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COMBINATORIAL GEOMETRIES & GEOMETRIC COMBINATORICS 2025

When? October-November 2025

Where? Centre de Recerca Matematica, Barcelona, Spain

What? Intensive Research Program with

• Oct. 1–3: Recollections on polyhedral geometry and (oriented) matroids

• Oct. 6–17: research school (L. Anderson – C. Benedetti – R. Sanyal – G. Whittle)

• Oct. 20 – Nov. 21: research projects + seminars + visitors

• Nov. 24–28: conference

Why? good math + good food

How?

• full program registration on https://forms.gle/QGfi5XGR1592SMs2A by Feb. 14

• limited support for doctoral/postdoc students

Updates?

• https://www.ub.edu/comb/CGGC25/
• https://forms.gle/JGa79F4h9Xymd6sX8 for general announcements and regis-

tration deadlines

https://forms.gle/QGfi5XGR1592SMs2A
https://www.ub.edu/comb/CGGC25/
https://forms.gle/JGa79F4h9Xymd6sX8


BEYOND PERMUTAHEDRA AND ASSOCIAHEDRA

When? December 1–5, 2025

Where? Centre International de Rencontres Mathématiques, Luminy, France

What?

2 mini courses.

• Nathan Reading

• Martha Yip

5 invited talks

• Bérénice Delcroix-Oger

• Eléonore Faber

• Torsten Mütze

• Frédéric Patras

• Christian Stump

Why? good math + good food + good views

Updates?

• https://conferences.cirm-math.fr/3288.html
• announcement soon

https://conferences.cirm-math.fr/3288.html


BOULES DE PETANQUE & COCHONET

DEF. Pétanque = ... long story ... played with balls (blue) and a cochonet (red).

QU. What is the diameter of the cochonet ? and in dimension d? and in dimension 10?



COCHONET PARADOX

dimension d 1 2 3 . . . 9 10 11 . . .

diameter = (
√
d− 1)/2 0 0.207 0.366 . . . 1 1.08 1.16 . . .

volume =

(
Γ(1/2) · (

√
d− 1)/4

)d
Γ(d/2 + 1)

0 0.0337 0.0257 . . . 0.00644 0.00543 0.00463 . . .

REM. In dimension ≥ 10, the cochonet is out of the box!!



COCHONET PARADOX

In high dimension, intuition is wrong, computations are correct.
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POLYHEDRAL CONES



CONES

DEF. C ⊆ Rn convex cone ⇐⇒ µu + νv ∈ C for all u,v ∈ C and µ, ν ∈ R≥0.

DEF. dimension of C = dimension of its linear span.

DEF. V-cone = convex cone generated by finitely many vectors

=
{ ∑

u∈U
µuu

∣∣ µu ≥ 0 for all u ∈ U
}

for some finite U .

DEF. H-cone = intersection of finitely many linear halfspaces

=
{
u ∈ Rn

∣∣ 〈 u | v 〉 ≤ 0 for all v ∈ V
}

for some finite V .



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone ⇐⇒ H-cone.

remark: different proofs are possible.

Classical algorithmic proof = Fourier-Motzkin elimination procedure

(projections on coordinate hyperplanes).
Here, induction + polarity...



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone ⇐⇒ H-cone.

proof: H-cone =⇒ V-cone by induction on the dimension.

Consider an H-cone C =
{
u ∈ Rn

∣∣ 〈 u | v 〉 ≤ 0 for all v ∈ V
}

.

It is clearly a V-cone if dim(C) = 0 or if V does not contain two independent vectors.

Otherwise, there exist v,v′ in V and w ∈ Rn st 〈 w | v 〉 ≤ 0 and 〈 w | v′ 〉 ≥ 0

(consider w = 〈 v | v′ 〉v + 〈 v′ | v′ 〉v − 〈 v | v′ 〉v′ − 〈 v | v 〉v′)
For v ∈ V , define Cv = C ∩ v⊥.

By induction, the H-cone Cv is the V-cone generated by some finite set Uv.

We claim that the H-cone C is the V-cone generated by the finite set U =
⋃

v∈V Uv.

Let u ∈ C.

If u is on the boundary of C, it belongs to some Cv = R≥0Uv ⊆ R≥0U .

Otherwise, (u + Rw) ∩C is a segment [u+,u−].

There is v+,v− ∈ V st u+ ∈ Cv+ and u− ∈ Cv−.

Thus u ∈ R≥0{u+,u−} ⊆ R≥0(Uv+ ∪Uv−) ⊆ R≥0U .



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone ⇐⇒ H-cone.

proof: V-cone =⇒ H-cone by polarity.

DEF. linear polar U◦ = {v ∈ Rn | 〈 u | v 〉 ≤ 0 for all u ∈ U}.

PROP. U◦ is a closed convex cone. If U is convex and closed,

then (U◦)◦ = U.

PROP. The polar of a V-cone is an H-cone.



V-CONES VS H-CONES

THM. (Minkowski-Weyl for cones) V-cone ⇐⇒ H-cone.

proof: V-cone =⇒ H-cone by polarity.

Consider an V-cone C.

Its polar C◦ is an H-cone, thus a V-cone according to the first part of the proof.

Therefore, C = (C◦)◦ is an H-cone.

DEF. linear polar U◦ = {v ∈ Rn | 〈 u | v 〉 ≤ 0 for all u ∈ U}.

PROP. U◦ is a closed convex cone. If U is convex and closed,

then (U◦)◦ = U.

PROP. The polar of a V-cone is an H-cone.



INTERSECTING A CONE BY A HYPERPLANE

DEF. polyhedral cone = V-cone = H-cone.

DEF. polyhedron = intersection of a polyhedral cone by an affine hyperplane.

bounded undounded

= polytope = polytope + recession cone



POLYTOPES



POLYTOPES

DEF. P ⊆ Rn convex ⇐⇒ µx+νy ∈ P for all x,y ∈ P and µ, ν ∈ R≥0 with µ+ν = 1.

DEF. dimension of P = dimension of its affine span.

DEF. V-polytope = convex hull of finite point set in Rn

=
{ ∑

x∈X
µxx

∣∣ ∑
x∈X

µx = 1 and µx ≥ 0 for all x ∈X
}

for a finite X.

DEF. H-polytope = bounded intersection of finitely many affine halfspaces of Rn

=
{
x ∈ Rn

∣∣ 〈 x | y 〉 ≤ cy for all y ∈ Y
}

for a finite Y .



