I. COMBINATORICS OF POLYTOPES

V. PILAUD (Universitat de Barcelona) Osnabrück, Monday February 24th, 2025

slides available at: https://www.ub.edu/comb/vincentpilaud/documents/presentations/Osnabruck/1.pdf

COMBINATORIAL GEOMETRIES & GEOMETRIC COMBINATORICS 2025

When? October-November 2025

Where? Centre de Recerca Matematica, Barcelona, Spain

What? Intensive Research Program with

- Oct. 1–3: Recollections on polyhedral geometry and (oriented) matroids
- Oct. 6–17: research school (L. Anderson C. Benedetti R. Sanyal G. Whittle)
- Oct. 20 Nov. 21: research projects + seminars + visitors
- Nov. 24-28: conference

Why? good math + good food

How?

- full program registration on https://forms.gle/QGfi5XGR1592SMs2A by Feb. 14
- limited support for doctoral/postdoc students

Updates?

- https://www.ub.edu/comb/CGGC25/
- https://forms.gle/JGa79F4h9Xymd6sX8 for general announcements and registration deadlines

BEYOND PERMUTAHEDRA AND ASSOCIAHEDRA

When? December 1-5, 2025

Where? Centre International de Rencontres Mathématiques, Luminy, France

What?

2 mini courses.

- Nathan Reading
- Martha Yip
- 5 invited talks
 - Bérénice Delcroix-Oger
 - Eléonore Faber
 - Torsten Mütze
 - Frédéric Patras
 - Christian Stump

Why? good math + good food + good views

Updates?

- https://conferences.cirm-math.fr/3288.html
- announcement soon

BOULES DE PETANQUE & COCHONET

DEF. <u>Pétanque</u> = ... long story ... played with <u>balls</u> (blue) and a <u>cochonet</u> (red).

QU. What is the diameter of the cochonet ? and in dimension d? and in dimension 10?

COCHONET PARADOX

REM. In dimension ≥ 10 , the cochonet is out of the box!!

COCHONET PARADOX

In high dimension, intuition is wrong, computations are correct.

SOME REFERENCES

- Günter M. Ziegler. *Lectures on polytopes*. Vol. 152 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1995.
- Jiří Matoušek. *Lectures on discrete geometry*. Vol. 212 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 2002.

POLYHEDRAL CONES

CONES

DEF. $\mathbb{C} \subseteq \mathbb{R}^n$ convex cone $\iff \mu \boldsymbol{u} + \nu \boldsymbol{v} \in \mathbb{C}$ for all $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}$ and $\mu, \nu \in \mathbb{R}_{\geq 0}$.

DEF. dimension of \mathbb{C} = dimension of its linear span.

DEF.
$$\underline{\mathcal{V}}$$
-cone = convex cone generated by finitely many vectors
= $\left\{ \sum_{u \in U} \mu_u u \mid \mu_u \ge 0 \text{ for all } u \in U \right\}$ for some finite U .

DEF. $\underline{\mathcal{H}}$ -cone = intersection of finitely many linear halfspaces = $\{ \boldsymbol{u} \in \mathbb{R}^n \mid \langle \boldsymbol{u} \mid \boldsymbol{v} \rangle \leq 0 \text{ for all } \boldsymbol{v} \in \boldsymbol{V} \}$ for some finite \boldsymbol{V} .

$\mathcal{V}\text{-}\mathsf{CONES} ~\mathsf{VS} ~\mathcal{H}\text{-}\mathsf{CONES}$

THM. (Minkowski-Weyl for cones) \mathcal{V} -cone $\iff \mathcal{H}$ -cone.

remark: different proofs are possible.

```
Classical algorithmic proof = Fourier-Motzkin elimination procedure (projections on coordinate hyperplanes).
```

Here, induction + polarity...

\mathcal{V} -CONES VS \mathcal{H} -CONES

THM. (Minkowski-Weyl for cones) \mathcal{V} -cone $\iff \mathcal{H}$ -cone.

proof: \mathcal{H} -cone $\Longrightarrow \mathcal{V}$ -cone by induction on the dimension.

