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“The biggest lesson | learned from Richard Stanley’s work is,
combinatorial objects want to be partially ordered! |...|"

“A related lesson that Stanley has taught me is,
combinatorial objects want to belong to polytopes! |...|"

Propp, Lessons | Learned from Richard Stanley ('15)



PERMUTAHEDRON & ASSOCIAHEDRON

Ceballos—Santos—Ziegler, Many non-equivalent realizations of the associahedron ('15)
P.—Santos—Ziegler, Celebrating Loday's associahedron ('23)



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

sylvester congruence = equivalence classes are sets of linear extensions of binary trees
= equivalence classes are fibers of BST insertion
= rewriting rule UacVbW =1, UcaVbW with a < b < ¢




LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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2314]  [3124] [2143] 1342 1423 A A A\
2134 1324 1243 <l
1234 Al
weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

lattice congruence = equivalence relation = which respects meets and joins

r=2'andy=vy = asAy=2'Ay andzVy=2'Vy
quotient lattice = lattice on classes with X <Y «—= daxe X, yeY z <y




FANS: BRAID FAN AND SYLVESTER FAN

polyhedral cone = positive span of a finite set of vectors

= intersection of a finite set of linear half-spaces
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and where any two cones intersect along a face
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces

braid fan =

C(a):{meR”‘xa(l)g-..<aza(n)} CT)={xeR"|z;<z;jifi—75inT}



FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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braid fan = sylvester fan :f

C(U)Z{%GR”‘xa(l)g---§$a(n)} C(T)Z{CBER”|$¢§IJ- ifz'—>jinT}

quotient fan = C(T) is obtained by glueing C(o) for all linear extensions o of T’




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points
= bounded intersection of a finite set of affine half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations /

>
\ iy




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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T Shnider—Sternberg ('93)

where H; = {:13 c R" ’ D s T > (MQH)} Loday ('04)
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON
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outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)


POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

https://www.ub.edu/comb/vincentpilaud/documents/3dprint/
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LATTICES — FANS — POLYTOPES
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normal cone of I' = positive span of the outer normal vectors of the facets containing I
normal fan of IP = { normal cone of I’ | I’ face of P }
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face IF of polytope IP




LATTICES — FANS — POLYTOPES

permutahedron Perm(n)

— braid fan

—> weak order on permutations

A T S3421
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associahedron Asso(n)

— Sylvester fan

— Tamari lattice on binary trees




DEFORMED PERMUTAHEDRA

Postnikov, Permutohedra, associahedra, and beyond ('09)
Postnikov—Reiner-Williams, Faces of generalized permutohedra ('08)



DEFORMED PERMUTAHEDRA

deformation of a polytope IP = polytope @ such that

e () is obtained from IP by moving its vertices such that edge directions are preserved
e () is obtained from IP by translating its inequalities without passing through a vertex

e the normal fan of P refines the normal fan of Q)
e () is a weak Minkowski summand of IP, i.e. thereis R and A > 0 such that A\IP = Q+R

ROBWIOOD

deformed permutahedron = polymatroid = generalized permutahedron
Edmonds ('70) Postnikov ('09)




insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


REMOVAHEDRA VS. DEFORMED PERMUTAHEDRA

deformation of IP = obtained by translating inequalities in the facet description of IP

removahedron of IP = obtained by removing inequalities in the facet description of IP

outsidahedra insidahedra
removahedra deformed permutahedra
permutrees quotientopes

ROBWIOOD




outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
Media File (video/quicktime)
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DEFORMATION CONE

deformation of a polytope IP = polytope @) such that AIP = Q+ R for some R and A > 0

deformation cone of IP = all deformations of P (under dilations and Minkowski sums)
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submodular cone

= deformation cone of Perm(3)



OPEN PROBLEM: RAYS OF THE DEFORMATION CONE

THM. The deformation cone of the permutahedron Perm(n) is (isomorphic to) the set of
submodular functions h : 2" — R satisfying h(&) = h([n]) = 0 and the submodular
inequalities h(I) + h(J) > h(INJ)+h(IUJ) forall I,J C [n].

THM. The facets correspond to submodular inequalities where |\ J| = |J N I]| = 1.

PROB. Describe (or count) the rays of the submodular cone. Edmonds ('70)

N S

I
!
1
I _-
& / -7 !
T I
- il B !
- I - ~~
~ -~
~ ! I
- ! !
~




CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}
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for a height vector h € RY, consider the polytope P, = {x € R" | Gz < h}




CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}
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When is F the normal fan of P,?