V-POLYTOPES VS H-POLYTOPES

THM. (Minkowski-Weyl for polytopes) V-polytope ⇐⇒ H-polytope.

proof: embed the affine space Rn into the linear space Rn+1.

x 〈 x | y 〉 ≤ cyxy xy[
x

1

] 〈 [
x

1

] ∣∣∣∣ [ y

−cy

] 〉
≤ 0

DEF. polytope = V-polytope = H-polytope.



CLASSICAL POLYTOPES

DEF. d-simplex = convex hull of d + 1 affinely independent points.

standard d-simplex 4d = conv{e1, . . . , ed+1}
=
{
x ∈ Rd+1

∣∣ ∑
i∈[d+1]

xi = 1 and xi ≥ 0 for all i ∈ [d + 1]
}

.

DEF. d-cube �d = conv({±1}d) =
{
x ∈ Rd

∣∣ −1 ≤ xi ≤ 1 for all i ∈ [d]
}

.

DEF. d-cross-pol.♦d = conv {±ei | i ∈ [d]}=
{
x ∈ Rd

∣∣ ∑
i∈[d]

εixi ≤ 1 for all ε ∈ {±1}d
}

.



AFFINE POLARITY

DEF. linear polar U◦ =
{
v ∈ Rn+1

∣∣ 〈 u | v 〉 ≤ 0 for all u ∈ U
}

.

DEF. affine polar X� = {y ∈ Rn | 〈 x | y 〉 ≤ 1 for all x ∈ X}.

〈 x | y 〉 ≤ 1xy〈 [
x

1

] ∣∣∣∣ [ y

−1

] 〉
≤ 0

PROP. X� is closed and convex, and bounded iff 0 ∈ int(X). If X is closed, convex

and contains 0, then (X�)� = X.



POLAR POLYTOPE

DEF. affine polar X� = {y ∈ Rn | 〈 x | y 〉 ≤ 1 for all x ∈ X}.

PROP. Assume 0 ∈ int(P).

If P = conv(X) = {x ∈ Rn | 〈 x | y 〉 ≤ 1 for all y ∈ Y },
then P� = conv(Y ) = {y ∈ Rn | 〈 x | y 〉 ≤ 1 for all x ∈X}.

EXM. d-cube �d = conv({±1}d) =
{
x ∈ Rd

∣∣ −1 ≤ xi ≤ 1 for all i ∈ [d]
}

.

d-cross-pol.♦d = conv {±ei | i ∈ [d]} =
{
x ∈ Rd

∣∣ ∑
i∈[d]

εixi ≤ 1 for all ε ∈ {±1}d
}

.



EXM: MATCHING POLYTOPES

DEF. G = (V,E) graph.

matching on G = subset of E with at most one edge incident to each vertex.

matching polytope M(G) = convex hull of the characteristic vectors χM ∈ RE of all

matchings M on G.

QU. Consider the polytope N(G) defined by

xe ≥ 0 for all e ∈ E, and
∑
e3v

xe ≤ 1 for all v ∈ V.

• Show that M(G) ⊆ N(G).

• Give an example where this inclusion is strict.

• Show that M(G) = N(G) when G is bipartite.



EXM: MATCHING POLYTOPES

DEF. G = (V,E) graph.

matching on G = subset of E with at most one edge incident to each vertex.

matching polytope M(G) = convex hull of the characteristic vectors χM ∈ RE of all

matchings M on G.

PROP. The matching polytope M(G) is contained in the polytope N(G) defined by

xe ≥ 0 for all e ∈ E, and
∑
e3v

xe ≤ 1 for all v ∈ V,

and M(G) = N(G) when G is bipartite.

proof: M(G) ⊆ N(G) as (χM)e ≥ 0 and
∑

e3v(χM)e ≤ 1 (at most one edge per vertex).

Strict inclusion in general:

M(4) = conv{0, e1, e2, e3}
N(4) = conv{0, e1, e2, e3, (e1 + e2 + e3)/2}



EXM: MATCHING POLYTOPES

DEF. G = (V,E) graph.

matching on G = subset of E with at most one edge incident to each vertex.

matching polytope M(G) = convex hull of the characteristic vectors χM ∈ RE of all

matchings M on G.

PROP. The matching polytope M(G) is contained in the polytope N(G) defined by

xe ≥ 0 for all e ∈ E, and
∑
e3v

xe ≤ 1 for all v ∈ V,

and M(G) = N(G) when G is bipartite.

proof: M(G) ⊆ N(G) as (χM)e ≥ 0 and
∑

e3v(χM)e ≤ 1 (at most one edge per vertex).

Assume now that G is bipartite, so that all its cycles are even.

For x ∈ N(G), let U(x) = {e ∈ E | 0 < xe < 1}.
If U(x) 6= ∅, it contains a cycle C = e1, . . . , e2p, which is even since G is bipartite.

Let λ = min {xe | e ∈ C} ∪ {1− xe | e ∈ C}.
Then x is in the middle of x + λχC and x− λχC, which both belong to N(G).

Therefore, all vertices of N(G) belong to {0, 1}E, and thus M(G) = N(G).



OPERATIONS ON POLYTOPES



CARTESIAN PRODUCT

DEF. X ⊆ Rn and X′ ⊆ Rn′.

Cartesian product X×X′ = {(x,x′) | x ∈ X and x′ ∈ X′} ⊆ Rn+n′.

PROP. The Cartesian product P×P′ of two polytopes P and P′ is a polytope. Moreover

P×P′ = conv(X ×X ′)

=

{
(x,x′) ∈ Rn+n′

∣∣∣∣ 〈 (x,x′) | (y,0) 〉 ≤ cy for all y ∈ Y

〈 (x,x′) | (0,y′) 〉 ≤ cy′ for all y′ ∈ Y ′

}
where P = conv(X) = {x ∈ Rn | 〈 x | y 〉 ≤ cy for all y ∈ Y }.

and P′ = conv(X ′) =
{
x′ ∈ Rn′

∣∣ 〈 x′ | y′ 〉 ≤ cy′ for all y′ ∈ Y ′
}

.

exm:

cube: �d = [−1, 1]d

prism: Prism(P) = [−1, 1]×P



DIRECT SUM

DEF. P ⊂ Rn and P′ ⊂ Rn′ two polytopes with 0 ∈ intP and 0 ∈ intP′.

direct sum P⊕P′ = conv
(
{(x,0) | x ∈ P} ∪ {(0,x′) | x′ ∈ P′}

)
⊂ Rn+n′

PROP. P⊕P′ = conv
(
{(x,0) | x ∈X} ∪ {(0,x′) | x′ ∈X ′}

)
=
{

(x,x′) ∈ Rn+n′
∣∣ 〈 (x,x′) | (y,y′) 〉 ≤ 1 for all y ∈ Y and y′ ∈ Y ′

}
where P = conv(X) = {x ∈ Rn | 〈 x | y 〉 ≤ 1 for all y ∈ Y }.

and P′ = conv(X ′) =
{
x′ ∈ Rn′

∣∣ 〈 x′ | y′ 〉 ≤ 1 for all y′ ∈ Y ′
}

.

exm:

cross-poly.: ♦d = [−1, 1]⊕ · · · ⊕ [−1, 1]

bipyramid: Bipyr(P) = [−1, 1]⊕P

PROP. (P⊕P′)� = P� ×P′�.



