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G- AND C-VECTORS



TWO POLYGONS

Consider simultaneously two n-gons:

• the red polygon supports a reference triangulation,

• the blue polygon is the ground set.
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G-VECTORS

For T◦ red triangulation, δ◦ ∈ T◦ and δ• a blue diagonal, let

ε◦
(
δ◦ ∈ T◦, δ•

)
=


1 if δ• slaloms on δ◦ ∈ T◦ as a Z

−1 if δ• slaloms on δ◦ ∈ T◦ as an Z

0 otherwise
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G-VECTORS

For T◦ red triangulation, δ◦ ∈ T◦ and δ• a blue diagonal, let

ε◦
(
δ◦ ∈ T◦, δ•

)
=


1 if δ• slaloms on δ◦ ∈ T◦ as a Z

−1 if δ• slaloms on δ◦ ∈ T◦ as an Z

0 otherwise
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G-VECTORS

For T◦ red triangulation, δ◦ ∈ T◦ and δ• a blue diagonal, let

ε◦
(
δ◦ ∈ T◦, δ•

)
=


1 if δ• slaloms on δ◦ ∈ T◦ as a Z

−1 if δ• slaloms on δ◦ ∈ T◦ as an Z

0 otherwise

g(T◦, δ•) = g-vector of δ• with respect to T◦ =
[
ε◦
(
δ◦ ∈ T◦, δ•

) ]
δ◦∈T◦

∈ RT◦

= alternating ±1 along the zigzag crossed by δ• in T◦
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g(T◦, (1•, 5•)) = g(T◦, (1•, 3•)) = g(T◦, (5•, 7•)) = g(T◦, (3•, 5•)) =

e5◦7◦ − e2◦7◦ −e2◦4◦ e5◦7◦ e5◦7◦ − e4◦7◦



G-VECTOR FAN

g(T◦, δ•) = g-vector of δ• with respect to T◦ =
[
ε◦
(
δ◦ ∈ T◦, δ•

) ]
δ◦∈T◦

∈ RT◦

THM. For any red triangulation T◦, the collection of cones

Fg(T◦) :=
{
R≥0g(T◦,D•)

∣∣ D• any blue dissection
}

forms a complete simplicial fan, called g-vector fan of T◦.

Loday Hohlweg-Lange / Reading Hohlweg-P.-Stella



C-VECTORS

For T◦ red triangulation and T• blue triangulation

and two diagonals δ◦ ∈ T◦ and δ• ∈ T•, let

ε•
(
δ◦, δ• ∈ T•

)
=


1 if δ◦ slaloms on δ• ∈ T• as a Z

−1 if δ◦ slaloms on δ• ∈ T• as an Z

0 otherwise

c(T◦, δ• ∈ T•) = c-vector of δ• in T• with respect to T◦ =
[
ε•
(
δ◦, δ• ∈ T•

) ]
δ◦∈T◦

∈ RT◦

= ± charac. vector of diagonals of T◦ crossed by opposite neighbors of δ•
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c(T◦, (1•, 5•) ∈ T•) = c(T◦, (1•, 3•) ∈ T•) = c(T◦, (5•, 7•) ∈ T•) = c(T◦, (5•, 7•) ∈ T•) =

−e2◦7◦ −e2◦4◦ e2◦7◦ + e4◦7◦ + e5◦7◦ −e4◦7◦



G- AND C-VECTORS

For T◦ red triangulation and T• blue triangulation

g(T◦, δ•) = g-vector of δ• with respect to T◦ =
[
ε◦
(
δ◦ ∈ T◦, δ•

) ]
δ◦∈T◦

∈ RT◦

c(T◦, δ• ∈ T•) = c-vector of δ• in T• with respect to T◦ =
[
ε•
(
δ◦, δ• ∈ T•

) ]
δ◦∈T◦

∈ RT◦
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G- AND C-VECTORS

For T◦ red triangulation and T• blue triangulation

g(T◦, δ•) = g-vector of δ• with respect to T◦ =
[
ε◦
(
δ◦ ∈ T◦, δ•

) ]
δ◦∈T◦

∈ RT◦

c(T◦, δ• ∈ T•) = c-vector of δ• in T• with respect to T◦ =
[
ε•
(
δ◦, δ• ∈ T•

) ]
δ◦∈T◦

∈ RT◦
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c −e2◦7◦ −e2◦4◦ e2◦7◦ + e4◦7◦ + e5◦7◦ −e4◦7◦

PROP. The g-vectors g(T◦,T•) and the c-vectors c(T◦,T•) form dual bases.

