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COMBINATORIAL GEOMETRIES & GEOMETRIC COMBINATORICS 2025

When? October-November 2025
Where? Centre de Recerca Matematica, Barcelona, Spain

What? Intensive Research Program with
e Oct. 1-3: Recollections on polyhedral geometry and (oriented) matroids
e Oct. 6-17: research school (L. Anderson — C. Benedetti — R. Sanyal — G. Whittle)
e Oct. 20 — Nov. 21: research projects + seminars + visitors
e Nov. 24-28: conference

Why? good math + good food

How?

e full program registration on https://forms.gle/QGfi5XGR1592SMs2A by Feb. 14
e limited support for doctoral /postdoc students

Updates?
e https://www.ub.edu/comb/CGGC25/

e https://forms.gle/JGa79F4h9Xymd6sX8 for general announcements and regis-
tration deadlines


https://forms.gle/QGfi5XGR1592SMs2A
https://www.ub.edu/comb/CGGC25/
https://forms.gle/JGa79F4h9Xymd6sX8

BEYOND PERMUTAHEDRA AND ASSOCIAHEDRA

When? December 1-5, 2025

Where? Centre International de Rencontres Mathématiques, Luminy, France

What?
2 mini courses.
e Nathan Reading
e Martha Yip
5 invited talks
e Bérénice Delcroix-Oger
e Eléonore Faber
e Torsten Miitze
e Frédéric Patras
e Christian Stump

Why? good math + good food + good views

Updates?
e https://conferences.cirm-math.fr/3288.html
e announcement soon


https://conferences.cirm-math.fr/3288.html

BOULES DE PETANQUE & COCHONET

0.50
0.00
0.50
0.00
0.00 0.5q ~0-50
DEF. Pétanque = ... long story ... played with balls (blue) and a cochonet (red).

QU. What is the diameter of the cochonet ? and in dimension d? and in dimension 107




COCHONET PARADOX

0.50
0.00
: 0.00 D.Eﬁ -0.50
dimension d 1 2 3 . 9 10 11
diameter = (v/d — 1)/2 0 0207 0366 ... 1 1.08  1.16

(r(1/2) - (V= 1)/4)"
[(d/2 + 1)

volume =

0 0.0337 0.0257 ... 0.00644 0.00543 0.00463 ...

REM. In dimension > 10, the cochonet is out of the box!!




COCHONET PARADOX

0.50 |
0.00
0.50
050 | 0.00
EC 0.00 o ~0:50

In high dimension, intuition is wrong, computations are correct.



SOME REFERENCES

e Giinter M. Ziegler. Lectures on polytopes.
Vol. 152 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.

e Jiti Matousek. Lectures on discrete geometry.
Vol. 212 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2002.



POLYHEDRAL CONES




CONES

DEF. C C R"” convex cone <= puu+vv € C for all u,v € C and u,v € Ry,

DEF. dimension of C = dimension of its linear span.

DEF. V-cone = convex cone generated by finitely many vectors
= { > ’ [y > 0 for all u € U} for some finite U'.
uclU
DEF. ‘H-cone = intersection of finitely many linear halfspaces

:{ueR”‘ (u\v)SOforallvEV} for some finite V.




V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone <= H-cone.

remark: different proofs are possible.

Classical algorithmic proof = Fourier-Motzkin elimination procedure

(projections on coordinate hyperplanes).
Here, induction + polarity...



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone <= H-cone.

proof: H-cone = V-cone by induction on the dimension.

Consider an H-cone C = {u c R" ‘ (u]v)<0forallwve V}.

It is clearly a V-cone if dim(C) = 0 or if V' does not contain two independent vectors.
Otherwise, there exist v,v" in Vandw e R"st (w|v ) <0and (w|v") >0
(consider w = (v |[v v+ (v |v)v—(v]|v)v —(v|v)V)

For v € V, define C, = C N v

By induction, the H-cone C,, is the V-cone generated by some finite set U,,.

We claim that the H-cone C is the V-cone generated by the finite set U = .y, Uo.

Let u € C.
If u is on the boundary of C, it belongs to some C, = R-,U, C R-U. X

Otherwise, (u + Rw) N C is a segment [u™, u™]. —
Thereisv , v e Vstut € Cyr andu™ € C,-. N\ Q\\’\Z\

Thus u € Rzo{u+, ’U,_} - RZO(UU+ U Uv‘) C RZ()U.



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone <= H-cone.

proof: V-cone = H-cone by polarity.

DEF. linear polar U° ={v e R" | (u | v ) <0 for all u € U}.

PROP. U° is a closed convex cone. If U is convex and closed,

then (U°)° = U.

PROP. The polar of a V-cone is an H-cone.




V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone <= H-cone.

proof: V-cone = H-cone by polarity.

Consider an V-cone C.
lts polar C° is an H-cone, thus a V-cone according to the first part of the proof.

Therefore, C = (C°)° is an H-cone.

DEF. linear polar U° ={v e R" | (u | v ) <0 for all u € U}.

PROP. U° is a closed convex cone. If U is convex and closed,

then (U°)° = U.

PROP. The polar of a V-cone is an H-cone.




INTERSECTING A CONE BY A HYPERPLANE

DEF. polyhedral cone = V-cone = H-cone.

DEF. polyhedron = intersection of a polyhedral cone by an affine hyperplane.

bounded
= polytope

undounded
= polytope + recession cone



POLYTOPES




POLYTOPES

DEF. IP C R" convex <— pux+vy € Pforallz,y € P and u,v € Ry with u+v = 1.

DEF. dimension of IP = dimension of its affine span.