JOIN

DEF. P ⊂ Rn and P′ ⊂ Rn′ two polytopes.

join P ∗P′ = convex hull of P and P′ in independent affine subspaces

= conv
(
{(x,0, 1) | x ∈ P} ∪ {(0,x′,−1) | x′ ∈ P′}

)
⊂ Rn+n′+1

exm:

simplex: 4d = 4i ∗ 4d−i

pyramid: Pyr(P) = point ∗P
k-fold pyramid: Pyrk(P) = 4k−1 ∗P



MINKOWSKI SUM

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

PROP. The Minkowski sum P +P′ of two polytopes P and P′ is a polytope.



MINKOWSKI SUM

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

PROP. The Minkowski sum P +P′ of two polytopes P and P′ is a polytope.



MINKOWSKI SUM

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

PROP. The Minkowski sum P +P′ of two polytopes P and P′ is a polytope.



MINKOWSKI SUM

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

PROP. The Minkowski sum P+P′ is the image of the Cartesian product P×P′ under

the affine projection (x,x′) 7−→ x + x′.



MINKOWSKI SUM

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

PROP. For any −1 ≤ λ ≤ 1, the section of the Cayley polytope

Cay(P,P′) = conv
(
{(x,−1) | x ∈ P} ∪ {(x′, 1) | x′ ∈ P′}

)
⊂ Rn+1

by the hyperplane
{
x ∈ Rn+1

∣∣ xn+1 = λ
}

is the Minkowski sum
1− λ

2
·P+

1 + λ

2
·P′.



ZONOTOPE

DEF. X,X′ ⊆ Rn (same space!).

Minkowski sum X +X′ = {x + x′ | x ∈ X and x′ ∈ X′} ⊆ Rn.

DEF. zonotope = Minkowki sum of segments

= projection of a cube �d



FACES



FACES

DEF. face of a polytope P =

• either the polytope P itself,

• or the intersection of P with a supporting hyperplane of P,

• or the empty set.

NOT. F(P) = {faces of P} and Fk(P) = {k-dimensional faces of P}.

vertices = F0(P) edges = F1(P) ridges = Fd−2(P) facets = Fd−1(P)



EXM: FACES OF CLASSICAL POLYTOPES
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PROP. The faces of the d-simplex 4d, the d-cube �d and the d-cross-polytope ♦d are:

• d-simplex 4d:

subset I of [d + 1] ←→ face 4I = conv {ei | i ∈ I}.

• d-cube �d: the empty face ∅ and

word w in {−1, 0, 1}d ←→ face �w = {x ∈ �d | wi(xi − wi) = 0 for all i ∈ [d]}.

• d-cross-polytope ♦d: the d-cross-polytope ♦d itself and

word w in {−1, 0, 1}d ←→ face 4w = conv {wiei | i ∈ [d] st wi 6= 0}.



FACE PROPERTIES

PROP. For a polytope P,

• P = conv(F0(P)) (a polytope is the convex hull of its vertices),

• P = conv(X) =⇒ F0(P) ⊆X (all vertices of a polytope are extreme).

PROP. For a face F of a polytope P,

• F is a polytope,

• F0(F) = F0(P) ∩ F,

• F(F) = {G ∈ F(P) | G ⊆ F} ⊆ F(P).

PROP. F(P) is stable by intersection: F,G ∈ F(P) =⇒ F ∩G ∈ F(P).

proof ideas: separation theorems, finding a suitable supporting hyperplane, ...



LATTICE

DEF. lattice = partially ordered set (L,≤) where any subset X ⊆ L admits

• a meet
∧
X = greatest lower bound∧
X ≤ X for all X ∈ X and Y ≤ X for all X ∈ X implies Y ≤

∧
X .

• a join
∨
X = least upper bound

X ≤
∧
X for all X ∈ X and X ≤ Y for all X ∈ X implies

∧
X ≤ Y .

EXM. boolean lattice B(Y ) = subsets of Y ordered by inclusion

∅

1 2 3

13 2312

123

∅

1 2 3 4

14 24 3413 2312

134 234124123

1234

∧
X =

⋂
X∈X

X and
∨
X =

⋃
X∈X

X.



FACE LATTICE

PROP. The inclusion poset F(P) of faces of P

• is a graded lattice (with rank function rank(F) = dim(F) + 1),

• is atomic (every face is the join of its vertices) and coatomic (every face is the meet

of the facets containing it),

• every interval of F(P) is the face lattice of a polytope,

• has the diamond property (every interval of rank 2 has 4 elements).



EXM: FACE LATTICES OF SIMPLICES

remark:

• any subset I ⊆ [d + 1] corresponds to a face 4I = conv {ei | i ∈ I} of 4d,

• I ⊆ J ⇐⇒ 4I ⊆ 4J .

The face lattice of 4d is thus the boolean lattice on subsets of [d + 1]:

∅

1 2 3

13 2312

123

∅

1 2 3 4

14 24 3413 2312

134 234124123

1234



POLARITY AND FACES

Assume 0 ∈ int(P).

DEF. A face F of P defines a polar face F� = {y ∈ P� | 〈 x | y 〉 = 1 for all x ∈ F}.

PROP. The map F 7−→ F� is a lattice anti-isomorphism F(P) −→ F(P�).



OPERATIONS AND FACES

P×P′ P⊕P′ P ∗P′

PROP. Define F?(P) = F(P) r {∅} and F?(P) = F(P) r {P}. Then

F?(P×P′) = {F× F′ | F ∈ F?(P) and F′ ∈ F?(P′)}
F?(P⊕P′) = {F ∗ F′ | F ∈ F?(P) and F′ ∈ F?(P′)}
F(P ∗P′) = {F ∗ F′ | F ∈ F(P) and F′ ∈ F(P′)}

remark: the combinatorial structure of P +P′ depends on the geometry of P and P′.