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a helght vector h € RY, consider the polytope P, = {x € R" | Gz < h}
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WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

4™ 5



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>0
R

wall-crossing inequality for a wall R = Z arshs >0 where
seRU{rr'}
e v’ = rays such that RU {r} and R U {7’} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
seRU{r r'}




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}
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R

wall-crossing inequality for a wall R = Z arshs >0 where
seRU{rr'}
e v’ = rays such that RU {r} and R U {7’} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
seRU{r r'}

F is the normal fan of IP;, <= h satisfies all wall-crossing inequalities of F




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

A
|
|

A

wall-crossing inequalities:

wall 1 :
wall 2 :
wall 3 :
wall 4 :

wall 5 :

ho + hs > 0
hi+ hs > ho
ho + ha > hs
hs + hs > hy
hi+hy >0
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TYPE CONE

F = complete simplicial fan in R"” with N rays

G = (N x n)-matrix whose rows are representatives of the rays of F

for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) =

realization space of F
{h c RV ! F is the normal fan of IPh}

McMullen ('73)

— {h c RN | h satisfies all wall-crossing inequalities of ]-"}




TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
4 \ > 1
5
some properties of TC(F):
e TC(F) is an open cone (dilations preserve normal fans)
e TC(F) has lineality space G R" (translations preserve normal fans)

e dimension of TC(F)/GR" = N —n



TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
4\ )
5}

some properties of TC(F):
e closure of TC(F) = polytopes whose normal fan coarsens F = deformation cone
e Minkowski sums <— positive linear combinations



SUBMODULAR FUNCTIONS

dmTC(F)=N-n=6—-2=14



LINEAR BASES OF THE SUBMODULAR CONE

PROP. Linear bases of the submodular cone:
e {A;| I C[n]} = faces of the standard simplex A,
e {SIP(i,j,A,B) |1 <i<j<mn, AU B = [n|} = shard polytopes

[ X [ ToX)

A12\ SP(e—o N

A13



P-POSETS

REM.

poset < on [n]
preposet < on [n]

<— full-dim. cone Cx ={x e R" | z; < x; for all i X 5}
+— cone Co={x eR" |z <z foralli=<j}

DEF. IP = deformed permutahedron

IP-posets = posets corresponding to maximal cones in the normal fan of IP




NATURAL ORIENTATION

DEF. IP = deformed permutahedron
Pp = transitive closure of the graph of IP oriented in direction (n,...,2,1)—(1,2,...,n)
Pp is always a poset on P-posets

4 1 32 7 2341

PROB. When is Pp a lattice? a distributive lattice? a semidistributive lattice?




EXAMPLE 1: QUOTIENTOPES

Reading, Lattice congruences, fans and Hopf algebras ('05)
P.—Santos, Quotientopes ('19)
Padrol-P.—Ritter, Shard polytopes ('22)



QUOTIENT FANS AND QUOTIENTOPES

quotient fan F_ = obtained by glueing the cham-

bers of the braid arrangement corresponding to // \\

chambers in the same =-congruence class .. .
[N

quotientope = polytope with normal fan F- ‘M’
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QUOTIENT FANS AND QUOTIENTOPES

quotient fan F_ = obtained by glueing the cham-

bers of the braid arrangement corresponding to

N

chambers in the same =-congruence class
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quotientope = polytope with normal fan 7= ‘ X %’ ."\
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Reading ('05)
P.—Santos ('19)



QUOTIENT FANS AND QUOTIENTOPES

quotient fan F_ = obtained by glueing the cham-

bers of the braid arrangement corresponding to // \\
chambers in the same =-congruence class ..Q.
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insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


EXAMPLE 2: GRAPHICAL ZONOTOPES

P., Acyclic reorientation lattices and their lattice quotients ('25)



GRAPHICAL ZONOTOPES

D directed acyclic graph
graphical arrangement Hp = arrangement of hyperplanes z, = x, for all arcs (u,v) € D

graphical zonotope Zono(D) = Minkowski sum of |e,, e,| for all arcs (u,v) € D

hyperplanes of Hp <—  summands of Zono(D) <+— arcs of D
regions of Hp > vertices of Zono(D) <— acyclic reorientations of D
poset of regions of Hp <— oriented graph of Zono(D) <— acyclic reorientation poset of D