Consider an
$$\mathcal{H}$$
-cone $\mathbb{C} = \big\{ \boldsymbol{u} \in \mathbb{R}^n \mid \langle \boldsymbol{u} \mid \boldsymbol{v} \rangle \leq 0 \text{ for all } \boldsymbol{v} \in \boldsymbol{V} \big\}.$

It is clearly a \mathcal{V} -cone if $\dim(\mathbb{C}) = 0$ or if V does not contain two independent vectors. Otherwise, there exist $\boldsymbol{v}, \boldsymbol{v}'$ in V and $\boldsymbol{w} \in \mathbb{R}^n$ st $\langle \boldsymbol{w} | \boldsymbol{v} \rangle \leq 0$ and $\langle \boldsymbol{w} | \boldsymbol{v}' \rangle \geq 0$ (consider $\boldsymbol{w} = \langle \boldsymbol{v} | \boldsymbol{v}' \rangle \boldsymbol{v} + \langle \boldsymbol{v}' | \boldsymbol{v}' \rangle \boldsymbol{v} - \langle \boldsymbol{v} | \boldsymbol{v}' \rangle \boldsymbol{v}' - \langle \boldsymbol{v} | \boldsymbol{v} \rangle \boldsymbol{v}'$)

For $oldsymbol{v} \in oldsymbol{V}$, define $\mathbb{C}_{oldsymbol{v}} = \mathbb{C} \cap oldsymbol{v}^{\perp}.$

By induction, the \mathcal{H} -cone \mathbb{C}_v is the \mathcal{V} -cone generated by some finite set U_v . We claim that the \mathcal{H} -cone \mathbb{C} is the \mathcal{V} -cone generated by the finite set $U = \bigcup_{v \in V} U_v$.

Let $\boldsymbol{u} \in \mathbb{C}$.

If u is on the boundary of \mathbb{C} , it belongs to some $\mathbb{C}_{v} = \mathbb{R}_{\geq 0} U_{v} \subseteq \mathbb{R}_{\geq 0} U_{\cdot}$ Otherwise, $(u + \mathbb{R}w) \cap \mathbb{C}$ is a segment $[u^{+}, u^{-}]$. There is $v^{+}, v^{-} \in V$ st $u^{+} \in \mathbb{C}_{v^{+}}$ and $u^{-} \in \mathbb{C}_{v^{-}}$. Thus $u \in \mathbb{R}_{\geq 0} \{u^{+}, u^{-}\} \subseteq \mathbb{R}_{\geq 0} (U_{v^{+}} \cup U_{v^{-}}) \subseteq \mathbb{R}_{\geq 0} U$.

\mathcal{V} -CONES VS \mathcal{H} -CONES

THM. (Minkowski-Weyl for cones) \mathcal{V} -cone $\iff \mathcal{H}$ -cone.

<u>proof</u>: \mathcal{V} -cone $\Longrightarrow \mathcal{H}$ -cone by polarity.

PROP. \mathbb{U}° is a closed convex cone. If \mathbb{U} is convex and closed, then $(\mathbb{U}^\circ)^\circ=\mathbb{U}.$

PROP. The polar of a \mathcal{V} -cone is an \mathcal{H} -cone.

\mathcal{V} -CONES VS \mathcal{H} -CONES

THM. (Minkowski-Weyl for cones) \mathcal{V} -cone $\iff \mathcal{H}$ -cone.

<u>proof</u>: \mathcal{V} -cone $\Longrightarrow \mathcal{H}$ -cone by polarity.

Consider an \mathcal{V} -cone \mathbb{C} .

Its polar \mathbb{C}° is an \mathcal{H} -cone, thus a \mathcal{V} -cone according to the first part of the proof. Therefore, $\mathbb{C} = (\mathbb{C}^{\circ})^{\circ}$ is an \mathcal{H} -cone.

DEF. linear polar
$$\mathbb{U}^{\circ} = \{ \boldsymbol{v} \in \mathbb{R}^n \mid \langle \boldsymbol{u} \mid \boldsymbol{v} \rangle \leq 0 \text{ for all } \boldsymbol{u} \in \mathbb{U} \}.$$

PROP. \mathbb{U}° is a closed convex cone. If \mathbb{U} is convex and closed, then $(\mathbb{U}^\circ)^\circ=\mathbb{U}.$

PROP. The polar of a \mathcal{V} -cone is an \mathcal{H} -cone.

INTERSECTING A CONE BY A HYPERPLANE

DEF. polyhedral cone = \mathcal{V} -cone = \mathcal{H} -cone.

DEF. polyhedron = intersection of a polyhedral cone by an affine hyperplane.

POLYTOPES

POLYTOPES

DEF. $\mathbb{P} \subseteq \mathbb{R}^n \text{ convex } \iff \mu \boldsymbol{x} + \nu \boldsymbol{y} \in \mathbb{P} \text{ for all } \boldsymbol{x}, \boldsymbol{y} \in \mathbb{P} \text{ and } \mu, \nu \in \mathbb{R}_{\geq 0} \text{ with } \mu + \nu = 1.$

DEF. dimension of \mathbb{P} = dimension of its affine span.