Svv

DEF. V-polytope = convex hull of finite point set in R”

:{ > ,uwa:| > ,umzland,umZOforallazeX} for a finite X.
reX reX

DEF. H-polytope = bounded intersection of finitely many affine halfspaces of R”
= {wER“| <:B|y>§cyfora||y€Y} for a finite Y.




V-POLYTOPES VS H-POLYTOPES

THM. (Minkowski-Weyl for polytopes) V-polytope <= H-polytope.

proof: embed the affine space R” into the linear space R"!.

DEF. polytope = V-polytope = H-polytope.




CLASSICAL POLYTOPES

DEF. d-simplex = convex hull of d + 1 affinely independent points.

standard d-simplex A; = conv{ey,..., ez 1}
= {iEERdH ’ > xi=1landx; >0 forallic [d+1]}_
i€[d+1]

DEF. d-cube [J; = conv({£1}9) = {m c R4 ’ —1 <z; <1 foralliée [d]}

DEF. d-cross-pol. Oy =conv{+e; | i € [d]} = {ar: c R4 ‘ > g <1forall e e {:I:l}d}.
i€ld]




AFFINE POLARITY

DEF. linear polar U° = {v e R ‘ (u]v)<0forall ue U}.

DEF. affine polar X°* ={y e R" | (x |y ) <1 for all x € X}.

(z|y) <1 \X/

PROP. X is closed and convex, and bounded iff 0 € int(X). If X is closed, convex
and contains 0, then (X°)° = X.




POLAR POLYTOPE

DEF. affine polar X°* ={y e R" | (x |y ) <1 forall x € X}.

PROP. Assume 0 € int(IP).
lf P=cowv(X)={xecR"|(x|y)<l1lforallyeY},
then P =conv(Y)={y e R" | (x |y ) <1 forall z € X}.

EXM. d-cube (; = conv({£1}9) = {a: c R4 ‘ —1 <ux; <1forallie [d]}

d-cross-pol. Oy = conv{+te; | i € [d]} = {:13 c R ’ > g <1forall ee {il}d}.
i€ld]




EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph.
matching on G = subset of E with at most one edge incident to each vertex.

matching polytope IM(G) = convex hull of the characteristic vectors x;; € RE of all

matchings M on G.

QU. Consider the polytope IN(G) defined by
x. >0 forallee F, and ergl for all v e V.

EDV

e Show that M(G) C IN(G).
e Give an example where this inclusion is strict.

e Show that M(G) = IN(G) when G is bipartite.




EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph.
matching on G = subset of E with at most one edge incident to each vertex.
matching polytope IM(G) = convex hull of the characteristic vectors x;; € RE of all

matchings M on G.

PROP. The matching polytope IM((G) is contained in the polytope IN(G) defined by
x. >0 forallee F, and ergl forallv eV,

€DV

and IM(G) = IN(G) when G is bipartite.

proof: M(G) C IN(G) as (xm)e > 0and > _ (xam)e <1 (at most one edge per vertex).
Strict inclusion in general: A

M(A) — COHV{O, €1, €9, 63}
IN(A) = conv{0, ey, e9, €3, (€1 + es + e3)/2}




EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph.
matching on G = subset of E with at most one edge incident to each vertex.
matching polytope IM(G) = convex hull of the characteristic vectors x;; € RE of all

matchings M on G.

PROP. The matching polytope IM((G) is contained in the polytope IN(G) defined by
x. >0 forallee F, and ergl for all v € V,

€DV

and IM(G) = IN(G) when G is bipartite.

proof: M(G) C IN(G) as (xar)e > 0and > _ (xar)e <1 (at most one edge per vertex).
Assume now that G is bipartite, so that all its cycles are even.

Forx e N(G), let U(x)={ec F |0 < x. < 1}.

It U(x) # &, it contains a cycle C' = ey, ..., ey, which is even since G is bipartite.
Let \=min{x, |ec C}U{l—x.|ec C}.

Then x is in the middle of  + Ay and & — Ay, which both belong to IN(G).
Therefore, all vertices of IN(G) belong to {0,1}¥, and thus M(G) = IN(G).



OPERATIONS ON POLYTOPES




CARTESIAN PRODUCT

DEF. X C R” and X’ C R".
Cartesian product X x X' = {(z,z’) | ¢ € X and 2’ € X'} C R**""

PROP. The Cartesian product IP x IP” of two polytopes IP and IP’ is a polytope. Moreover
P x P" = conv(X x X’)

- {(az, z') € R

((x, ') | (y,0)) <cyforallyeY }
((x,2') | (0,y")) <cyforally €Y’

where P = conv(X)={x e R"|(xz |y ) <c¢, forally e Y}.
and P’ = conv(X’) = {:B’ ceR" | (a'|y) < ¢, for all y' € Y’}.

exm: A
cube: Oy = [—1,1)¢
prism: Prism(P) = [—1,1] x P X /\ —




DIRECT SUM

DEF. P ¢ R” and P’ ¢ R" two polytopes with 0 € int P and 0 € int PP
direct sum P @ P/ = conv ( {(x,0) | x e PYU{(0,2") | =’ € ]P’}) c R+

PROP. P @ IP' = conv({(a:,O) lze X}U{(0,2)) |z’ c X’})
- {($a$’> c R+ ‘ ((x,2") | (y,y))<1forallyeY and ¢y’ € Y’}

where P = conv(X)={zx e R"|(x |y ) <l1forally e Y}
and IP" = conv(X’) = {a’ € RY | (x| y') <1forall y € Y’}

exXxm:

cross-poly.: Qg =[-1,1]@--- @ [-1,1]
bipyramid: Bipyr(P) = [~1,1] @ P D =

PROP. (P @ IP')° = P® x P,




JOIN

DEF. P ¢ R” and P’ ¢ R" two polytopes.
join P« IP" = convex hull of P and [P’ in independent affine subspaces
= conv ({(a:,O, D xePlu{(0,x,—1)|x € IP’}) C Rr++1

exm:

simplex: Ay = A; x Ny,
pyramid: Pyr(IP) = point % P
k-fold pyramid: Pyr.(IP) = Ap_1 x P

PN




MINKOWSKI SUM

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

PROP. The Minkowski sum P + IP’ of two polytopes IP and IP’ is a polytope.