SIMPLE GRAPHICAL ZONOTOPES

PROP. TFAE:
e the graphical arrangement Hp is simplicial
e the graphical zonotope Zono(D) is simple
e the transitive reduction of any acyclic reorientation of D is a forest

e D is chordful (a.k.a. block graph) = any cycle of D induces a clique

not simplicial simplicial simplicial



SIMPLE GRAPHICAL ZONOTOPES

PROP. TFAE:
e the graphical arrangement Hp is simplicial
e the graphical zonotope Zono(D) is simple

e the transitive reduction of any acyclic reorientation of D is a forest

e D is chordful (a.k.a. block graph) = any cycle of D induces a clique

%

& N

not simple simple
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simple




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

/ )/ )// | maximal element D

self-dual under reversing all arcs

cover relations = flipping a single arc

//( /( / flippable arcs of £ = transitive reduction of E
| 1 = F ~ {(u,v) € E | 3 directed path v ~» v in E}




ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

Ej ,Ej minimal element D
)/ )/ maximal element D

~ ~
E} B E self-dual under reversing all arcs
D D cover relations = flipping a single arc

/( flippable arcs of I/ = transitive reduction of £
E] = F ~ {(u,v) € E'| 3 directed path u ~ v in E}

/
3



ACYCLIC REORIENTATION POSETS

D directed acyclic graph
AR p = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate P. ('25)
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ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

P. ('25)
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ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

P. ('25)

- \ X subset of arcs of D is

e closed if all arcs of D in the transitive closure
of X also belong to X
e coclosed if its complement is closed

e biclosed if it is closed and coclosed

PROP. If D vertebrate, P. ('25)
X biclosed <= the reorientation of X is acyclic




ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. AR p lattice <= D vertebrate

P. ('25)

PROP. If D vertebrate, P. ('25)

de(El V...V Ek)
transitive closure of bwd(Fy) U --- U bwd(E})

de(El JANPIAN Ek> —
transitive closure of fwd(Ey) U --- U fwd(Ey)




DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. AR p distributive lattice <= D forest «—= AR boolean lattice

P. ('25)

/L|J\ ) VAN
I>< ><l Ef
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distributive not distributive




SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =
e D vertebrate = transitive reduction of any induced subgraph of D is a forest

e D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. ARp semidistributive lattice <= D is skeletal P. ('25)

semidistributive & | non semidistributive




QUOTIENTS OF SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =— ARp semidistributive lattice = quotient fans & quotientopes
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EXAMPLE 3: NESTOHEDRA

Feichtner-Sturmfels, Matroid polytopes, nested sets and Bergman fans ('05)
Postnikov, Permutohedra, associahedra, and beyond ('09)



NESTOHEDRA

DEF. building set on [n] = collection B of non-empty subsets of |n| such that

e 3 contains all singletons {s} for s € |n]
oif B,BeBand BNB' # &, then BUB € B

x(B) = connected components of 5 = inclusion maximal elements of B

DEF. nested set on B = subset A/ of B ~\ k(B) such that
o forany B,B' € N, either BC B orBBCBorBNB =g
e for any k > 2 pairwise disjoint By, ..., B, € N, the union ByU---U By is not in B

nested complex of B = simplicial complex of nested sets on B

THM. The nested complex of B is isomorphic to the boundary complex of the polar of

the nestohedron Z Ap/A\p where
BeB

e Ap= conv{e, | b€ B} face of the standard simplex A,; = conv {e, | s € [n]}
e \p arbitrary strictly positive coefficients

Feichtner—Koslov ('04),  Feichtner—Sturmfels ('05),  Postnikov ('09),  Zelevinski ('06)




NESTOHEDRA

THM. The nested complex of B is isomorphic to the boundary complex of the polar of

the nestohedron Z)\BAB
BeB

Feichtner—Koslov ('04),  Feichtner-Sturmfels ('05),  Postnikov ('09),  Zelevinski ('06)




GRAPHICAL NESTOHEDRA

EXM. graphical building set of G = collection of all tubes of GG

graphical nested set of G = simplicial complex of tubings on G




SPECIAL GRAPH ASSOCIAHEDRA

s N ?’—@’\ okl

N G 5
A T AT N e /@\@
\A /\@ @6@? % S @@\ b4,

Do \@. /@' @55/ “@\\/@ { ‘@/@
path associahedron cycle associahedron complete graph associahedron
— associahedron = cyclohedron = permutahedron
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EXAMPLE 4: HYPERGRAPHIC POLYTOPES

Benedetti-Bergeron—-Machacek, Hypergraphic polytopes ('19)
Bergeron—P., Interval hypergraphic polytopes ('24™)