PROP. Duality: g(T◦,T•) = −c(T•,T◦)
t and c(T◦,T•) = −g(T•,T◦)

t



ASSOCIAHEDRA FOR G-VECTOR FANS

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans (’18)



T◦-ZONOTOPE

T◦-zonotope = Zono(T◦) = Minkowski sum of all c-vectors C(T◦) =
⋃

T•
c(T◦,T•)

Zono(T◦) =
∑

c∈C(T◦)

c.

PROP. For any diagonal γ•, Zono(T◦) has a facet defined by the inequality

〈 g(T◦, γ•) | x 〉 ≤ ω(γ•)

where ω(γ•) = number of red diagonals that cross γ•.



T◦-ASSOCIAHEDRON

Define p(T◦,T•) :=
∑
δ•∈T•

ω(δ•) · c(T◦, δ• ∈ T•)

THM. For any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of

Asso(T◦) = conv {p(T◦,T•) | T• blue triangulation}
=
{
x ∈ RT◦

∣∣ 〈 g(T◦, δ•) | x 〉 ≤ ω(δ•) for any blue diagonal δ•
}
.

Hohlweg-P.-Stella, (’18)

Loday Hohlweg-Lange Hohlweg-P.-Stella



T◦-ASSOCIAHEDRON
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UNIVERSAL ASSOCIAHEDRON

Hohlweg-P.-Stella, Polytopal realizations of finite type g-vector fans (’18)



UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of

Asso(T◦) = conv {p(T◦,T•) | T• blue triangulation}

where

p(T◦,T•) :=
∑
δ•∈T•

ω(δ•)·c(T◦, δ• ∈ T•) =
∑
δ◦∈T◦

(∑
δ•∈T•

ω(δ•)·ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RT◦.

Hohlweg-P.-Stella (’18)

=⇒ the δ◦-coordinate of p(T◦,T•) does not really depends on T◦



UNIVERSAL ASSOCIAHEDRON

THM. For any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of

Asso(T◦) = conv {p(T◦,T•) | T• blue triangulation}

where

p(T◦,T•) :=
∑
δ•∈T•

ω(δ•)·c(T◦, δ• ∈ T•) =
∑
δ◦∈T◦

(∑
δ•∈T•

ω(δ•)·ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RT◦.

Hohlweg-P.-Stella (’18)

THM. Let X◦ be the set of all internal red diagonals.

Define the universal associahedron Assoun(n) as the convex hull of the points

pun(T•) :=
∑
δ◦∈X◦

(∑
δ•∈T•

ω(δ•) · ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RX◦

over all blue triangulations T•.

Then for any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of the pro-

jection Asso(T◦) of the universal associahedron Assoun(n) on the coordinate plane RT◦.

Hohlweg-P.-Stella (’18)



UNIVERSAL ASSOCIAHEDRON

THM. Let X◦ be the set of all internal red diagonals.

Define the universal associahedron Assoun(n) as the convex hull of the points

pun(T•) :=
∑
δ◦∈X◦

(∑
δ•∈T•

ω(δ•) · ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RX◦

over all blue triangulations T•.

Then for any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of the pro-
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UNIVERSAL ASSOCIAHEDRON

THM. Let X◦ be the set of all internal red diagonals.

Define the universal associahedron Assoun(n) as the convex hull of the points

pun(T•) :=
∑
δ◦∈X◦

(∑
δ•∈T•

ω(δ•) · ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RX◦

over all blue triangulations T•.

Then for any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of the pro-

jection Asso(T◦) of the universal associahedron Assoun(n) on the coordinate plane RT◦.

Hohlweg-P.-Stella (’18)

n
dimension of

ambient space
dimension # vertices # facets # vertices / facet # facets / vertex

1 2 1 2 2 1 1

2 5 4 5 5 4 4

3 9 8 14 60 9 ≤ · ≤ 10 30 ≤ · ≤ 42

4 14 13 42 8960 14 ≤ · ≤ 28 3463 ≤ · ≤ 4244



UNIVERSAL ASSOCIAHEDRON

THM. Let X◦ be the set of all internal red diagonals.

Define the universal associahedron Assoun(n) as the convex hull of the points

pun(T•) :=
∑
δ◦∈X◦

(∑
δ•∈T•

ω(δ•) · ε•
(
δ◦, δ• ∈ T•

))
eδ◦ ∈ RX◦

over all blue triangulations T•.

Then for any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of the pro-

jection Asso(T◦) of the universal associahedron Assoun(n) on the coordinate plane RT◦.