SIMPLE OR SIMPLICIAL POLYTOPES

DEF. A d-polytope P is

• simplicial if its vertices are in general position,

• simple if its facets are in general position.

simple and simple but not simple but

simplicial not simplicial simplicial

PROP. P is simple ⇐⇒ P� is simplicial.

QU. Show that a simple and simplicial polytope is a polygon or a simplex.



SIMPLE OR SIMPLICIAL POLYTOPES

DEF. A d-polytope P is

• simplicial if each facet contains d vertices (ie. is a simplex),

• simple if each vertex is contained in d edges (or equiv. in d facets).

simple and simple but not simple but

simplicial not simplicial simplicial

PROP. P is simple ⇐⇒ P� is simplicial.

QU. Show that a simple and simplicial polytope is a polygon or a simplex.



SIMPLE OR SIMPLICIAL POLYTOPE OPERATIONS

P×P′ P⊕P′ P ∗P′

PROP. P and P′ simple ⇐⇒ P×P′ simple

P and P′ simplicial ⇐⇒ P⊕P′ simplicial

P and P′ simplices ⇐⇒ P ∗P′ simple (or simplicial)



FANS



FAN

DEF. fan F = collection of polyhedral cones st

• closed by faces: if C ∈ F and C′ is a face of C, then C′ ∈ F ,

• intersecting properly: if C,C′ ∈ F , the intersection C ∩C′ is a face of C and C′.



FACE FAN

DEF. P polytope with 0 ∈ int(P). F face of P.

face cone of F = cone R≥0F generated by F.

face fan of P = collection of face cones of all faces of P.



NORMAL FAN

DEF. P polytope. F face of P.

normal cone of F = cone generated by outer normal vectors to facets of P containing F.

normal fan of P = collection of normal cones of all faces of P.



FACE FAN VS NORMAL FAN

PROP. If 0 ∈ int(P), then the face fan of P coincides with the normal fan of P�.



NORMAL FANS AND POLYTOPE OPERATIONS

DEF. direct sum F ⊕ F ′ = {C×C′ | C ∈ F and C′ ∈ F ′}

PROP. normal fan of P×P′ = direct sum of normal fans of P and P′.

DEF. common refinement F ∧ F ′ = {C ∩C′ | C ∈ F and C′ ∈ F ′}

PROP. normal fan of P +P′ = common refinement of normal fans of P and P′.



NORMAL FANS OF ZONOTOPES

DEF. common refinement F ∧ F ′ = {C ∩C′ | C ∈ F and C′ ∈ F ′}

PROP. normal fan of P +P′ = common refinement of normal fans of P and P′.

PROP. normal fans of zonotopes ⇐⇒ fans defined by hyperplane arrangements.



F-VECTOR & EULER RELATION



F -VECTOR & F -POLYNOMIAL

DEF. For a d-polytope P,

• fi(P) = number of i-faces of P,

• f -vector f (P) =
(
f0(P), . . . , fd(P)

)
,

• f -polynomial f (P, x) =
∑d

i=0 fi(P)xi.

f (�3) = 8 + 12x + 6 x2 + x3



F -VECTOR & F -POLYNOMIAL

In fact, it is convenient to define

F (P, x) =

d∑
i=−1

fi(P)xi+1

and to consider

f (P, x) =

d∑
i=0

fi(P)xi =
F (P, x)− 1

x

and

f̄ (P, x) =

d−1∑
i=−1

fi(P)xi+1 = F (P, x)− xd+1



EXM: F -VECTOR OF CLASSICAL POLYTOPES
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PROP. The f -vectors and F -polynomials of the d-simplex 4d, the d-cube �d and the

d-cross-polytope ♦d are given by

fi(4d) =

(
d + 1

i + 1

)
fi(�d) =

(
d

i

)
2d−i fi(♦d) =

(
d

i + 1

)
2i+1

F (4d, x) = (x + 1)d+1 F (�d, x) = 1 + x(x + 2)d F (♦d, x) = xd+1 + (2x + 1)d

REM. In other words,

F (4d, x) = (x + 1)d+1 f (�d, x) = (x + 2)d f̄ (♦d, x) = (2x + 1)d



EXM: F -VECTOR & POLARITY

PROP. F (P, x) = xd+1F (P�, 1/x)

proof: F 7−→ F� anti-isomorphism, thus fi(P) = fd−i−1(P
�), thus Fi(P) = Fd+1−i(P

�).

3

2
1

101
111

100

000
101 111

100

3

2
1
000

remark: sanity check on classical polytopes

F (�d, x) = 1 + x(x + 2)d F (♦d, x) = xd+1 + (2x + 1)d F (4d, x) = (x + 1)d+1



EXM: F -VECTORS & POLYTOPE OPERATIONS

P×P′ P⊕P′ P ∗P′

PROP. The f -vectors and f -polynomials of the Cartesian product P × P′, the direct

sum P⊕P′ and the join P ∗P′ are given by

f (P×P′, x) = f (P, x) · f (P′, x)

f̄ (P⊕P′, x) = f̄ (P, x) · f̄ (P′, x)

F (P ∗P′, x) = F (P, x) · F (P′, x)

remark: sanity check on classical polytopes

f (�d, x) = (x + 2)d f̄ (♦d, x) = (2x + 1)d F (4d, x) = (x + 1)d+1



HANNER POLYTOPES

DEF. Hanner polytope = either the segment I = [−1, 1] or a Cartesian product or

direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:

• d = 1: interval I,

• d = 2: square I ⊕ I ∼ I × I,

• d = 3: cube I×3 := I × I × I and cross-polytope I⊕3 := I ⊕ I ⊕ I,

• d = 4: cube I×4, cross-polytope I⊕4, prism over an octahedron I⊕3× I and bipyra-

mid over a cube I×3 ⊕ I.

(Schlegel diagrams...)



HANNER POLYTOPES

DEF. Hanner polytope = either the segment I = [−1, 1] or a Cartesian product or

direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:

• d = 1: interval I,

• d = 2: square I ⊕ I ∼ I × I,

• d = 3: cube I×3 := I × I × I and cross-polytope I⊕3 := I ⊕ I ⊕ I,

• d = 4: cube I×4, cross-polytope I⊕4, prism over an octahedron I⊕3× I and bipyra-

mid over a cube I×3 ⊕ I.

REM. The Hanner polytope P := (I × I × I)⊕ (I × I × I) cannot be

• a bipyramid: it has 16 vertices each of degree 11,

• a prism: it has 36 facets each of degree 8.