HYPERGRAPHIC POLYTOPES

H = hypergraph on [n]

hypergraphic polytope A(H) = Z Ay where Ay ={e, | he H}
HeH

hypergraphic poset Py = transitive closure of the graph of A(H)

oriented in direction w = (n,...,1) — (1,... ,n)
/ \
14 \ /
/)/ / 24Q\34 \
- \ /

33

Aoz and Aqsy AH) = Aqaz + Ay Py



ACYCLIC ORIENTATIONS OF H

Minkowski sum P+ Q ={p+q|p € P, q € Q}

+ i -

Normal fan of IP + Q = common refinement of normal fans of P and Q)




ACYCLIC ORIENTATIONS OF H

Minkowski sum P+ Q ={p+q|p € P, q € Q}

- i

Normal fan of IP + Q = common refinement of normal fans of P and Q)

vertices of A(H) = acyclic orientations of H = maps O from H to [n] such that
e O(H)c H forall He H
e there is no Hy, ..., H; with k > 2 such that O(H;.1) € H; ~ {O(H,)} for i € [k — 1]
and O(H,) € H, ~ {O(H})}




ACYCLIC ORIENTATIONS OF H

Minkowski sum P+ Q ={p+q |p € P, g€ Q}

+ K =

Normal fan of IP + Q = common refinement of normal fans of P and Q)

vertices of A(H) = acyclic orientations of H = maps O from H to [n] such that
e O(H)c H forall He H
e there is no Hy, ..., H; with k > 2 such that O(H;.1) € H; ~ {O(H,)} for i € [k — 1]
and O(H,) € H, ~ {O(H})}

edges of A(H) = orientation flips = pairs of acyclic orientations O # O’ of H such that
there exist 1 < i < j < n such that for all H € H,

oif OH)# O'(H), then O(H) =4 and O'(H) = j

oif {i,j} CH,then O(H) =i < O'(H) =




PERMUTAHEDRON & ASSOCIAHEDRON

H = all 2-element subsets of [n]
A(H) = permutahedron Perm(n)
Py = weak order on permutations

4312
3} 2 ——— 3413
3241
4132 e 2341
4213 3142
4123 / 3214
2413
3124
32— 130 2314
1423 \\*\\
2143 1324
N4 24;2134
TT—1234

= conv {[U_1<i>]i€[n] ‘ o E Sn}

=Hn ﬂ@;ﬁjc

where H; = {x € R" ’ 2 e i 2 (

H = all intervals [i, j| of [n]
A (H) = associahedron Asso(n)
Py = Tamari lattice on binary trees

Sy

= conv {[K(T, i) - (T, 0))icm) ’ T binary tree}

=Hn m L<icicn Hy 5 Stasheff ('63)
- Shnider-Sternberg ('93)

Loday ('04)



GRAPHICAL ZONOTOPE AND GRAPHICAL ASSOCIAHEDRON

H = edges of GG H = tubes of G
A\ (H) = graphical zonotope Zono(G)  /A(H) = graph associahedron Asso(G)

Py = acyclic reorientation poset Py = graph associahedron poset




SIMPLE HYPERGRAPHIC POLYTOPES

OBS. TFAE:
e the hypergraphic fan of H is simplicial
e the hypergraphic polytope A(H) is simple
e the transitive reduction of any acyclic orientation of H is a forest

PROB. Characterize hypergraphs H whose hypergraphic polytope A(H) is simple

not simple



INTERVAL HYPERGRAPHIC POSETS

interval hypergraph I = subset of the set of intervals [z, j] of [n]

Em— ]

—@

—@

—
— —@ o*—
*— —e —
—e — *— o—
*— *— *— —
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SOME INTERVAL HYPERGRAPHIC POLYTOPES

all intervals initial intervals initial and final intervals  nested or disjoint

;/;ﬁ\? / \

= = I\ / PN

= = HXX LN NS
:X? N Y

T T Nl

H [

%

e

associahedron cube freehedron fertilotope
Tamari ('51), Loday ('04) Pitman—Stanley ('02) Saneblidze ('09) Defant ('23)



INTERVAL HYPERGRAPHIC LATTICES

THM. P lattice <= 1 is closed under intersection

Bergeron—P. ('247)

/\ -
X X .
\/ -

lattice

not lattice




DISTRIBUTIVE INTERVAL HYPERGRAPHIC LATTICES

THM. Py distributive lattice <= forall I, J € Tsuchthatl & J, I 2 Jand INJ # &,
the intersection 1 N J is in I and is initial or final in any K e T with INJ C K
Bergeron—P. ('247)