A




MINKOWSKI SUM

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

PROP. The Minkowski sum P + IP’ of two polytopes IP and IP’ is a polytope.

-adih




MINKOWSKI SUM

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

PROP. The Minkowski sum P + IP’ of two polytopes IP and IP’ is a polytope.

=i




MINKOWSKI SUM

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

PROP. The Minkowski sum IP + IP’ is the image of the Cartesian product IP x P’ under
the affine projection (x,2’) — x + .




MINKOWSKI SUM

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

PROP. For any —1 < X\ < 1, the section of the Cayley polytope
Cay(P,P’) = conv ({(z,-1) |z e PYU{(z',1) | 2’ € P’} ) Cc R™"

1—A 1+ A
by the hyperplane {az c R+t ‘ Tpil = )\} is the Minkowski sum — P+ JQF TP

m-A- @




ZONOTOPE

DEF. X, X’ C R" (same spacel).
Minkowski sum X + X'={z+ ' |z € X and '’ € X'} C R".

DEF. zonotope = Minkowki sum of segments

= projection of a cube [,

S  ——

/ yd

¢




FACES




FACES

DEF. face of a polytope P =
e either the polytope P itself,
e or the intersection of IP with a supporting hyperplane of IP,
e or the empty set.

NOT. F(IP) = {faces of P} and Fi.(IP) = {k-dimensional faces of IP}.

j | ./i_

| L~

vertices = Fy(IP) edges = F(IP) ridges = Fy_o(IP) facets = Fy;_1(IP)




EXM: FACES OF CLASSICAL POLYTOPES

14

101

A 111

PROP. The faces of the d-simplex A, the d-cube [1; and the d-cross-polytope ¢, are:
e d-simplex Ay:
subset [ of [d+ 1] <+— face A;=convie; |1 € T}.

e d-cube [;: the empty face @ and
word w in {—1,0,1}¢ <— face O, = {x € Oy | wi(x; — w;) = 0 for all i € [d]}.

e d-cross-polytope {,: the d-cross-polytope ¢, itself and
word w in {—1,0,1}¢ <+— face A, = conv{w;e; | i € [d] st w; # 0}.




FACE PROPERTIES

PROP. For a polytope P,
e P = conv(Fy(IP)) (a polytope is the convex hull of its vertices),
e P =conv(X) = F(P)C X (all vertices of a polytope are extreme).

PROP. For a face IF of a polytope PP,
e I' is a polytope,
o Fo(IF) =Fy(P)N T,
o F(I)={G e F(P)| G CF} C F(P).

PROP. F(IP) is stable by intersection: ', G € F(P) = F NG € F(P).

proof ideas: separation theorems, finding a suitable supporting hyperplane, ...




LATTICE

DEF. lattice = partially ordered set (£, <) where any subset X C £ admits

e a meet /\ X = greatest lower bound
AX < Xforall XeX and Y <X forall X € X impliesY < AX.

e a join \/ X = least upper bound
X< AXforal XeX and X <Y forall X € X impliess AX <Y.

EXM. boolean lattice B(Y) = subsets of Y ordered by inclusion

123 - 1234\
/N
/ \ 123 124 134 234

I =
\@/ \\@//
Ax=(1x ad \x=[]x

XeX XeX




FACE LATTICE

PROP. The inclusion poset F(IP) of faces of IP
e is a graded lattice (with rank function rank(IF) = dim(IF) + 1),

e is atomic (every face is the join of its vertices) and coatomic (every face is the meet

of the facets containing it),
e every interval of F(IP) is the face lattice of a polytope,

e has the diamond property (every interval of rank 2 has 4 elements).

N
N

|

<




EXM: FACE LATTICES OF SIMPLICES

remark:

e any subset I C |d + 1] corresponds to a face A; = conv{e; | i € I} of Ay,
o/ CJ <— A;C A,

The face lattice of /A4 is thus the boolean lattice on subsets of [d + 1]:

123 1234
/ \ /123 ﬁ/ \134\ 234\
T T TN

12 13 14 23 24 34
X X T

2 3 4

\@/ 1\\ //

%)



POLARITY AND FACES

Assume 0 € int(IP).

DEF. A face IF' of IP defines a polar face °* = {y e P°| (x |y ) =1 for all x € IF'}.

PROP. The map IF — IF'° is a lattice anti-isomorphism F(P) — F(IP°).

S em@?}

W




OPERATIONS AND FACES

A X

P x IP’ P e

PROP. Define F,(IP) = F(P) . {@} and F*(P) = F(P) ~. {IP}. Then
F(PxP)={F x F' | F € F(P) and I’ € F,(P")}
(IP@IP’) {F«F'|F e F(P)and F' € F*(P")}
FP+«P)={FxF|F e F(P)and ' € F(P')}

remark: the combinatorial structure of IP + IP’ depends on the geometry of IP and IP’.

Nn=/N\ A=)




SIMPLE OR SIMPLICIAL POLYTOPES

DEF. A d-polytope P is
e simplicial if its vertices are in general position,

e simple if its facets are in general position.

simple and simple but not simple but
simplicial not simplicial simplicial

PROP. P issimple <= IP°is simplicial.

QU. Show that a simple and simplicial polytope is a polygon or a simplex.