3D CONJECTURE

DEF. Hanner polytope = either the segment I = [−1, 1] or a Cartesian product or

direct sum of Hanner polytopes.

PROP. For any d-dimensional Hanner polytope H,

d∑
i=0

fi(H) = 3d.

proof:
∑d

i=0 fi(H) = f (H, 1) = f̄ (H, 1) together with

f (P×P′, x) = f (P, x) · f (P′, x) and f̄ (P⊕P′, x) = f̄ (P, x) · f̄ (P′, x).

CONJ. (Kalai’s 3d conjecture) If P is centrally symmetric (meaning P = −P), then

d∑
i=0

fi(P) ≥ 3d,

with equality if and only if P is a Hanner polytope.



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

PROP. For any polytope P and hyperplane H,

χ(P) = χ(P+) + χ(P−)− χ(P◦).

where P+ = P ∩H+, P− = P ∩H− and P◦ = P ∩H.

PROP. For any polytopes P,Q ⊂ Rn st P ∪Q is a polytope,

χ(P ∪Q) + χ(P ∩Q) = χ(P) + χ(Q).

remark: These conditions define weak valuations and strong valuations.

For polytopes, any weak valuation is a strong valuation.

Exm: indicator function, volume, number of integer points, etc.



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

THM. (Euler relation) χ(P) = f0(P)− f1(P) + · · · + (−1)d fd(P) = 1.

proof: Induction on the dimension.



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

THM. (Euler relation) χ(P) = f0(P)− f1(P) + · · · + (−1)d fd(P) = 1.

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

χ(Cay(P,R)) = χ(P) + χ(R) + (−1) · χ(Q)

= 1 + 1− 1 = 1



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

THM. (Euler relation) χ(P) = f0(P)− f1(P) + · · · + (−1)d fd(P) = 1.

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

χ(Cay(P,R)) = χ(P) + χ(R) + (−1) · χ(Q)

= 1 + 1− 1 = 1

2. Choose a Morse function φ,

slice the polytope P into Cayley polytopes,

and apply the valuation property:

χ(P) = χ(P0)− χ(S1) + · · · − χ(Sk) + χ(Pk)

= 1− 1 + · · · − 1 + 1 = 1



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

THM. (Euler relation) χ(P) = f0(P)− f1(P) + · · · + (−1)d fd(P) = 1.

PROP. Let Pi,d = Pyrd−i(�i) for i ∈ [d]. The f -vectors f (Pi,d) are affinely independent.

proof: induction on the dimension d.

Affine dependance among f -vectors ←→ affine dependance among F -polynomials.

Pi,d = �i ∗4d−i =⇒ F (Pi,d, x) = F (�i, x) · F (4d−i, x) = (1 + x(x+ 2)i) · (x+ 1)d−i+1.

Assume 0 =
d∑
i=0

λi F (Pi,d, x). Two cases:

• if λd = 0, then 0 =
d−1∑
i=0

λi F (Pi,d, x) = (x + 1) ·
d−1∑
i=0

λi F (Pi,d−1, x) and induction.

• if λd 6= 0, then F (Pd,d, x) = −
d−1∑
i=0

λi/λd F (Pi,d, x)

(1 + x(x + 2)d) · (x + 1) = −(x + 1)2 ·
d−1∑
i=0

λi/λd (1 + x(x + 2)i) · (x + 1)d−i−1

a contradiction since −1 is a simple root on the left and a double root on the right.



EULER RELATION

DEF. Euler characteristic χ(P) =
∑d

i=0(−1)i fi(P) = f (P,−1).

THM. (Euler relation) χ(P) = f0(P)− f1(P) + · · · + (−1)d fd(P) = 1.

PROP. Let Pi,d = Pyrd−i(�i) for i ∈ [d]. The f -vectors f (Pi,d) are affinely independent.

CORO. The Euler relation is the only relation among f -vectors of general polytopes.



F -VECTORS OF 3-POLYTOPES

QU. Describe the effect on the f -vector of the following (polar) operations:

• simple vertex truncation: cut a vertex whose vertex figure is a simplex,

• simplicial facet stacking: stack a vertex on a facet which is a simplex.

QU. What is the f -vector of a pyramid over a p-gon?

QU. Prove that the f -vectors of 3-polytopes are the integer vectors (f0, f1, f2, 1) st

f0 − f1 + f2 = 2 f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4.



F -VECTORS OF 3-POLYTOPES

THM. The f -vectors of 3-polytopes are the integer vectors (f0, f1, f2, 1) st

f0 − f1 + f2 = 2 f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4.

proof: For one direction, combine the inequalities

• f0 − f1 + f2 = 2 (Euler relation),

• 2f1 ≥ 3f0 (every vertex is contained in at least 3 edges, every edge contains 2 vertices),

• 2f1 ≥ 3f2 (every face contains at least 3 edges, every edge is contained in 2 faces).

f0

f2

4

4

f0 = 2f2 − 4
simple 3-polytopes

cube

f2 = 2f0 − 4
simplicial 3-polytopes

octahedron

simplex



F -VECTORS OF 3-POLYTOPES

THM. The f -vectors of 3-polytopes are the integer vectors (f0, f1, f2, 1) st

f0 − f1 + f2 = 2 f0 ≤ 2f2 − 4 and f2 ≤ 2f0 − 4.

proof: For the other direction, observe that

• the f -vector of a pyramid over a p-gon is (p + 1, 2p, p + 1, 1),

• a simple vertex truncation adds (2, 3, 1, 0) to the f -vector,

• a simplicial facet stacking adds (1, 3, 2, 0) to the f -vector.

f0

f2

4

4

f0 = 2f2 − 4
simple 3-polytopes

cube

f2 = 2f0 − 4
simplicial 3-polytopes

octahedron

f0 = f2
pyramids over polygons

simplex

simple vertex truncation

simplicial facet stacking



H-VECTOR & DEHN-SOMMERVILLE RELATIONS



H-VECTOR & H-POLYNOMIAL

DEF. A d-polytope is simple if each vertex is contained in d facets, or equiv. d edges.

DEF. P = simple d-polytope,

φ = Morse function (φ(u) 6= φ(v) for any edge (u, v) of P)

Orient the edges of P according to φ and define

• hj(P) = number of vertices of P with indegree j,

• h-vector h(P) =
(
h0(P), . . . , hd(P)

)
,

• h-polynomial h(P, x) =
∑d

j=0 hj(P)xj.