— — P
— o —— o ——— ® [
—
o— — @ o—
\ / o o o
*———
o—— o—
o— o—
o——— o———

distributive not distributive




SEMIDISTRIBUTIVE INTERVAL HYPERGRAPHIC LATTICES

THM. P join semidistributive lattice <= 1 is closed under intersection and for all
], s, S [, ], [u, v'] € Dwith r<s<r'<s', r<t<s'<t', uw<min(s,t), s <u

there is [v,0'] € [ such that v < s and s’ <v' < ¢’ Bergeron—P. ('24%)
—— ] —— ]
— — e — —
'—..: .—._'. '—.._. .—:_. '—:_‘

o— o—
o— @o——
*— *—
o—— o—

semidistributive not join semidistributive




SUMMARY

not a lattice

*—

— > ——
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\ / *~—
*—
*—

—e
 —  r— —
—e

lattice semidistributive lattice  distributive lattice
1 N 4
/\ VIR
x| ﬁ\m N & N VARN
/ / /S X X N tE ot g
LD 558 XX
‘/E} %E} &i\&l><&><§/5gi ti b
07 &7 @ N N K \. /
\ N |/
Y N L

—e

i //\\ .

*—
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— &
—y — . . .
— e . e — e
[EE— P —
- —e

~_ |/ N N /S

PROB. Provide a similar classification for arbitrary hypergraphs H




SUMMARY OF LAST EPISODE
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SUMMARY

permutahedron = conv {[0‘1(2')]2-6[”] | s Gn}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

deformation cone = cone of deformations (under Minkowski sum and dilation)
polyhedral cone parametrized by heights of inequalities (or length of edges)

™~

/
I
I
/
/
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SUMMARY

permutahedron = conv {[0‘1(2')]2-6[”] | s Gn}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

deformation cone = cone of deformations (under Minkowski sum and dilation)
polyhedral cone parametrized by heights of inequalities (or length of edges)

4 families of examples

quotientopes graphical zonotopes nestohedra hypergraphic polytopes
graph associahedra



SHUFFLE OF DEFORMED PERMUTAHEDRA

Chapoton-P., Shuffles of deformed permutahedra,
multiplihedra, constrainahedra, and biassociahedra ('24)



SHUFFLE OF DEFORMED PERMUTAHEDRA

shuffle of P C R™ and Q C R" =

PxQ=PxQ+ Z €, emsj] TR

i€[m],j€[n]



SHUFFLE OF DEFORMED PERMUTAHEDRA

shuffle of P C R™ and Q C R" =

PxQ=PxQ+ » [eien] CR™™

i€[m],j€[n]

EXM. exex---%e = Perm(n)

EXM. Chapoton—P. ('24)
1. graphical zonotopes Ziono(G) x Ziono(H) = Ziono(G ® H)
2. hypergraphic polytopes A(G) x A(H) = A(G ® H)




SHUFFLE OF DEFORMED PERMUTAHEDRA

shuffle of P C R™ and Q C R" =

PxQ=PxQ+ » [eien] CR™™

i€[m],j€[n]

EXM. exex---%e = Perm(n)

EXM. Chapoton—P. ('24)
1. graphical zonotopes Ziono(G) x Ziono(H) = Ziono(G ® H)
2. hypergraphic polytopes A(G) x A(H) = A (G ® H)

PROP. Chapoton-P. (*24)
1.P CR"™and Q C R" defo. perm. = P xQ C R™ defo. perm.

2. % is associative (but not commutative, except if considered up to coordinate swap)
3. x does not preserve simplicity of polytopes

4. x does not preserve lattice property

5. IP has lattice property = P x IPerm(n) has lattice property for any n > 1




SHUFFLE OF DEFORMED PERMUTAHEDRA

(IP, Q)-biposet < 4., = poset on [m + n] defined from
e a P-poset <, and a Q-poset <,

e an ordered partition p of [m + n] with parts alternatively contained in [m| and [n]™™,

by i <pqu 7 iff
e either there is an oriented path from i to j in <, or in <",

e or 7 is in a block lower than j.