SIMPLE OR SIMPLICIAL POLYTOPES

DEF. A d-polytope P is
e simplicial if each facet contains d vertices (ie. is a simplex),

e simple if each vertex is contained in d edges (or equiv. in d facets).

simple and simple but not simple but
simplicial not simplicial simplicial

PROP. P issimple <= IP°is simplicial.

QU. Show that a simple and simplicial polytope is a polygon or a simplex.




SIMPLE OR SIMPLICIAL POLYTOPE OPERATIONS

P x IP’ P o P P * IP’
PROP. [P and IP’ simple = IP x P’ simple
IP and P’ simplicial <= P & P’ simplicial

P and P’ simplices <= P % P’ simple (or simplicial)




FANS




FAN

DEF. fan F = collection of polyhedral cones st

e closed by faces: if C € F and (' is a face of C, then C' € F,
e intersecting properly: if C,C’ € F, the intersection CN ' is a face of C and C'.

>

<




FACE FAN

DEF. IP polytope with 0 € int(IP). I face of IP.
face cone of I' = cone R (I generated by I
face fan of IP = collection of face cones of all faces of IP.




NORMAL FAN

DEF. IP polytope. I face of IP.
normal cone of I' = cone generated by outer normal vectors to facets of IP containing It'.

normal fan of IP = collection of normal cones of all faces of IP.




FACE FAN VS NORMAL FAN

PROP. If 0 € int(IP), then the face fan of IP coincides with the normal fan of IP°.




NORMAL FANS AND POLYTOPE OPERATIONS

DEF. direct sum F@o F ={Cx U |Ce Fand C' € F'}

PROP. normal fan of IP x IP’ = direct sum of normal fans of IP and IP’.

X =

DEF. common refinement FAF = {CNC' |C e F and C € F'}

PROP. normal fan of IP + P’ = common refinement of normal fans of IP and IP’.

-l




NORMAL FANS OF ZONOTOPES

DEF. common refinement FAF = {CNC' |C e F and C € F'}

PROP. normal fan of IP + P’ = common refinement of normal fans of IP and IP’.

PROP. normal fans of zonotopes <= fans defined by hyperplane arrangements.




F-VECTOR & EULER RELATION




F-VECTOR & F-POLYNOMIAL

DEF. For a d-polytope PP,
o fi(IP) = number of i-faces of PP,

e f-vector f(IP) = (fO(IP) ..... fd(IP)),
e f-polynomial f(P,x) = Z?:o fi(IP) z*.

— 1

Ll

f(O3) =8+ 122+ 62* + a°

)

<




F-VECTOR & F-POLYNOMIAL

In fact, it is convenient to define

and to consider

and



EXM: F-VECTOR OF CLASSICAL POLYTOPES

14
101

PROP. The f-vectors and F-polynomials of the d-simplex A, the d-cube [J; and the
d-cross-polytope {4 are given by

fillg) = (Zl_—:__ 11> fi(ldg) = (f) =i fi(Oa) = (Z i 1) 9i+1

F(Apz)=(z+1)™ FOpz)=1+z(x+2)* F(Ouz)=a""+ 2z +1)

REM. In other words,
F(Ng, z) = (z+ 1" f(Og,x) = (x4 2)° f(Ou,2) = 22+ 1)°




EXM: F-VECTOR & POLARITY

PROP. F(P,x) = 29T F(IP°, 1/x)

proof: ' — IF'® anti-isomorphism, thus f;(IP) = f;_;,_1(IP°), thus F;(IP) = F;,1_;(IP°).

101

111

remark: sanity check on classical polytopes

FOpa)=1+a(z+2)"  FOuo)=2™+@2e+1)"  F(Agpa)=(@+1)"




EXM: F-VECTORS & POLYTOPE OPERATIONS

P x P’ P o P P * IP’

PROP. The f-vectors and f-polynomials of the Cartesian product IP x P, the direct
sum IP @ IP’ and the join IP x P’ are given by

f<]P X ]Plvx> — f(Iva> ' f(]P/,QZ>
f(IP@IP/7I> — f(IP,SC) ' f(IP/,[E‘>
F(P+P. 2) = F(P,z) - F(P, )

remark: sanity check on classical polytopes

Sa, ) = (z+ Q)d f(<>d, r) = 2z + 1)d F(Ng,x) = (z+ 1)d+1




HANNER POLYTOPES

DEF. Hanner polytope = either the segment I = |—1,1] or a Cartesian product or

direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:
e d = 1: interval I,
ed=2:square [ [ ~ 1 X1,
o d =23 cube I3 =1 x I x I and cross-polytope I®3=T @1 DI,
o d = 4: cube I**, cross-polytope I®*, prism over an octahedron I3 x I and bipyra-
mid over a cube I3 @ I.

/]
//\\
(

Schlegel diagrams...)




HANNER POLYTOPES

DEF. Hanner polytope = either the segment I = |—1,1] or a Cartesian product or
direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:
e d = 1: interval I,
ed=2:square [ [ ~ 1 X1,
o d=23: cube I**=1 x I x I and cross-polytope I =T @I ® I,
o d = 4: cube I**, cross-polytope I®*, prism over an octahedron I3 x I and bipyra-
mid over a cube I3 @ I.

REM. The Hanner polytope P:=(I x I x I) @ (I x I x I) cannot be
e a bipyramid: it has 16 vertices each of degree 11,
e a prism: it has 36 facets each of degree 8.




3P CONJECTURE

DEF. Hanner polytope = either the segment I = |—1,1] or a Cartesian product or

direct sum of Hanner polytopes.

PROP. For any d-dimensional Hanner polytope H,

Z fi(H) =3

proof: S°¢  f,(H) = f(H,1) = f(IH, 1) together with
FPxP z)=f(P,z) f(P,z) and f(P®P, z)=f(P,z)- f(P, z).