DEF. $\underline{\mathcal{V}}$ -polytope = convex hull of finite point set in \mathbb{R}^n = $\left\{\sum_{x \in X} \mu_x x \mid \sum_{x \in X} \mu_x x \mid \sum_{x \in X} \mu_x = 1 \text{ and } \mu_x \ge 0 \text{ for all } x \in X \right\}$ for a finite X.

 $\begin{array}{l} \mathsf{DEF.} \quad \underline{\mathcal{H}}\text{-polytope} = \underline{\mathsf{bounded}} \text{ intersection of } \underline{\mathsf{finitely}} \text{ many affine halfspaces of } \mathbb{R}^n \\ = \overline{\left\{ \boldsymbol{x} \in \mathbb{R}^n \mid \langle \ \boldsymbol{x} \mid \boldsymbol{y} \ \rangle \leq c_{\boldsymbol{y}} \text{ for all } \boldsymbol{y} \in \boldsymbol{Y} \right\}} \text{ for a } \underline{\mathsf{finite}} \ \boldsymbol{Y}. \end{array}$

$\mathcal V\text{-}\mathsf{POLYTOPES}$ vs $\mathcal H\text{-}\mathsf{POLYTOPES}$

THM. (Minkowski-Weyl for polytopes) \mathcal{V} -polytope $\iff \mathcal{H}$ -polytope.

proof: embed the affine space \mathbb{R}^n into the linear space \mathbb{R}^{n+1} .

DEF. <u>polytope</u> = \mathcal{V} -polytope = \mathcal{H} -polytope.

CLASSICAL POLYTOPES

DEF. <u>d-simplex</u> = convex hull of d + 1 affinely independent points. <u>standard d-simplex</u> $\Delta_d = \operatorname{conv}\{e_1, \dots, e_{d+1}\}$ $= \{ \boldsymbol{x} \in \mathbb{R}^{d+1} \mid \sum_{i \in [d+1]} x_i = 1 \text{ and } x_i \ge 0 \text{ for all } i \in [d+1] \}.$

DEF. d-cube
$$\Box_d = \operatorname{conv}(\{\pm 1\}^d) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid -1 \le x_i \le 1 \text{ for all } i \in [d] \}.$$

DEF. d-cross-pol.
$$\Diamond_d = \operatorname{conv} \{ \pm \boldsymbol{e}_i \mid i \in [d] \} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \sum_{i \in [d]} \varepsilon_i x_i \leq 1 \text{ for all } \varepsilon \in \{ \pm 1 \}^d \}$$

AFFINE POLARITY

DEF. linear polar
$$\mathbb{U}^{\circ} = \{ \boldsymbol{v} \in \mathbb{R}^{n+1} \mid \langle \boldsymbol{u} \mid \boldsymbol{v} \rangle \leq 0 \text{ for all } \boldsymbol{u} \in \mathbb{U} \}.$$

DEF. affine polar $\mathbb{X}^{\diamond} = \{ \boldsymbol{y} \in \mathbb{R}^n \mid \langle \boldsymbol{x} \mid \boldsymbol{y} \rangle \leq 1 \text{ for all } \boldsymbol{x} \in \mathbb{X} \}.$

PROP. X^{\diamond} is closed and convex, and bounded iff $0 \in int(X)$. If X is closed, convex and contains 0, then $(X^{\diamond})^{\diamond} = X$.

POLAR POLYTOPE

DEF. affine polar
$$\mathbb{X}^{\diamond} = \{ \boldsymbol{y} \in \mathbb{R}^n \mid \langle \boldsymbol{x} \mid \boldsymbol{y} \rangle \leq 1 \text{ for all } \boldsymbol{x} \in \mathbb{X} \}.$$

EXM. <u>d-cube</u> $\Box_d = \operatorname{conv}(\{\pm 1\}^d) = \{ \boldsymbol{x} \in \mathbb{R}^d \mid -1 \le x_i \le 1 \text{ for all } i \in [d] \}.$ <u>d-cross-pol.</u> $\Diamond_d = \operatorname{conv} \{ \pm \boldsymbol{e}_i \mid i \in [d] \} = \{ \boldsymbol{x} \in \mathbb{R}^d \mid \sum_{i \in [d]} \varepsilon_i x_i \le 1 \text{ for all } \varepsilon \in \{\pm 1\}^d \}.$

EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph. <u>matching</u> on G = subset of E with at most one edge incident to each vertex. <u>matching polytope</u> $\mathbb{M}(G)$ = convex hull of the characteristic vectors $\chi_M \in \mathbb{R}^E$ of all matchings M on G.