3
2

2

21
1

1
0

h(�3) = 1 + 3x + 3 x2 + x3



EXM: F -VECTOR OF CLASSICAL POLYTOPES

3

2

1
0

32

2

21

1

10

PROP. The h-vectors and h-polynomials of the d-simplex 4d and the d-cube �d are

given by

hj(4d) = 1 hj(�d) =

(
d

j

)
h(4d, x) =

d∑
j=0

xj =
xd+1 − 1

x− 1
h(�d, x) =

d∑
j=0

(
d

j

)
xj = (x + 1)d



F -VECTOR VS H-VECTOR

THM. The f -vector and h-vector of any simple d-polytope P are related by

fi(P) =

d∑
j=0

(
j

i

)
hj(P) and hj(P) =

d∑
i=0

(−1)i+j
(
i

j

)
fi(P)

and the f -polynomial and h-polynomial are related by

f (P, x) = h(P, x + 1) and h(P, x) = f (P, x− 1).

remark: sanity check on classical polytopes

f (4d, x) =
(x + 1)d+1 − 1

x
= h(4d, x + 1) and f (�d, x) = (x + 2)d = h(�d, x + 1)



F -VECTOR VS H-VECTOR

THM. The f -vector and h-vector of any simple d-polytope P are related by

fi(P) =

d∑
j=0

(
j

i

)
hj(P) and hj(P) =

d∑
i=0

(−1)i+j
(
i

j

)
fi(P)

and the f -polynomial and h-polynomial are related by

f (P, x) = h(P, x + 1) and h(P, x) = f (P, x− 1).

proof: double counting the set S(i, φ) of pairs (v,F) where F is an i-face of P and v is

the φ-maximal vertex of F:

fi(P) =
∑

F∈Fi(P)

1 = |S(i, φ)| =
∑

v∈F0(P)

(
indeg(v)

i

)
=

d∑
j=0

(
j

i

)
hj(P).

This implies all other relations since

LEM. fi =

d∑
j=0

(
j

i

)
hj ⇐⇒ f (x) = h(x+ 1) ⇐⇒ hj =

d∑
i=0

(−1)i+j
(
i

j

)
fi.



F -VECTOR VS H-VECTOR

LEM. fi =

d∑
j=0

(
j

i

)
hj ⇐⇒ f (x) = h(x + 1) ⇐⇒ hj =

d∑
i=0

(−1)i+j
(
i

j

)
fi.

proof: fi =

d∑
j=0

(
j

i

)
hj~w�

h(x + 1) =

d∑
j=0

hj(x + 1)j

=

d∑
j=0

hj

j∑
i=0

(
j

i

)
xi

=

d∑
i=0

( d∑
j=0

(
j

i

)
hj

)
xi

=

d∑
i=0

fix
i = f (x).

hj =

d∑
i=0

(−1)i+j
(
i

j

)
fi~w�

f (x− 1) =

d∑
i=0

fi(x− 1)i

=

d∑
i=0

fi

d∑
j=0

(
i

j

)
(−1)i+jxj

=

d∑
j=0

( d∑
i=0

(−1)i+j
(
i

j

)
fi

)
xj

=

d∑
j=0

hjx
j = h(x)



DEHN-SOMMERVILLE RELATIONS

THM. (Dehn-Sommerville relations)

The h-vector of a simple d-polytope P is symmetric:

hj(P) = hd−j(P) for all 0 ≤ j ≤ d.

In terms of f -vectors,

d∑
i=j

(−1)i+j
(
i

j

)
fi(P) =

d∑
i=d−j

(−1)d+i−j
(

i

d− j

)
fi(P) for all 0 ≤ j ≤ d.

proof: consider the Morse functions φ and −φ ...

A degree with φ-indegree j has (−φ)-indegree d− j.

remark: for j = 0, h0(P) = hd(P) is the Euler relation.



DEHN-SOMMERVILLE RELATIONS

THM. (Dehn-Sommerville relations)

The h-vector of a simple d-polytope P is symmetric:

hj(P) = hd−j(P) for all 0 ≤ j ≤ d.

In terms of f -vectors,

d∑
i=j

(−1)i+j
(
i

j

)
fi(P) =

d∑
i=d−j

(−1)d+i−j
(

i

d− j

)
fi(P) for all 0 ≤ j ≤ d.

PROP. The f -vectors f (Cyc�d,d+i) for i ∈ [bd/2c + 1] are affinely independent.

CORO. The Dehn-Sommerville relations are the only relations among f -vectors of simple

polytopes.



MANY FACES: CYCLIC POLYTOPES



MOMENT CURVE & CYCLIC POLYTOPES

DEF. moment curve = curve parametrized by µd : t 7→ (t, t2, . . . , td) ∈ Rd.

cyclic polytope Cycd(n) = conv {µd(ti) | i ∈ [n]} for arbitrary reals t1 < · · · < tn.

exm: two views of Cyc3(9)

x

y
z

x

y
z

remark: we will see later that the combinatorics of Cycd(n) is independent of t1 < · · · < tn.



CYCLIC POLYTOPES ARE NEIGHBORLY

DEF. moment curve = curve parametrized by µd : t 7→ (t, t2, . . . , td) ∈ Rd.

cyclic polytope Cycd(n) = conv {µd(ti) | i ∈ [n]} for arbitrary reals t1 < · · · < tn.

THM. The cyclic polytope Cycd(n) is

• simplicial: all facets are simplices,

• neighborly: all j-subsets of vertices define a (j − 1)-face of Cycd(n) for j ≤ bd/2c.

proof: use polynomials!

• If µd(s1), . . . , µd(sd+1) belong to an affine hyperplane
∑

i∈[d] αi xi = −α0, then s1, . . . , sd+1

are all roots of the polynomial
∑d

i=0 αi t
i. A contradiction.

• For j ≤ bd/2c and s1, . . . , sj ∈ {t1, . . . , tn}, the polynomial
∑d

i=0 αi t
i =
∏

i∈[j](t− si)2

is non-negative and vanishes on s1, . . . , sj. Thus the hyperplane
∑

i∈[d] αi xi = −α0

supports a face of Cycd(n) with vertices µd(s1), . . . , µd(sj).



H-VECTORS OF POLAR CYCLIC POLYTOPES

CORO. The polar of the cyclic polytope Cycd(n)� is simple and its h-vector is given by

hj =

(
n− d + j − 1

j

)
for j ≤

⌊
d

2

⌋
and hj =

(
n− j − 1

d− j

)
for j >

⌊
d

2

⌋
.

proof: Cycd(n) is neighborly =⇒ fi
(
Cycd(n)

)
=

(
n

i

)
for i ≤ bd/2c

=⇒ fi
(
Cycd(n)�

)
=

(
n

d− i

)
for i > bd/2c.