CONJ. (Kalai's 37 conjecture) If P is centrally symmetric (meaning P = —IP), then

with equality if and only if IP is a Hanner polytope.




EULER RELATION

DEF. Euler characteristic x(IP) = Zfzo(—l)i fi(P) = f(IP,—1).

PROP. For any polytope IP and hyperplane H,

X(P) = x(PT) 4+ x(P7) — x(P°).
where PT=PNnH" P =PNnH and P°=PnNH.

PROP. For any polytopes IP, () C R" st P U Q) is a polytope,
X(PUQ)+x(PNQ)=x(P)+x(Q)

remark: These conditions define weak valuations and strong valuations.

For polytopes, any weak valuation is a strong valuation.
Exm: indicator function, volume, number of integer points, etc.




EULER RELATION

DEF. Euler characteristic x(IP) = Zfzo(—l)i fi(P) = f(IP,—1).

THM. (Euler relation) X(P) = fo(P) — f1(P) + -+ (=1)¢ fy(IP) = 1.

proof: Induction on the dimension.



EULER RELATION

DEF. Euler characteristic y(IP) = ijo(—l)i fi(lP) = f(IP,—1).

THM. (Euler relation) X(P) = fo(P) — fi(P) + -+ - + (=1)? fy(IP) = 1.

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

x(Cay(IP, R)) = x(P) + x(R) + (=1) - x(Q)
—1+1-1=1




EULER RELATION

DEF. Euler characteristic y(IP) = Zfzo(—l)i fi(lP) = f(IP,—1).

THM. (Euler relation) X(P) = fo(P) — fi(P) + -+ - + (=1)? fy(IP) = 1.

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

x(Cay(IP, R)) = x(P) + x(R) + (=1) - x(Q)
—1+1-1=1

2. Choose a Morse function ¢,
slice the polytope IP into Cayley polytopes,
and apply the valuation property:

X(P) = x(Po) — x(51) + - - — x(5x) + x(Pr)
—1—1+4---—1+1=1




EULER RELATION

DEF. Euler characteristic x(IP) = Zfzo(—l)i fi(P) = f(IP,—1).

THM. (Euler relation) x(P) = fo(P) — fi(P) +--- + (=) f4(P) =

PROP. Let P, ; = Pyr*'(00;) for i € [d]. The f-vectors f(IP; ) are affinely independent.

proof: induction on the dimension d.
Affine dependance among f-vectors <— affine dependance among F-polynomials.

IPi’d = Dz k Ad—z’ — F(IPZ"C[, .I') = F(DZ, .I') . F(Ad_i, I‘) = <1 + .CE'(.”L‘ + 2)2) . (I’ + 1)d_i+1.
d
Assume 0 =) \; F(IP; 4,x). Two cases:

i=0 d—1
oif \y=0,then0=> N F(P;q,2)=(x Z)\ F(P;4-1,x) and induction.
1=0 d 1

14+ z(z+2)) - (z+1) = az+1 Z)\/)\d +a(r+2)) - (x+ 1)t

a contradiction since —1 is a simple root on the left and a double root on the right.




EULER RELATION

DEF. Euler characteristic x(IP) = Zfzo(—l)i fi(P) = f(IP,—1).

THM. (Euler relation) X(P) = fo(P) — f1(P) + -+ (=1)¢ fy(IP) = 1.

PROP. Let P, ; = Pyr*'(00;) for i € [d]. The f-vectors f(IP; ) are affinely independent.

CORO. The Euler relation is the only relation among f-vectors of general polytopes.




F-VECTORS OF 3-POLYTOPES

QU. Describe the effect on the f-vector of the following (polar) operations:
e simple vertex truncation: cut a vertex whose vertex figure is a simplex,

e simplicial facet stacking: stack a vertex on a facet which is a simplex.

QU. What is the f-vector of a pyramid over a p-gon?

QU. Prove that the f-vectors of 3-polytopes are the integer vectors ( fy, fi1, f2, 1) st

Jo— it f2=2 fo<2fs —4 and fo < 2fy — 4.




F-VECTORS OF 3-POLYTOPES

THM. The f-vectors of 3-polytopes are the integer vectors ( fy, fi1, f2,1) st

Jo— i+ fa=2 Jo<2fy—4 and fo < 2fy — 4.

proof: For one direction, combine the inequalities

e fo — f1+ fo =2 (Euler relation),
e 2f1 > 3fy (every vertex is contained in at least 3 edges, every edge contains 2 vertices),
e 2f1 > 3f, (every face contains at least 3 edges, every edge is contained in 2 faces).

fa=2fy—4

2 simplicial 3-polytopes

Jo=2fr—4
simple 3-polytopes

A\ 4

fo




F-VECTORS OF 3-POLYTOPES

THM. The f-vectors of 3-polytopes are the integer vectors ( fy, fi1, f2,1) st

Jo— i+ fa=2 Jo<2fy—4 and fo < 2fy — 4.

proof: For the other direction, observe that
e the f-vector of a pyramid over a p-gonis (p+ 1,2p,p+ 1, 1),
e a simple vertex truncation adds (2,3,1,0) to the f-vector,
e a simplicial facet stacking adds (1, 3,2,0) to the f-vector.

fo=2f—4
2 simplicial 3-polytopes

Jo=2f>—4




H-VECTOR & DEHN-SOMMERVILLE RELATIONS




H-VECTOR & H-POLYNOMIAL

DEF. A d-polytope is simple if each vertex is contained in d facets, or equiv. d edges.