QU. Consider the polytope ${\rm I\!N}(G)$ defined by

$$x_e \ge 0$$
 for all $e \in E$, and

$$\sum_{e \ni v} x_e \le 1 \quad \text{for all } v \in V.$$

- Show that $\mathbb{M}(G) \subseteq \mathbb{N}(G)$.
- Give an example where this inclusion is strict.
- Show that $\mathbb{M}(G) = \mathbb{N}(G)$ when G is bipartite.

EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph. <u>matching</u> on G = subset of E with at most one edge incident to each vertex. <u>matching polytope</u> $\mathbb{M}(G)$ = convex hull of the characteristic vectors $\chi_M \in \mathbb{R}^E$ of all matchings M on G.

PROP. The matching polytope $\mathbb{M}(G)$ is contained in the polytope $\mathbb{N}(G)$ defined by $x_e \ge 0$ for all $e \in E$, and $\sum_{e \ni v} x_e \le 1$ for all $v \in V$, and $\mathbb{M}(G) = \mathbb{N}(G)$ when G is bipartite.

proof: $\mathbb{M}(G) \subseteq \mathbb{N}(G)$ as $(\chi_M)_e \ge 0$ and $\sum_{e \ge v} (\chi_M)_e \le 1$ (at most one edge per vertex). Strict inclusion in general:

$$\mathbb{M}(\triangle) = \operatorname{conv}\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$$
$$\mathbb{N}(\triangle) = \operatorname{conv}\{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3)/2\}$$

EXM: MATCHING POLYTOPES

DEF. G = (V, E) graph. <u>matching</u> on G = subset of E with at most one edge incident to each vertex. <u>matching polytope</u> $\mathbb{M}(G)$ = convex hull of the characteristic vectors $\chi_M \in \mathbb{R}^E$ of all matchings M on G.

PROP. The matching polytope $\mathbb{M}(G)$ is contained in the polytope $\mathbb{N}(G)$ defined by $x_e \ge 0$ for all $e \in E$, and $\sum_{e \ni v} x_e \le 1$ for all $v \in V$, and $\mathbb{M}(G) = \mathbb{N}(G)$ when G is bipartite.

<u>proof</u>: $\mathbb{M}(G) \subseteq \mathbb{N}(G)$ as $(\chi_M)_e \ge 0$ and $\sum_{e \ni v} (\chi_M)_e \le 1$ (at most one edge per vertex). Assume now that G is bipartite, so that all its cycles are even. For $\boldsymbol{x} \in \mathbb{N}(G)$, let $U(\boldsymbol{x}) = \{e \in E \mid 0 < \boldsymbol{x}_e < 1\}$. If $U(\boldsymbol{x}) \ne \emptyset$, it contains a cycle $C = e_1, \ldots, e_{2p}$, which is even since G is bipartite. Let $\lambda = \min \{\boldsymbol{x}_e \mid e \in C\} \cup \{1 - \boldsymbol{x}_e \mid e \in C\}$. Then \boldsymbol{x} is in the middle of $\boldsymbol{x} + \lambda \chi_C$ and $\boldsymbol{x} - \lambda \chi_C$, which both belong to $\mathbb{N}(G)$. Therefore, all vertices of $\mathbb{N}(G)$ belong to $\{0, 1\}^E$, and thus $\mathbb{M}(G) = \mathbb{N}(G)$.

OPERATIONS ON POLYTOPES

CARTESIAN PRODUCT

 $\begin{array}{ll} \mathsf{DEF.} & \mathbb{X} \subseteq \mathbb{R}^n \text{ and } \mathbb{X}' \subseteq \mathbb{R}^{n'}.\\ \underline{\mathsf{Cartesian product}} & \mathbb{X} \times \mathbb{X}' = \{(\boldsymbol{x}, \boldsymbol{x'}) \mid \boldsymbol{x} \in \mathbb{X} \text{ and } \boldsymbol{x'} \in \mathbb{X}'\} \subseteq \mathbb{R}^{n+n'}. \end{array}$