YV | Y

‘ VAN VAN

PROP. (IP x QQ)-posets = (IP, QQ)-biposets Chapoton-P. ('24)




MULTIPLIHEDRON

(m, n)-multiplihedron Mul(m,n) = Perm(m) x Asso(n)

vertices of IMul(m,n) = m-painted n-trees

(not simple, lattice property)

; ; 3 3 3 3 3
1 | 3 3
y 2 9 Y 2 1 ] 1 1 1 1
A\ I I ) I I 2 22
0 A m A
7 R A A 7S R A\ A
A A A A
A I A 4 A N A 4
5 FON4s B N L
& &
NG 0 NG &
e X



MULTIPLIHEDRON




CONSTRAINAHEDRON

(m, n)-constrainahedron Constr(m,n) = Asso(m) x Aisso(n)

A\ /N A /5

|||/\ |||/\ /\ H‘/\/\

vertices of Constr(m,n) = (m,n)-cotrees

in bijection with good rectangular bracketings... (connection with colliding particles)

=

=t B B

(not simple, not lattice property)




BIASSOCIAHEDRON

(1, n)-biassociahedron Bias(m,n) = Asso(m) x Asso(n)

vertices of Bias(m,n) = (m, n)-bitrees

Y ‘ Y ‘

o) o) A

(connections to bialgebras up-to-homotopy)

(not simple, not lattice property)

REM. # vertices Constr(m,n) = # vertices Bias(m,n) but

F(Constr(3,3)) = (1,606, 1550, 1384, 498, 60, 1)
F(Bias(3,3)) = (1, 606, 1549, 1382, 497, 60, 1)




APPLICATION 1. PIVOT POLYTOPES OF
PRODUCTS OF SIMPLICES

Black—De Loera—Liitjeharms—Sanyal, The polyhedral geometry of pivot rules and
monotone paths ('23)

Black-Liitjeharms—Sanyal, From linear programming to colliding particles ('24%)
P.—Poullot, Pivot polytopes of products of simplices and shuffles of associahedra ('24")



PIVOT POLYTOPE

linear optimization = maximize linear function ¢ over a polyhedron IP

simplex algorithm = start from any vertex

choose an improving neighbor according to a pivot rule

stop at maximal vertex

max-slope pivot rule wrt generic weight w = chooses the improving neighbor maximizing

the slope on the plane defined by ¢ and w

PROP. Black-De Loera-Liitjeharms—Sanyal ('23)
e max-slope pivot rule is memoryless = behavior encoded by an arborescence A,
e the fibers of w — A, define the pivot fan

'Uot
v P
w 0

~Yatt

C 1 2 3 4 ®) Germain Poullot

~-



PIVOT POLYTOPE

DEF. IP = polytope in R?

pivot polytope II(IP) = polytope whose normal fan is the pivot fan

= polytope encoding arborescences of max-slope pivot rule

Black—-De Loera-Liitjeharms—Sanyal ('23)

EXM. II(J,,,) = Perm(m)

and H(Dn) ~ ASSO(??J) Black—De Loera-Liitjeharms—Sanyal ('23)

® Germain Poullot



PIVOT POLYTOPE OF PRODUCT OF SIMPLICES

THM. Ay Cc R™ ..., A, C R™ full-dimensional simplices P—Poullot ('247)
—>  [I(Ay x--- x A\,) is combinatorially equivalent to Asso(n;) % --- % Asso(n,)

CORO. Black-De Loera-Liitjeharms-Sanyal ('23)  Black-Liitjeharms-Sanyal ('247)  P.~Poullot ('24")
[1(,,) ~ Perm(m)
[1(d,,) ~ Asso(n)
[0, x A,) ~ (m,n)-multiplihedron
L

Ny X \,) >~ (m, n)-constrainahedron




APPLICATION 2: HOCHSCHILD POLYTOPES

P.—Polyakova, Hochschild polytopes ('25)



PAINTED TREES & LIGHTED SHADES

LATTICES

ighted shade

d tree

®) Konstantin Dimopoulos

painte

® Narae Kim



LATTICES: PAINTED TREES & LIGHTED SHADES

=D — N
—Do — DN
[\ — [\] DO— =D

S S XK N

||
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> |

=
XXX X/

2
1

2
2
1 1
2
1

>

i

= -
N X S S

m-painted n-tree = binary tree with

N, XS

m =
n —

T

n nodes and m levels

Chapoton—P. ('24)
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1
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1
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1
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1
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1
2\2
1
1 \\
1

L

O

m-lighted n-shade = partition of [n]

1

2
\ |
2

\

1
2

with m levels

P.—Polyakov

a ('25)



LATTICES: PAINTED TREES & LIGHTED SHADES

m =2

L 1
T >
1
N 1
, . 2 |
EREE ) R ;
>< \ 2/1 >< >< |
N ok [N N
/< 2 2 1 ><1 2 2\
1 1
1 2 1
1 1
1 2
\ ,

oel
) levey
¢ transpo-

sition

1
1
1
2
levy
% transpo-
2
1

sition

m-painted n-tree = binary tree with m-lighted n-shade = partition of [n]

n nodes and m levels with m levels
Chapoton—P. ('24) P.—Polyakova ('25)



LATTICES: PAINTED TREES & LIGHTED SHADES

> 1]
3
U

ri g?lt\

rotation ¥ —?