Hohlweg-P.-Stella (’18)

THM. The origin is the vertex barycenter of the universal associahedron Assoun(n).

Hohlweg-P.-Stella (’18)

CORO. For any red triangulation T◦, the origin is the vertex barycenter of the

T◦-associahedron Asso(T◦).

Hohlweg-P.-Stella (’18)



SECTIONS AND PROJECTIONS

Manneville-P., Geometric realizations of the accordion complex (’19)



SECTIONS AND PROJECTIONS

THM. For any red triangulation T◦, the g-vector fan Fg(T◦) is the normal fan of the pro-

jection Asso(T◦) of the universal associahedron Assoun(n) on the coordinate plane RT◦.

What happens if we project on other coordinate planes?

No clue in general, but...

For a red dissection D◦, define

Asso(D◦) = projection of Assoun(n) on the coordinate plane RD◦

Since normal fan of projections are sections of normal fans,

normal fan ofAsso(D◦) = section of the normal fan of Assoun(n) by the plane RD◦

= subfan of the normal fan of Assoun(n) induced by the rays in RD◦

= subfan of the normal fan of Asso(T◦) induced by the rays in RD◦

for a triangulation T◦ containing D◦



ACCORDION COMPLEX

LEM. For a red dissection D◦ contained in a red triangulation T◦, and a blue diagonal δ•,

g(T◦, δ•) ∈ RD◦ ⇐⇒ δ• never crosses a cell of D◦ through two non-consecutive edges

D◦-accordion diagonal = diagonal of the blue solid polygon that crosses an accordion of D◦

D◦-accordion dissection = set of non-crossing D◦-accordion diagonals

D◦-accordion complex = simplicial complex of D◦-accordion dissections
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ACCORDIOHEDRON

THM. For any red dissection D◦, the projection Asso(D◦) of the universal associahe-

dron Assoun(n) on the coordinate plane RD◦ realizes the D◦-accordion complex.

Manneville-P., (’19)



PROJECTIONS OF PROJECTIONS

PROP. If D◦ ⊆ D′◦, then

• Fg(D◦) is the section of Fg(D′◦) with the coordinate plane 〈eδ◦ | δ◦ ∈ D◦〉,
• therefore, Fg(D◦) is also realized by the projection of Asso(D◦) on 〈eδ◦ | δ◦ ∈ D◦〉.



EXTENSIONS TO CLUSTER ALGEBRAS

Fomin-Zelevinsky, Cluster Algebras I, II, III, IV (’02 – ’07)



CLUSTER ALGEBRAS

cluster algebra = commutative ring generated by distinguished cluster variables grouped

into overlapping clusters

clusters computed by a mutation process :

cluster seed = algebraic data {x1, . . . , xn}, combinatorical data B (matrix or quiver)

cluster mutation =
(
{x1, . . . , xk, . . . , xn}, B

) µk←−−→
(
{x1, . . . , x

′
k, . . . , xn}, µk(B)

)
xk · x′k =

∏
{i | bik>0}

xbiki +
∏

{i | bik<0}

x−biki

(
µk(B)

)
ij

=


−bij if k ∈ {i, j}
bij + |bik| · bkj if k /∈ {i, j} and bik · bkj > 0

bij otherwise

cluster complex = simplicial complex w/ vertices = cluster variables & facets = clusters

Fomin-Zelevinsky, Cluster Algebras I, II, III, IV (’02 – ’07)



CLUSTER MUTATION

x3x1
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CLUSTER MUTATION
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CLUSTER MUTATION
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CLUSTER MUTATION
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CLUSTER MUTATION GRAPH
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CLUSTER ALGEBRA FROM TRIANGULATIONS

One constructs a cluster algebra from the triangulations of a polygon:

diagonals ←→ cluster variables

triangulations ←→ clusters

flip ←→ mutation

b d

a

c
x b d

a

c
y ←→ xy = ac + bd



CLUSTER MUTATION GRAPH
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CLUSTER ALGEBRAS

THM. (Laurent phenomenon) Fomin-Zelevinsky (’02)

All cluster variables are Laurent polynomials in the variables of the initial cluster seed.