PROP. The Cartesian product $\mathbb{P} \times \mathbb{P}'$ of two polytopes \mathbb{P} and \mathbb{P}' is a polytope. Moreover $\mathbb{P} \times \mathbb{P}' = \operatorname{conv}(\mathbf{X} \times \mathbf{X}')$ $= \left\{ (\mathbf{x}, \mathbf{x}') \in \mathbb{R}^{n+n'} \middle| \langle (\mathbf{x}, \mathbf{x}') \mid (\mathbf{y}, \mathbf{0}) \rangle \leq c_{\mathbf{y}} \text{ for all } \mathbf{y} \in \mathbf{Y} \right\}$ where $\mathbb{P} = \operatorname{conv}(\mathbf{X}) = \{ \mathbf{x} \in \mathbb{R}^n \mid \langle \mathbf{x} \mid \mathbf{y} \rangle \leq c_{\mathbf{y}} \text{ for all } \mathbf{y} \in \mathbf{Y} \}$. and $\mathbb{P}' = \operatorname{conv}(\mathbf{X}') = \{ \mathbf{x}' \in \mathbb{R}^{n'} \mid \langle \mathbf{x}' \mid \mathbf{y}' \rangle \leq c_{\mathbf{y}'} \text{ for all } \mathbf{y}' \in \mathbf{Y}' \}$.

DIRECT SUM

DEF. $\mathbb{P} \subset \mathbb{R}^n$ and $\mathbb{P}' \subset \mathbb{R}^{n'}$ two polytopes with $\mathbf{0} \in \operatorname{int} \mathbb{P}$ and $\mathbf{0} \in \operatorname{int} \mathbb{P}'$. direct sum $\mathbb{P} \oplus \mathbb{P}' = \operatorname{conv} \left(\left\{ (\boldsymbol{x}, \mathbf{0}) \mid \boldsymbol{x} \in \mathbb{P} \right\} \cup \left\{ (\mathbf{0}, \boldsymbol{x'}) \mid \boldsymbol{x'} \in \mathbb{P}' \right\} \right) \subset \mathbb{R}^{n+n'}$

PROP.
$$\mathbb{P} \oplus \mathbb{P}' = \operatorname{conv} \left(\{ (\boldsymbol{x}, \boldsymbol{0}) \mid \boldsymbol{x} \in \boldsymbol{X} \} \cup \{ (\boldsymbol{0}, \boldsymbol{x}') \mid \boldsymbol{x}' \in \boldsymbol{X}' \} \right)$$

 $= \left\{ (\boldsymbol{x}, \boldsymbol{x}') \in \mathbb{R}^{n+n'} \mid \langle (\boldsymbol{x}, \boldsymbol{x}') \mid (\boldsymbol{y}, \boldsymbol{y}') \rangle \leq 1 \text{ for all } \boldsymbol{y} \in \boldsymbol{Y} \text{ and } \boldsymbol{y}' \in \boldsymbol{Y}' \right\}$
where $\mathbb{P} = \operatorname{conv}(\boldsymbol{X}) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \langle \boldsymbol{x} \mid \boldsymbol{y} \rangle \leq 1 \text{ for all } \boldsymbol{y} \in \boldsymbol{Y} \}.$
and $\mathbb{P}' = \operatorname{conv}(\boldsymbol{X}') = \{ \boldsymbol{x}' \in \mathbb{R}^{n'} \mid \langle \boldsymbol{x}' \mid \boldsymbol{y}' \rangle \leq 1 \text{ for all } \boldsymbol{y}' \in \boldsymbol{Y}' \}.$

exm:

cross-poly.: $\diamondsuit_d = [-1, 1] \oplus \cdots \oplus [-1, 1]$ bipyramid: $\operatorname{Bipyr}(\mathbb{P}) = [-1, 1] \oplus \mathbb{P}$

PROP. $(\mathbb{P} \oplus \mathbb{P}')^{\diamond} = \mathbb{P}^{\diamond} \times \mathbb{P}'^{\diamond}.$

JOIN

DEF. $\mathbb{P} \subset \mathbb{R}^n$ and $\mathbb{P}' \subset \mathbb{R}^{n'}$ two polytopes. <u>join</u> $\mathbb{P} * \mathbb{P}' =$ convex hull of \mathbb{P} and \mathbb{P}' in independent affine subspaces =conv $(\{ (\boldsymbol{x}, \boldsymbol{0}, 1) \mid \boldsymbol{x} \in \mathbb{P} \} \cup \{ (\boldsymbol{0}, \boldsymbol{x'}, -1) \mid \boldsymbol{x'} \in \mathbb{P}' \}) \subset \mathbb{R}^{n+n'+1}$

exm:

simplex: $\triangle_d = \triangle_i * \triangle_{d-i}$ pyramid: $\mathbb{P}yr(\mathbb{P}) = point * \mathbb{P}$ k-fold pyramid: $\mathbb{P}yr_k(\mathbb{P}) = \triangle_{k-1} * \mathbb{P}$

DEF. $X, X' \subseteq \mathbb{R}^n$ (same space!). <u>Minkowski sum</u> $X + X' = \{x + x' \mid x \in X \text{ and } x' \in X'\} \subseteq \mathbb{R}^n$.