1
2

2 1
1
1 1
1
1 \\ .
. 2
2
1 21,
1\\ 2
1 \\
1 2‘1
2 2
1\ /
2
2

m-painted n-tree = binary tree with m-lighted n-shade = partition of [n]

n nodes and m levels with m levels
Chapoton—P. ('24) P.—Polyakova ('25)



LATTICES: PAINTED TREES & LIGHTED SHADES

m-painted n-tree = binary tree with m-lighted n-shade = partition of [n]

n nodes and m levels with m levels
Chapoton—P. ('24) P.—Polyakova ('25)



LATTICES: PAINTED TREES & LIGHTED SHADES

XN
S XN

||
>TT

ST

> |

AN

AKX X XS
=S
N X S S

>

22

N, XS

m =
n —

T

2
2

2/
1
1
1><1
1
2 1
1
1\

shadow map = arity sequence on the right branch
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1 1
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meet semilattice morphism, but not lattice morphism

1
2




LATTICES: PAINTED TREES & LIGHTED SHADES

1 1
m =
n —

multiplihedron lattice
Stasheff ('63) — Forcey ('08) — Ardila—Doker ('13)

1
1
1

| /
1

1

1

1
1 /

i 1
. 2
2 1

1
1\1
2 1
2

N

1
3

1

| 1‘1
\\2 \\1
1 2
1 \1\
3‘1
Hochschild lattice

Abad-Crainic—Dherin ('11) — Poliakova ('207)

Chapoton ('20) — Combe (’

21) — Miihle ("22)



LATTICES: PAINTED TREES & LIGHTED SHADES

Tamari lattice boolean lattice
Tamari ('51)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

2
2
1

(m, n)-multiplihedron (m, n)-Hochschild polytope

= shuffle of Perm(m) and Asso(n) = removahedron of Mul(m,n)
= Perm(m) x Asso(n) + Z ez,emﬂ

ielm
Chapoton—P. ('24) P.—Polyakova ('25)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

m = 2
n =2

(m, n)-multiplihedron (m, n)-Hochschild polytope
— (m, n)-multiplihedron lattice — (m, n)-Hochschild lattice

Chapoton—P. ('24) P.—Polyakova ('25)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

(m, n)-multiplihedron (m, n)-Hochschild polytope
—> (m, n)-multiplihedron lattice —> (m, n)-Hochschild lattice

Chapoton—P. ('24) P.—Polyakova ('25)



POLYTOPES: MULTIPLIHEDRON & HOCHSCHILD POLYTOPE

(m, n)-multiplihedron (m, n)-Hochschild polytope

—> (m, n)-multiplihedron lattice —> (m, n)-Hochschild lattice

Chapoton—P. ('24) P.—Polyakova ('25)



PROJECTIONS AND SECTIONS
OF DEFORMED PERMUTAHEDRA




PROJECTIONS AND SECTIONS OF DEFORMED PERMUTAHEDRA

Sometimes, life is unfair...

not all nice combinatorial spheres can be realized as deformed permutahedra
(for instance if some 2-faces are not triangles, squares, pentagons, hexagons...)

then try projections or sections of deformed permutahedra

sections: poset associahedra projections: accordiohedra



SECTIONS: POSET ASSOCIAHEDRA

(21)
Sack, A realization of poset associahedra ('25)
Mantovani—Padrol-P., Acyclonestohedra ('23")

Galashin, P-associahedra
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PIPINGS




TUBINGS




GRAPH ASSOCIAHEDRA

PROP. tubes of G = connected induced subgraphs of GG
tubings of G = colletions of tubes pairwise nested or disjoint and non-adjacent

graph associahedron Asso(G) = )\ 1ipe of ¢ OOT
face lattice of Asso(GG) <— inclusion lattice on tubings of G




SPECIAL GRAPH ASSOCIAHEDRA

s N ?’—@’\ okl
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path associahedron cycle associahedron complete graph associahedron
— associahedron = cyclohedron = permutahedron
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COLLAPSING POSET