DEF. PP = simple d-polytope,
¢ = Morse function (¢(u) # ¢(v) for any edge (u,v) of IP)
Orient the edges of IP according to ¢ and define

e h;(IP) = number of vertices of I with indegree j,

o h-vector h(IP) = (ho(P), ..., ha(P)),

e h-polynomial h(IP,z) = Z;l:o hi(IP) 2.
3
2
1 9 h(O3) =143z + 32 + 2°
1




EXM: F-VECTOR OF CLASSICAL POLYTOPES

; 9 3
) 1 4
1 2
1 \
=0 0 —

PROP. The h-vectors and h-polynomials of the d-simplex A\; and the d-cube [, are

given by
byl 5d) = 100 = ()
d CCd_H 1 d d .
h(Ng,x) = Zx] D h(Ug, z) = Z (]) r) = (z+1)°




F-VECTOR VS H-VECTOR

THM. The f-vector and h-vector of any simple d-polytope IP are related by
d . d .
] )
(IP) = h;(IP d h:(IP) = —1)"™ (P
@) =3 ()m®r et ne)= (-1 ()5
]: 1=

and the f-polynomial and h-polynomial are related by
f(P,x) =h(P,z+1) and h(lP,z) = f(P,x —1).

remark: sanity check on classical polytopes

(z+ 1)t -1
T

f(Dg, ) = = h(Agx+1) and  f(Og2) = (z+2)" = h(0g, z + 1)




F-VECTOR VS H-VECTOR

THM. The f-vector and h-vector of any simple d-polytope IP are related by
d . d
(P) — AN (P = 1)+
@)=Y (D@ and )= 30 () ey
j=0 1=0
and the f-polynomial and h-polynomial are related by
f(P,x) =h(P,z+1) and h(lP,x) = f(IP,x —1).

proof: double counting the set S(i, ¢) of pairs (v, IF') where IF' is an i-face of P and v is
the ¢-maximal vertex of I

SIRECED o (B (I

FeF; (P veFo(P 7=0

This implies all other relations since

d , d :
LEM. fi:z (“?)h]- — f(x)=hlz+1) <= hj:Z(_lyﬂ' (;)fz

7
=0 i=0




F-VECTOR VS H-VECTOR

Az +1) = hylz+ 1) flz—1) =) filx—1)
d N _ LN e
Zoh];(l>$ ;fzjzo(])( 1)
=) (y: (”Z) hj) z' - (Z( 1) (Z)fz> x’
ZO = j;O 1=0
_ fzxz _ f(ﬂf) = Z hj.il?] = h([l?)




DEHN-SOMMERVILLE RELATIONS

THM. (Dehn-Sommerville relations)
The h-vector of a simple d-polytope IP is symmetric:

hi(P) = hg_;(IP) forall 0 <75 <d.

In terms of f-vectors,
d . d

Z(—l)iﬂ' (;) fi(P) = Z (_1>d+i—j (d i ]) fi(IP) forall 0 < 75 <d.

i=j i=d—j

proof: consider the Morse functions ¢ and —¢ ...
A degree with ¢-indegree j has (—¢)-indegree d — ;.

remark: for 7 =0, ho(IP) = hy(IP) is the Euler relation.



DEHN-SOMMERVILLE RELATIONS

THM. (Dehn-Sommerville relations)
The h-vector of a simple d-polytope IP is symmetric:

hi(P) = hg_;(IP) forall 0 <75 <d.

In terms of f-vectors,

Z(—l)iﬂ' (;) fi(P) = Z (_1>d+i—j (d i ]) fi(IP) forall 0 < 75 <d.

PROP. The f-vectors f(Cycy ;) fori € [|d/2] + 1] are affinely independent.

CORO. The Dehn-Sommerville relations are the only relations among f-vectors of simple
polytopes.




MANY FACES: CYCLIC POLYTOPES




MOMENT CURVE & CYCLIC POLYTOPES

DEF. moment curve = curve parametrized by jiq: ¢t +— (¢,12,...,t%) € R
cyclic polytope Cyc,(n) = conv {u4(t;) | i € [n|} for arbitrary reals t; < --- < t,,.

exm: two views of Cycs(9)

]<y

X

remark: we will see later that the combinatorics of Cyc,(n) is independentof t; < --- < t,.




CYCLIC POLYTOPES ARE NEIGHBORLY

DEF. moment curve = curve parametrized by jiq: ¢t +— (¢,12,...,t%) € R
cyclic polytope Cyc,(n) = conv{puq(t;) | i € [n]} for arbitrary reals t; < --- < t,,.

THM. The cyclic polytope Cycy(n) is
e simplicial: all facets are simplices,

e neighborly: all j-subsets of vertices define a (j — 1)-face of Cycy(n) for j < |d/2].

proof: use polynomials!

o If f1g(s1), ..., mi(sq4e1) belong to an affine hyperplane Zie[d] a; x; = —op, then sy, ..., sq4q
are all roots of the polynomial Z?:o a; t'. A contradiction.

e Forj < |d/2] and sy,...,s; € {t1,...,t,}, the polynomial Z?:o ait' = [Tt - s;)?
is non-negative and vanishes on sy,...,s;. Thus the hyperplane Zie[d] ;T = —Q
supports a face of Cyc,(n) with vertices p4(s1), ..., pa(s;).



H-VECTORS OF POLAR CYCLIC POLYTOPES

CORO. The polar of the cyclic polytope Cyc,(n)® is simple and its h-vector is given by
—d+j—1 d —j—1 d
hj:(n ;,L] )foerbJ and hi:(ndi]’ )forj>bJ.

n

proof: Cyc,(n) is neighborly —- fi(@ycd(n)) = ( ) for i < |d/2]

n

— fi(Cycd(n)Q) = (d B z) for i > [d/2].