THM. (Classification) Fomin-Zelevinsky (’03)

Finite type cluster algebras are classified by the Cartan-Killing classification for finite

type crystallographic root systems.

for a root system Φ, and an acyclic initial cluster X = {x1, . . . , xn}, there is a bijection

cluster variables of AΦ
θX←−−→ Φ≥−1 = Φ+ ∪ −∆

y =
F (x1, . . . , xn)

xd11 · · · x
dn
n

θX←−−→ β = d1α1 + · · · + dnαn

cluster of AΦ
θX←−−→ X-cluster in Φ≥−1

cluster complex of AΦ
θX←−−→ X-cluster complex in Φ≥−1



COXETER UNIVERSAL ASSOCIAHEDRON

g- and c-vectors of cluster variables are defined using principal coefficients

universal c-vectors are defined using universal coefficients

THM. Γ finite type Dynkin diagram and h : cluster vars → R exchange submodular.

Define the universal Γ-associahedron Assoun(Γ) as the convex hull of the points

pun(Σ) :=
∑
x∈Σ

h(x) · cun(x ∈ Σ)

for all seeds Σ in the cluster algebra of type Γ.

Then for any initial seed Σ◦, the g-vetor fan Fg(Σ◦) is the normal fan of the projec-

tion Asso(Σ◦) of the universal associahedron Assoun(Γ) on the coordinate plane RΓ.

Hohlweg-P.-Stella (’18)



NON-KISSING COMPLEX

Brüstle–Douville–Mousavand–Thomas–Yıldırım, Combinatorics of gentle algebras (’20)

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras (’21)



GENTLE QUIVERS AND STRINGS
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gentle quiver Q̄ =

• quiver Q = oriented graph (Q0, Q1, s, t)

• relations I = forbid certain paths

where

• forbidden paths all of length 2

• locally at each vertex, subgraph of
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4

string σ = αε11 . . . α
ε`
` with αk ∈ Q1, εk ∈ {−1, 1}

such that

• t(αεkk ) = s(α
εk+1

k+1)

• contains no factor π or π−1 for any path π ∈ I
• contains no αα−1 or α−1α for any arrow α ∈ Q1
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BLOSSOMING QUIVERS AND WALKS

1 2

3 6

5

4
blossoming quiver Q̄` =

add blossoms to complete each vertex to

1 2

3 6

5

4

walk ω = maximal string in Q̄`

from blossoms to blossoms



KISSING

KISS NO KISS
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NON-KISSING COMPLEX

KISS

[reduced] non-kissing complex Knk(Q̄) =

• vertices = [bending] walks in Q̄`

(that are not self-kissing)

• faces = collections of pairwise

non-kissing [bending] walks in Q̄`



NON-KISSING VS NON-CROSSING

Palu–P.–Plamondon,

Non-kissing and non-crossing complexes for locally gentle algebras (’19)



DUAL DISSECTIONS

S = orientable surface with or without boundaries

V and V∗ two families of marked points

D and D∗ two dual dissections of S
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DUAL DISSECTIONS

S = orientable surface with or without boundaries

V and V∗ two families of marked points

D and D∗ two dual dissections of S

blossom vertices = white vertices, alternating with V ∪ V∗ along the boundary of S
B-curve = curve which at each endpoint either reaches a blossom point or infinitely circles

around a puncture of S



ACCORDIONS

D-accordion = B-curve α such that whenever α meets a face f of D,

(i) it enters crossing an edge a of f and leaves crossing an edge b of f

(ii) the two edges a and b of f crossed by α are consecutive along the boundary of f ,

(iii) α, a and b bound a disk inside f that does not contain f ∗.

D-accordion complex = simplicial complex of pairwise non-crossing sets of D-accordions



SLALOMS

D∗-slalom = B-curve α of S̄ such that, whenever α crosses an edge a∗ of D∗ contained in

two faces f ∗, g∗ of D∗, the marked points f and g lie on opposite sides of α in the union

of f ∗ and g∗ glued along a∗.

D∗-slalom complex = simplicial complex of pairwise non-crossing sets of D∗-slaloms



D-ACCORDIONS = D∗-SLALOMS

(D,D∗)-non-crossing complex = D-accordion complex = D∗-slalom complex



QUIVER OF A DISSECTION

quiver Q̄D of a dissection =

• vertices = edges of D (boundary edges are blossom vertices)

• arrows = two consecutive edges around a face of D

• relations = three consecutive edges around a face of D



QUIVER OF A DISSECTION

quiver Q̄D of a dissection =

• vertices = edges of D (boundary edges are blossom vertices)

• arrows = two consecutive edges around a face of D

• relations = three consecutive edges around a face of D



SURFACE OF A GENTLE QUIVER

surface SQ̄ of quiver Q̄ = surface obtained from the blossoming quiver Q̄` as follows:

(i) for each arrow α ∈ Q`
1 , consider a lozenge

s(α) t(α)

v(α)

f ∗(α)

α

Es
nr(α) Et

nr(α)

Es
r(α) Et

r(α)

(ii) for any α, β ∈ Q`
1 with t(α) = s(β),

proceed to the following identifications:

• if αβ ∈ I, then glue Et
r(α) with Es

r(β),

• if αβ /∈ I, then glue Et
nr(α) with Es

nr(β).