P poset
f: P x|0,1] — R with f(p, —) continuous, f(—,t) order preserving, and |f(P,1)| =1

Galashin ('21)



COLLAPSING POSET

P poset
f: P x|0,1] — R with f(p, —) continuous, f(—,t) order preserving, and |f(P,1)| =1
As before, remember collapsing events

(2N D 2l b
K

1

Galashin ('21)



PIPING COMPLEX

P poset
f: P x|0,1] — R with f(p, —) continuous, f(—,t) order preserving, and |f(P,1)| =1

As before, remember collapsing events
3
\

N\
Q~ 5 2l b
‘% ®><Jl

DEF. pipe of P = connected subset of P of size > 2

piping of P = collection Y of pipes of P such that
e pipes are pairwise disjoints or nested
e Fyx acyclic for any X C YV

piping complex of P = simplicial complex of pipings of P

Galashin ('21)




PIPING COMPLEX

DEF. pipe of P = connected subset of P of size > 2

piping of P = collection Y of pipes of P such that
e pipes are pairwise disjoints or nested
e Fyx acyclic for any X C YV

piping complex of P = simplicial complex of pipings of P

X M S D
DM O
M2 Y D .




POSET ASSOCIAHEDRON

DEF. pipe of P = connected subset of P of size > 2

piping of P = collection Y of pipes of P such that
e pipes are pairwise disjoints or nested
e Fyx acyclic for any X C YV

piping complex of P = simplicial complex of pipings of P

P-associahedron = simple polytope whose polar is the piping complex of P

SN IS P
X ow [ <>
N ®§@




POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P
Galashin ('21)

5

|
2/ \3
N/

Figure from Galashin ('21)

QU. Find nice realizations




POSET ASSOCIAHEDRON

THM. P-associahedra can be obtained by truncations of the order polytope of P
Galashin ('21)

5

|
2/ \3
N/

Figure from Galashin ('21)

QU. Find nice realizations Sack ('23)  Mantovani-Padrol-P. ('237)




POSET ASSOCIAHEDRON




POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

Mantovani—Padrol-P. ('237)



POSET ASSOCIAHEDRON

OBS. The acyclic part of the nested complex of L(P) is the piping complex of P

THM. A section of an L(P)-associahedron is a P-associahedron

Mantovani—Padrol-P. ('237)



PROJECTIONS: ACCORDIOHEDRA

Garver-McConville, Oriented flip graphs and noncrossing tree partitions ('167)
Manneville-P., Geometric realizations of the accordion complex ('19)



D,-ACCORDION COMPLEX

2n points of the unit circle labeled counterclockwise by 1., 1., 20, 2, ..., 70, T
Fix a dissection D, of the red hollow polygon

D.-accordion diagonal = diagonal of the blue solid polygon that crosses an accordion of D,

D.-accordion dissection = set of non-crossing D.-accordion diagonals

D.-accordion complex = simplicial complex of D.-accordion dissections

dissection D,  D.-accordion diagonal two maximal D,-accordion dissections



D,-ACCORDION COMPLEX

\ / \ / D,-accordion complex =
simplicial complex of

D.-accordion dissections
Exm: for a triangulation T\,
the T',-accordion complex is

a simplicial associahedron




FLIPS

PROP. The D.-accordion complex is a pseudomanifold:

e pure: any maximal D.-accordion dissection has |D,| diagonals
e thin: for any maximal D.-accordion dissection D, and any d, € D,, there is a
unique 9, # J, such that D, A {.,0.} is again a D.-accordion dissection
Garver-McConville ('167)

increasing flip = flip that changes a X to a Z




D.-ACCORDION LATTICE

@\ increasing flip =
flip that changes a X toa Z

N _
@ D.-accordion poset =
increasing flip poset on
maximal D.-accordion
dissections

/@ E

| Exm: for a comb triangulation T,

~
~ ™~ the T'.-accordion poset is
/ the Tamari lattice

Garver-McConville ('16™)

| : : :
\@ THM. The D.-accordion poset is a lattice



D,-ACCORDIOHEDRON

THM. The D.-accordion complex is the boundary complex of the polar of the
accordiohedron, obtained as a projection of an associahedron. Manneville-P. ('19)




PROJECTIONS OF PROJECTIONS

PROP. If D, C D/, then Asso(D!) is the projection of Asso(D.) on (e;. | d, € D.).

O




THANK YOU