Therefore

hj
(
Cycd(n)�

)
=

d∑
i=j

(−1)i+j
(
i

j

)(
n

d− i

)
=

(
n− j − 1

d− j

)
. if j >

⌊
d

2

⌋
(?)

= hd−j
(
Cycd(n)�

)
=

(
n− d + j − 1

j

)
if j ≤

⌊
d

2

⌋
For (?), check that

• it holds when j = 0 and j = d, and

• if it holds for (j, d) and (j + 1, d) then it holds for (j + 1, d + 1).



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen) For any d-polytope P with n vertices:

fi(P) ≤ fi(Cycd(n)).

remark:

• clear for i ≤ bd/2c since fi(Cycd(n)) =
(
n
i+1

)
,

• equivalent to polar version fi(P) ≤ fi(Cycd(n)�) for any d-polytope P with n facets,

• enough to prove it for simplicial/simple polytopes,

• thus implied by h-vector version:

THM. (Upper Bound Theorem, McMullen) For any simple d-polytope P with n facets:

hj(P) ≤
(
n− d + j − 1

j

)
for j ≤

⌊
d

2

⌋
and hj(P) ≤

(
n− j − 1

d− j

)
for j >

⌊
d

2

⌋
.



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen) For any simple d-polytope P with n facets:

hj(P) ≤
(
n− d + j − 1

j

)
for j ≤

⌊
d

2

⌋
and hj(P) ≤

(
n− j − 1

d− j

)
for j >

⌊
d

2

⌋
.

proof:

2

1
1

0

1. hi(F) ≤ hi(P) for F ∈ Fd−1(P)

φ obtained by perturbation of the inner normal of F

then indegF(v) = indegP(v) for all v ∈ F



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen) For any simple d-polytope P with n facets:

hj(P) ≤
(
n− d + j − 1

j

)
for j ≤

⌊
d

2

⌋
and hj(P) ≤

(
n− j − 1

d− j

)
for j >

⌊
d

2

⌋
.

proof:

2
1

2

1

1. hi(F) ≤ hi(P) for F ∈ Fd−1(P)

φ obtained by perturbation of the inner normal of F

then indegF(v) = indegP(v) for all v ∈ F

2.
∑

F∈Fd−1(P)
hi(F) = (d− i)hi(P) + (i + 1)hi+1(P)

Let v ∈ F, and e the edge of P st v ∈ e 6⊂ F

then indegF(v) = i ⇐⇒
{

indegP(v) = i and e leaving v, or

indegP(v) = i + 1 and e entering v.



UPPER BOUND THEOREM

THM. (Upper Bound Theorem, McMullen) For any simple d-polytope P with n facets:

hj(P) ≤
(
n− d + j − 1

j

)
for j ≤

⌊
d

2

⌋
and hj(P) ≤

(
n− j − 1

d− j

)
for j >

⌊
d

2

⌋
.

proof:

2
1

2

1

1. hi(F) ≤ hi(P) for F ∈ Fd−1(P)

φ obtained by perturbation of the inner normal of F

then indegF(v) = indegP(v) for all v ∈ F

2.
∑

F∈Fd−1(P)
hi(F) = (d− i)hi(P) + (i + 1)hi+1(P)

Let v ∈ F, and e the edge of P st v ∈ e 6⊂ F

then indegF(v) = i ⇐⇒
{

indegP(v) = i and e leaving v, or

indegP(v) = i + 1 and e entering v.

1 + 2 =⇒ (d−i)hi(P)+(i+1)hi+1(P) ≤ nhi(P) =⇒ hi+1(P) ≤ n + d− i
i + 1

hi(P).

and induction...



GALE’S EVENNESS CRITERION

DEF. For I ⊆ [n] = {1, . . . , n}, define

• block of I = intervals of I,

• even block of I = block of I of even size,

• internal block of I = block of I that does not contain 1 or n.

THM. (Gale’s evenness criterion) For a d-subset I of [n],

conv {µd(ti) | i ∈ I} is a facet of Cycd(n) ⇐⇒ all internal blocks of I are even.

exm: The facets Cyc3(n) correspond to {i, i + 1, n} and {1, i + 1, i + 2} for i ∈ [n− 2].

x

y
z



GALE’S EVENNESS CRITERION

DEF. For I ⊆ [n] = {1, . . . , n}, define

• block of I = maximal intervals of I,

• even block of I = block of I of even size,

• internal block of I = block of I that does not contain 1 or n.

THM. (Gale’s evenness criterion) For a d-subset I of [n],

conv {µd(ti) | i ∈ I} is a facet of Cycd(n) ⇐⇒ all internal blocks of I are even.

proof: For any I = {i1, . . . , id} ⊆ [n] and k ∈ [n], the position of µd(tk) with respect to

the hyperplane H containing µd(ti1), . . . , µd(tid) is given by the sign of the Vandermonde

determinant

det


1 . . . 1 1

ti1 . . . tid tk
... . . . ... ...

tdi1 . . . t
d
id
tdk

 =
∏

1≤p<q≤d

(tiq − tip)
∏

1≤p≤d

(tk − tip).

which is 0 if k ∈ I and −1 to the parity of the number of p ∈ [d] such that ip > k.

Therefore, all points µd(tk) lie on the same side of H iff all internal blocks of I are even.



GALE’S EVENNESS CRITERION

THM. (Gale’s evenness criterion) For a d-subset I of [n],

conv {µd(ti) | i ∈ I} is a facet of Cycd(n) ⇐⇒ all internal blocks of I are even.

CORO. Cycd(n) is neighborly and independent of the choice of t1 < · · · < tn.

proof:

• neighborly since for any <≤ bd/2c, any j-subset can be completed into a d-subset

satisfying Gale’s evenness criterion (complete all odd blocks and add the remaining

elements at the end).

• independent of the choice of t1 < · · · < tn since Gale’s evenness criterion tells the

vertices-facets incidences, which determine the whole combinatorics.



GALE’S EVENNESS CRITERION

THM. (Gale’s evenness criterion) For a d-subset I of [n],

conv {µd(ti) | i ∈ I} is a facet of Cycd(n) ⇐⇒ all internal blocks of I are even.

CORO. Cycd(n) is neighborly and independent of the choice of t1 < · · · < tn.