NON-CROSSING VS NON-KISSING

PROP. The two previous constructions are inverse to each other and define bijections:

pairs of dual dissections on a surface ←→ gentle quivers

PROP. It defines isomorphisms between:

non-crossing complex of dissections ←→ non-kissing complex of gentle quiver

Palu–P.–Plamondon (’19)



END OF THE TALK

non-kissing complex Knk(Q̄) =

• vertices = walks in Q̄` (that are not self-kissing)

• faces = collections of pairwise non-kissing walks in Q̄`

... generalizing the associahedron

Flip graph Associahedron Tamari lattice



DISTINGUISHED ARROWS AND FLIPS

McConville, Lattice structures of grid Tamari orders (’17)

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras (’21)
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• each bending walk of F contains 2 distinguished arrows in F pointing opposite,

• each straight walk of F contains 1 distinguished arrows in F pointing as the walk.



DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of Knk(Q̄)

α ∈ Q1

Fα = {ω ∈ F | α ∈ ω}

ω ≺α ω′ countercurrent order at α

distinguished walk at α in F = dw(α, F ) = max≺α Fα
distinguished arrows of ω in F = da(ω, F ) = {α ∈ Q1 | ω = dw(α, F )}

PROP. For any facet F ∈ Knk(Q̄),

• each bending walk of F contains 2 distinguished arrows in F pointing opposite,

• each straight walk of F contains 1 distinguished arrows in F pointing as the walk.

CORO. Knk(Q̄) is pure of dimension |Q0|.



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)

ω ∈ F we want to “flip”



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)

ω ∈ F we want to “flip”

{α, β} = da(ω, F )

v w



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)

ω ∈ F we want to “flip”

{α, β} = da(ω, F )
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v w



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)

ω ∈ F we want to “flip”

{α, β} = da(ω, F )

α′, β′ ∈ Q1 such that α′α ∈ I and β′β ∈ I
µ = dw(α′, F ) and ν = dw(β′, F )

ω = ν[·, v]σ µ[w, ·] v w



FLIPS

F facet of Knk(Q̄) (ie. maximal collection of pairwise non-kissing walks)

ω ∈ F we want to “flip”

{α, β} = da(ω, F )

α′, β′ ∈ Q1 such that α′α ∈ I and β′β ∈ I
µ = dw(α′, F ) and ν = dw(β′, F )

ω = ν[·, v]σ µ[w, ·]
ω′ = µ[·, v]σ ν[w, ·] v w



FLIPS

PROP. ω′ kisses ω but no other walk of F . Moreover, ω′ is the only such walk.



FLIPS

flip graph =

• vertices = non-kissing facets

• edges = flips



GENTLE ASSOCIAHEDRA

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras (’21)



G-VECTORS & C-VECTORS

multiplicity vector mV of multiset V = {{v1, . . . , vm}} of Q0 =
∑
i∈[m]

evi ∈ RQ0

g-vector g(ω) of a walk ω = mpeaks(ω) −mdeeps(ω)

c-vector c(ω ∈ F ) of a walk ω in a non-kissing facet F = ε(ω, F )mds(ω,F )

1
5

4

3

2

6

• • • • • •



1 0 0 0 0 0 −1

2 0 0 0 0 −1 0

3 0 1 0 1 0 0

4 0 0 0 −1 0 0

5 0 0 1 0 1 0

6 1 0 0 0 0 0

g(F )

• • • • • •



1 0 0 0 0 0 −1

2 0 0 1 0 −1 0

3 0 1 0 0 0 0

4 0 1 1 −1 0 0

5 0 0 1 0 0 0

6 1 0 0 0 0 0

c(F )

↙ da(ω, F )↘
peak ε(ω, F ) = 1

deep ε(ω, F ) = −1
ds(ω, F )



G-VECTORS & C-VECTORS

multiplicity vector mV of multiset V = {{v1, . . . , vm}} of Q0 =
∑
i∈[m]

evi ∈ RQ0

g-vector g(ω) of a walk ω = mpeaks(ω) −mdeeps(ω)

c-vector c(ω ∈ F ) of a walk ω in a non-kissing facet F = ε(ω, F )mds(ω,F )

