﬁkn(w)}. OE‘ o

for all walks w of Q, ° oi

define the same polytope, whose normal fan is the g-vector fan F9. We call it the
()-associahedron and denote it by Asso. Palu—P.—Plamondon ('21)




NON-KISSING LATTICE

McConville, Lattice structures of grid Tamari orders ('17)
Palu—P.—Plamondon, Non-kissing complexes and 7-tilting for gentle algebras ('21)



NON-KISSING LATTICE

THM. For a gentle quiver () with finite non-kissing

complex K (Q), the non-kissing flip graph

is the Hasse diagram of a /
congruence-uniform lattice. %

L4

Palu—P.—Plamondon ('21)







BICLOSED SETS OF STRINGS

o, T oriented strings
concatenation o o7 = {acw } a € @1 and carT string of Q}

closure S = U ogi0---00, = all strings obtained by concatenation
(eN of some strings of S
O1yeeey oy
closed < S99 =239 coclosed < S9 =239 biclosed = closed and coclosed

NP QPSS . D

THM. For any gentle quiver Q such that K,,(Q) is finite, the inclusion poset on biclosed
sets of strings of () is a congruence-uniform lattice.

McConville ('17)  Palu-P.—Plamondon ('21)




NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
©) @)
Te o
o) A .CV
) (g
. \. — @ .)\O
@) @) @)
S biclosed, v € Q4
w(a, S) = walk constructed with the local rules:
Q cS c S Q
—r)— G —<— —>—G—)—
—»— e —_—( D—H—
Q ¢S ¢ S o)

McConville ('17)
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@)
©)

\Eo o
A <§"
o) \.\ = (e .)\

O

(@)

@)

@)
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, a € )4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—>— D —<— —>—laa—y—
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a, S) | « € @1} is a non-kissing facet.

McConville ('17)




EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346




NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a, S) | « € @1} is a non-kissing facet.

THM. The map 7 defines a lattice morphism from biclosed sets to non-kissing facets.

McConville ('17)







NON-KISSING LATTICE

THM. For a gentle quiver Q with finite non-kissing complex K, (Q), the non-kissing

flip graph is the Hasse diagram of a congruence-uniform lattice.  Palu-P.—Plamondon ('21)

Much more nice combinatorics:

e join-irreducible elements of £,,(Q) are in bijection with distinguishable strings
)

e canonical join complex of £, (Q) is a generalization of non-crossing partitions

¢ |

<. < /. \



SUMMARY

non-kissing complex IC,,x(Q) =

; . . N |_
o vertices = walks in Q% (that are not self-kissing) ( >
e faces = collections of pairwise non-kissing walks in Q% ® ®

... generalizing the associahedron

Flip graph Associahedron Tamari lattice




THANK YOU