CORO. fd−1
(
Cycd(n)

)
=

(
n− dd2e
bd2c

)
+

(
n− 1− dd−12 e
bd−12 c

)
.

proof: number of 2k-subsets of [n] where all blocks are even =
(
n−k
k

)
◦ • • ◦ • • • • ◦ ◦ • • ←→ ◦ • ◦ • • ◦ ◦ •

Then case analysis:
1 in an odd block otherwise

n in an odd block d even

(
n− 2− d−2

2
d−2
2

)
d odd

(
n− 1− d−1

2
d−1
2

)

otherwise d odd

(
n− 1− d−1

2
d−1
2

)
d even

(
n− d

2
d
2

)



FEW FACES: STACKED POLYTOPES



STACKING OVER A FACET

DEF. stacking over a facet F of P = constructing conv(P∪{p}) where p is beyond F

but beneath all other facets of P.

LEM. If P′ is obtained from P by staking on F, then

f0(P
′) = f0(P) + 1,

fi(P
′) = fi(P) + fi−1(F), for 0 ≤ i ≤ d− 2,

fd−1(P
′) = fd−1(P) + fd−2(F)− 1.



F -VECTORS OF STACKED POLYTOPES

DEF. stacked polytope = polytope arising from a d-simplex by stacking n times.

LEM. The f -vector of a stacked polytope on d + n vertices is

f0 = d + 1 + n,

fi =

(
d + 1

i + 1

)
+ n

(
d

i

)
for 0 ≤ i ≤ d− 2,

fd−1 = d + 1 + n(d− 1).



LOWER BOUND THEOREM

THM. (Lower Bound Theorem, Barnette) For any simplicial d-polytope P with n

vertices:

fi(P) ≥ fi(Q)

where Q is a stacked polytope on n vertices.

Moreover, equality holds ⇐⇒ d = 3 or d ≥ 4 and P is stacked.



GRAPHS OF POLYTOPES



POLYTOPE SKELETA

DEF. P d-polytope, k ≤ d.

graph of P = graph with same vertices and edges as P.

k-skeleton of P = all ≤ k-dimensional faces of P.



POLYTOPAL GRAPHS

DEF. P d-polytope, k ≤ d.

graph of P = graph with same vertices and edges as P.

k-skeleton of P = all ≤ k-dimensional faces of P.

QU. Which of the following graphs are graphs of polytopes? In which dimension?



POLYTOPAL GRAPHS

DEF. P d-polytope, k ≤ d.

graph of P = graph with same vertices and edges as P.

k-skeleton of P = all ≤ k-dimensional faces of P.

QU. Which of the following graphs are graphs of polytopes? In which dimension?

∅ 42 ×41 ♦3 Cyc4(6), 45 ♦4, ♦2 ∗ ♦2 Cycd(8) �4

∅ 3 3 {4, 5} {4, 5} {4, 5, 6, 7} 4



GRAPHS & POLYTOPE OPERATIONS

P×P′ P⊕P′ P ∗P′

PROP. Define E?(P) = E(P) r {P} (if dimP = 1, then E?(P) = ∅).

V (P×P′) = V (P)× V (P′) E(P×P′) =
(
V (P)× E(P′)

)
∪
(
E(P)× V (P′)

)
V (P⊕P′) = V (P) ∪ V (P′) E(P⊕P′) = E?(P) ∪ E?(P′) ∪

(
V (P)× V (P′)

)
V (P ∗P′) = V (P) ∪ V (P′) E(P ∗P′) = E(P) ∪ E(P′) ∪

(
V (P)× V (P′)

)



GRAPHS OF 3-POLYTOPES

THM. (Steinitz) 3-polytopal ⇐⇒ planar and 3-connected.

Different proofs are possible:

• See Ziegler, Lect. 4 for the proof based on ∆Y operations.

• Lift Tutte’s barycentric embedding.

THM. (Mnëv, Richter-Gebert) Polytopality of graphs is NP-hard.



SOME NECESSARY CONDITIONS

THM. If G is the graph of a d-polytope, then

(1) Balinski’s Theorem: G is d-connected.

(2) Principal Subdivision Property: Every vertex of G is the principal vertex of a prin-

cipal subdivision of Kd+1.

(3) Separation Property: The maximal number of components into which G may be

separated by removing n > d vertices equals fd−1
(
Cycd(n)

)
.



DEDUCING THE FACES FROM THE GRAPH

THM. (Whitney) In a 3-polytope, graphs of faces = non-separating induced cycles.

REM. In general, the graph does not determine the face lattice of the polytope (even

for a fixed dimension).

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.



DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope P. An orientation O of G is:

• acyclic = no oriented cycle,

• good = each face of P has a unique sink.

Intuitively, good acyclic orientations of G ←→ linear orientations of P

3
2

2

21
1

1
0



DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope P. An orientation O of G is:

• acyclic = no oriented cycle,

• good = each face of P has a unique sink.

1. Good acyclic orientations can be recognized from G:

hj(O) = number indegree j vertices for O.

F (O) :=h0(O) + 2h1(O) + · · · + 2d hd(O).

Since P is simple, each indegree j vertex is a sink in 2j faces.

Thus F (O) ≥ number of faces of P with equality iff O is good.



DEDUCING THE FACES FROM THE GRAPH

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope P. An orientation O of G is:

• acyclic = no oriented cycle,

• good = each face of P has a unique sink.

1. Good acyclic orientations can be recognized from G

2. Faces of P can be determined from good acyclic orientations:

H regular induced subgraph of G, with vertices W .

H is the graph of a face of P

⇐⇒ W is initial wrt some good acyclic orientation.

2

1
1

0=⇒ perturb a linear functional defining the face

⇐= assume H k-regular subgraph of G induced by W initial for O.

Let v be a sink of H, and F be the k-face containing the k edges of H incident to v.

Since O is good, v is the unique sink of the graph of F.

Since W is initial, all vertices of F are in W .

Since H and the graph of F are k-regular, they coincide.



DIAMETERS OF POLYTOPES & THE SIMPLEX METHOD

DEF. diameter of G = minimum δ such that any two vertices are connected

by a path with at most δ edges.
∆(d, n) = maximal diameter of a d-polytope with at most n facets.

remark: diameters of polytopes are important in linear programming and its resolution

via the classical simplex algorithm.

CONJ. (Hirsh, disproved by Santos) ∆(d, n) ≤ n− d.

PROB. Is ∆(d, n) bounded polynomially in both n and d.

THM. (Kalai and Kleitman) ∆(d, n) ≤ nlog2(d)+1.

THM. (Barnette, Larman) ∆(d, n) ≤ 2d−2

3
n.
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