[/

Therefore
Y2 A n—j—1 |4
(o) =30 (O (") = (10 ) wae s e
— ha_;( Cycy(n)®) = (” - dj,j - 1) ifj < EJ

For (%), check that

e it holds when j =0 and j = d, and
e if it holds for (j,d) and (j + 1,d) then it holds for (7 + 1,d + 1).



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen) For any d-polytope P with n vertices:
fi(P) < fi(Cycy(n)).

remark:

o clear for i < |d/2] since f;(Cycy(n)) = (Zfl)
e equivalent to polar version f;(IP) < f;(Cycy(n)®) for any d-polytope IP with n facets,
e enough to prove it for simplicial /simple polytopes,

e thus implied by h-vector version:

THM. (Upper Bound Theorem, McMullen)  For any simple d-polytope IP with n facets:

hi(P) < (““”_’_1) for j < EJ and 1 (P) < (”;ij‘j for j > EJ |

J




UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen)  For any simple d-polytope P with n facets:

n—d+j—1 , d n—j—1 _ d
(P) < < |= (P) < —.
h;(P) < ( j ) for 7 < {2J and h;(PP) < ( Q- ) for 7 > {QJ

proof:

L. hy(F) < hy(P) for F € F;_1(PP)
¢ obtained by perturbation of the inner normal of I
then indegp(v) = indegp(v) for all v € I




UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen)  For any simple d-polytope P with n facets:

n—d+j—1 , d n—j—1 _ d
(P) < < |= (P) < —.
h;(P) < ( j ) for 7 < {2J and h;(PP) < ( Q- ) for 7 > {QJ

proof:

L. hy(F) < hy(P) for F € F;_1(PP)
¢ obtained by perturbation of the inner normal of I
then indegp(v) = indegp(v) for all v € I
2. Y h(IF)=(d—9) h(P)+ (i 4+ 1) hi 1 (P)
FeF; 1(P)
let v € IF, and e theedge of Pstvee ¢ IF
indegp(v) =4 and e leaving v, or

then ind =1 &= { |
indegp(v) =1 indegp(v) =i+ 1 and e entering v.



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen)  For any simple d-polytope P with n facets:
n—d+j—1 , d n—j—1 _ d

(P) < < |= (P) < -
h;(P) < ( j ) for 7 < {2J and h;(PP) < ( Q- ) for 7 > {QJ

proof:

L. hy(F) < hy(P) for F € F;_1(PP)
¢ obtained by perturbation of the inner normal of I
then indegp(v) = indegp(v) for all v € I
2. Y h(IF)=(d—9) h(P)+ (i 4+ 1) hi 1 (P)
FeF; 1(P)
let v € IF, and e theedge of Pstvee ¢ IF
indegp(v) =4 and e leaving v, or

then ind =1 &= { |
indegp(v) =1 indegp(v) =i+ 1 and e entering v.

n+d-—1

(IP).
1+ 1 hi(l)

142 = (d=) h(P)+(+1) hin(P) < nhi(P) =  hi(P) <

and induction...



GALE'S EVENNESS CRITERION

DEF. For I C[n]={1,...,n}, define
e block of I = intervals of I,

e even block of I = block of I of even size,

e internal block of I = block of I that does not contain 1 or n.

THM. (Gale's evenness criterion) For a d-subset I of [n],
conv {pq(t;) | i € I} is a facet of Cycy(n) <= all internal blocks of I are even.

exm: The facets Cycy(n) correspond to {i,i+ 1,n} and {1,7+ 1,7+ 2} for i € [n — 2.




GALE'S EVENNESS CRITERION

DEF. For I C[n]={1,...,n}, define
e block of I = maximal intervals of I,
e even block of I = block of I of even size,
e internal block of I = block of I that does not contain 1 or n.

THM. (Gale's evenness criterion) For a d-subset I of [n],
conv {pq(t;) | i € I} is a facet of Cycy(n) <= all internal blocks of I are even.

proof: For any I = {iy,...,iq} C [n] and k € [n], the position of j,(t;) with respect to
the hyperplane IH containing p4(t;,), - - ., a(ti,) is given by the sign of the Vandermonde
determinant

1.1 1]
ti ...t t

det | = T -t ] ).
e 1<p<q<d 1<p<d
ot

which is 0 if £ € I and —1 to the parity of the number of p € [d] such that ¢, > k.
Therefore, all points i4(t)) lie on the same side of I iff all internal blocks of I are even.



GALE'S EVENNESS CRITERION

THM. (Gale's evenness criterion) For a d-subset I of [n],
conv {uq(t;) | © € I'} is a facet of Cycy(n) <= all internal blocks of I are even.

CORO. Cycy(n) is neighborly and independent of the choice of t; < --- < t,,.

proof:

e neighborly since for any << [d/2], any j-subset can be completed into a d-subset
satisfying Gale's evenness criterion (complete all odd blocks and add the remaining
elements at the end).

e independent of the choice of t; < --- < ¢, since Gale's evenness criterion tells the
vertices-facets incidences, which determine the whole combinatorics.



GALE'S EVENNESS CRITERION

THM. (Gale's evenness criterion) For a d-subset I of [n],
conv {uq(t;) | © € I'} is a facet of Cycy(n) <= all internal blocks of I are even.

CORO. Cycy(n) is neighborly and independent of the choice of t; < --- < t,,.

CORO. fy1(Cycyln)) = (n IQJH> + <n N Ed;_lJ[TW)

proof: number of 2k-subsets of [n]| where all blocks are even = (”_k)

k
Ol I NON N N N NONON I ) <—> (ON NON N NONON
Then case analysis:
1 in an odd block otherwise
n—2— 42 n—1-—%41
n in an odd block | d even ( 0 2 ) d odd ( i 2 )
2 2

14l _d
otherwise d odd (n i 2 ) d even (n ; 2)
2



FEW FACES: STACKED POLYTOPES




STACKING OVER A FACET

DEF. stacking over a facet I of IP = constructing conv(IP U {p}) where p is beyond F
but beneath all other facets of P.