1
5

4

3

2

6

• • • • • •



1 0 0 0 0 0 −1

2 0 0 0 0 −1 0

3 0 1 0 1 0 0

4 0 0 0 −1 0 0

5 0 0 1 0 1 0

6 1 0 0 0 0 0

g(F )

• • • • • •



1 0 0 0 0 0 −1

2 0 0 1 0 −1 0

3 0 1 0 0 0 0

4 0 1 1 −1 0 0

5 0 0 1 0 0 0

6 1 0 0 0 0 0

c(F )

PROP. For any non-kissing facet F , the sets of vectors

g(F ) := {g(ω) | ω ∈ F} and c(F ) := {c(ω ∈ F ) | ω ∈ F}
form dual bases. Palu–P.–Plamondon (’21)



G-VECTOR FAN

THM. For any gentle quiver Q̄, the collection of cones

Fg(Q̄) :=
{
R≥0g(F )

∣∣ F ∈ Knk(Q̄)
}

forms a compl. simpl. fan, called g-vector fan of Q̄.

stereographic projection

from (1, 1, 1)



NON-KISSING ASSOCIAHEDRON

kissing number kn(ω) =
∑
ω′

number of times ω and ω′ kiss

THM. For a gentle quiver Q̄ with finite non-kissing complex Knk(Q̄),

the two sets of RQ0 given by

(i) the convex hull of the points

p(F ) :=
∑
ω∈F

kn(ω) c(ω ∈ F ),

for all non-kissing facets F ∈ Knk(Q̄),

(ii) the intersection of the halfspaces

H≥(ω) :=
{
x ∈ RQ0

∣∣ 〈 g(ω) | x 〉 ≤ kn(ω)
}
.

for all walks ω of Q̄,

define the same polytope, whose normal fan is the g-vector fan Fg. We call it the

Q̄-associahedron and denote it by Asso. Palu–P.–Plamondon (’21)



NON-KISSING LATTICE

McConville, Lattice structures of grid Tamari orders (’17)

Palu–P.–Plamondon, Non-kissing complexes and τ -tilting for gentle algebras (’21)



NON-KISSING LATTICE

THM. For a gentle quiver Q̄ with finite non-kissing

complex Knk(Q̄), the non-kissing flip graph

is the Hasse diagram of a

congruence-uniform lattice.

Palu–P.–Plamondon (’21)



NON-KISSING LATTICE



BICLOSED SETS OF STRINGS

σ, τ oriented strings

concatenation σ ◦ τ =
{
σατ

∣∣ α ∈ Q1 and σατ string of Q̄
}

closure Scl =
⋃
`∈N

σ1,...,σ`∈S

σ1 ◦ · · · ◦ σ` = all strings obtained by concatenation

of some strings of S

closed ⇐⇒ Scl = S coclosed ⇐⇒ S̄cl = S̄ biclosed = closed and coclosed

THM. For any gentle quiver Q̄ such that Knk(Q̄) is finite, the inclusion poset on biclosed

sets of strings of Q̄ is a congruence-uniform lattice.

McConville (’17) Palu–P.–Plamondon (’21)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, α ∈ Q1

ω(α, S) = walk constructed with the local rules:

McConville (’17)
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, α ∈ Q1

ω(α, S) = walk constructed with the local rules:

McConville (’17)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. η(S) := {ω(α, S) | α ∈ Q1} is a non-kissing facet.

McConville (’17)



EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346

6 754321

6 754321
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. η(S) := {ω(α, S) | α ∈ Q1} is a non-kissing facet.

THM. The map η defines a lattice morphism from biclosed sets to non-kissing facets.

McConville (’17)



NON-KISSING LATTICE



NON-KISSING LATTICE

THM. For a gentle quiver Q̄ with finite non-kissing complex Knk(Q̄), the non-kissing

flip graph is the Hasse diagram of a congruence-uniform lattice. Palu–P.–Plamondon (’21)

Much more nice combinatorics:

• join-irreducible elements of Lnk(Q̄) are in bijection with distinguishable strings

• canonical join complex of Lnk(Q̄) is a generalization of non-crossing partitions



SUMMARY

non-kissing complex Knk(Q̄) =

• vertices = walks in Q̄` (that are not self-kissing)

• faces = collections of pairwise non-kissing walks in Q̄`

... generalizing the associahedron

Flip graph Associahedron Tamari lattice



THANK YOU