P

74

LEM. If IP’ is obtained from IP by staking on I, then
fo(P) = fo(P) + 1,
fi(P)) = fi(P) + f;_1(IF), for 0 <i<d-—2,
fic1(P") = faoa(P) + fa—o(IF) — 1.




F-VECTORS OF STACKED POLYTOPES

DEF. stacked polytope = polytope arising from a d-simplex by stacking n times.

/

“\/
///

/

LEM. The f-vector of a stacked polytope on d + n vertices is

f0:d+1—|—n,

1
fi = (d+ )+n<d> for0<i<d-—2,
1+ 1 )

fd_1:d+1+n(d—1).




LOWER BOUND THEOREM

THM. (Lower Bound Theorem, Barnette) For any simplicial d-polytope IP with n
vertices:

fi(P) > fi(Q)
where (@) is a stacked polytope on n vertices.
Moreover, equality holds <= d =3 or d > 4 and PP is stacked.




GRAPHS OF POLYTOPES




POLYTOPE SKELETA

DEF. IP d-polytope, k£ < d.
graph of IP = graph with same vertices and edges as IP.
k-skeleton of IP = all < k-dimensional faces of IP.




POLYTOPAL GRAPHS

DEF. IP d-polytope, k£ < d.
graph of IP = graph with same vertices and edges as IP.
k-skeleton of IP = all < k-dimensional faces of IP.

QU. Which of the following graphs are graphs of polytopes? In which dimension?




POLYTOPAL GRAPHS

DEF. IP d-polytope, k£ < d.
graph of IP = graph with same vertices and edges as IP.
k-skeleton of IP = all < k-dimensional faces of IP.

QU. Which of the following graphs are graphs of polytopes? In which dimension?

N/

%) AV WA O3 Cycy(6), D5 Oy Q2% O
% 3 3 {4,5} {4,5}




GRAPHS & POLYTOPE OPERATIONS

P x P’ P& P P « IP’
PROP. Define E*(P) = E(P) ~ {P} (if dimP =1, then E*(IP) = &).
(Py  E(P xP)= (V(IP) x E(IP") ) (E(P) x V(P))

ViPeP)=V(P
V(P xP)=V(P

Py  BPoP)=EP)uE(P)U

(
V(P xP)=V(P

( U (V(

( P’ E(P «P')=E(P)UE(P)U (V

V(P) x V(P")
(P) x V(IP

)




GRAPHS OF 3-POLYTOPES

THM. (Steinitz) 3-polytopal <= planar and 3-connected.

Different proofs are possible:
o See Ziegler, Lect. 4 for the proof based on AY operations.
e Lift Tutte's barycentric embedding.

THM. (Mnév, Richter-Gebert) Polytopality of graphs is NP-hard.




SOME NECESSARY CONDITIONS

THM. If GG is the graph of a d-polytope, then
(1) Balinski's Theorem: G is d-connected.

(2) Principal Subdivision Property: Every vertex of G is the principal vertex of a prin-
cipal subdivision of K ;.

(3) Separation Property: The maximal number of components into which G may be
separated by removing n > d vertices equals fd_l(Cycd(n)).




DEDUCING THE FACES FROM THE GRAPH

THM. (Whitney) In a 3-polytope, graphs of faces = non-separating induced cycles.

REM. In general, the graph does not determine the face lattice of the polytope (even
for a fixed dimension).

THM. (Blind & Mani-Levitska, Kalai)
Two simple polytopes with isomorphic graphs have isomorphic face lattices.




DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope IP. An orientation O of G is:
e acyclic = no oriented cycle,

e good = each face of IP has a unique sink.

Intuitively, good acyclic orientations of G~ +— linear orientations of IP

3



DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope IP. An orientation O of G is:
e acyclic = no oriented cycle,

e good = each face of IP has a unique sink.

1. Good acyclic orientations can be recognized from G:
h;(O) = number indegree j vertices for O.
F(O)=ho(O) +2hi(O) + -+ 29 hy(O).
Since P is simple, each indegree j vertex is a sink in 2/ faces.
Thus F(O) > number of faces of IP with equality iff O is good.




DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)
Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope IP. An orientation O of G is:
e acyclic = no oriented cycle,
e good = each face of IP has a unique sink. 2

1. Good acyclic orientations can be recognized from GG

1

2. Faces of IP can be determined from good acyclic orientations:
H regular induced subgraph of G, with vertices WV
H is the graph of a face of IP
<= IV is initial wrt some good acyclic orientation.

— perturb a linear functional defining the face 0
<— assume H k-regular subgraph of G induced by W initial for O.
Let v be a sink of H, and IF' be the k-face containing the k£ edges of H incident to v.
Since O is good, v is the unique sink of the graph of I¥.
Since W is initial, all vertices of It are in W

Since H and the graph of IF' are k-regular, they coincide.



DIAMETERS OF POLYTOPES & THE SIMPLEX METHOD

DEF. diameter of G = minimum ¢ such that any two vertices are connected

by a path with at most § edges.
A(d,n) = maximal diameter of a d-polytope with at most n facets.

remark: diameters of polytopes are important in linear programming and its resolution

via the classical simplex algorithm.

CONJ. (Hirsh, disproved by Santos) A(d,n) <n—d.

PROB. Is A(d,n) bounded polynomially in both »n and d.

THM. (Kalai and Kleitman) A(d,n) < nlos2(dFL

THM. (Barnette, Larman) A(d,n) < —n.




THANK YOU