PROP. The Minkowski sum $\mathbb{P} + \mathbb{P}'$ of two polytopes \mathbb{P} and \mathbb{P}' is a polytope.

DEF. $X, X' \subseteq \mathbb{R}^n$ (same space!). <u>Minkowski sum</u> $X + X' = \{x + x' \mid x \in X \text{ and } x' \in X'\} \subseteq \mathbb{R}^n$.

PROP. The Minkowski sum $\mathbb{P} + \mathbb{P}'$ of two polytopes \mathbb{P} and \mathbb{P}' is a polytope.

DEF. $X, X' \subseteq \mathbb{R}^n$ (same space!). <u>Minkowski sum</u> $X + X' = \{x + x' \mid x \in X \text{ and } x' \in X'\} \subseteq \mathbb{R}^n$.

PROP. The Minkowski sum $\mathbb{P} + \mathbb{P}'$ of two polytopes \mathbb{P} and \mathbb{P}' is a polytope.

DEF. $X, X' \subseteq \mathbb{R}^n$ (same space!). <u>Minkowski sum</u> $X + X' = \{x + x' \mid x \in X \text{ and } x' \in X'\} \subseteq \mathbb{R}^n$.

PROP. The Minkowski sum $\mathbb{P} + \mathbb{P}'$ is the image of the Cartesian product $\mathbb{P} \times \mathbb{P}'$ under the affine projection $(\boldsymbol{x}, \boldsymbol{x'}) \longmapsto \boldsymbol{x} + \boldsymbol{x'}$.

 $\begin{array}{ll} \mathsf{DEF.} & \mathbb{X}, \mathbb{X}' \subseteq \mathbb{R}^n \text{ (same space!).} \\ \underline{\mathsf{Minkowski sum}} & \mathbb{X} + \mathbb{X}' = \{ \boldsymbol{x} + \boldsymbol{x'} \mid \boldsymbol{x} \in \mathbb{X} \text{ and } \boldsymbol{x'} \in \mathbb{X}' \} \subseteq \mathbb{R}^n. \end{array}$

PROP. For any
$$-1 \le \lambda \le 1$$
, the section of the Cayley polytope
 $Cay(\mathbb{P}, \mathbb{P}') = conv \left(\{ (\boldsymbol{x}, -1) \mid \boldsymbol{x} \in \mathbb{P} \} \cup \{ (\boldsymbol{x'}, 1) \mid \boldsymbol{x'} \in \mathbb{P'} \} \right) \subset \mathbb{R}^{n+1}$
by the hyperplane $\{ \boldsymbol{x} \in \mathbb{R}^{n+1} \mid x_{n+1} = \lambda \}$ is the Minkowski sum $\frac{1-\lambda}{2} \cdot \mathbb{P} + \frac{1+\lambda}{2} \cdot \mathbb{P'}$.

ZONOTOPE

FACES

FACES

DEF. face of a polytope $\mathbb{P}=$

- \bullet either the polytope ${\mathbb P}$ itself,
- \bullet or the intersection of ${\mathbb P}$ with a supporting hyperplane of ${\mathbb P},$
- or the empty set.

NOT.
$$\mathcal{F}(\mathbb{P}) = \{ \text{faces of } \mathbb{P} \}$$
 and $\mathcal{F}_k(\mathbb{P}) = \{ k \text{-dimensional faces of } \mathbb{P} \}.$

EXM: FACES OF CLASSICAL POLYTOPES

PROP. The faces of the *d*-simplex \triangle_d , the *d*-cube \square_d and the *d*-cross-polytope \diamondsuit_d are:

• *d*-simplex \triangle_d :

subset I of $[d+1] \quad \longleftrightarrow \quad \text{face } \triangle_I = \operatorname{conv} \{ e_i \mid i \in I \}.$

- *d*-cube \Box_d : the empty face \varnothing and word w in $\{-1, 0, 1\}^d \iff$ face $\Box_w = \{ \boldsymbol{x} \in \Box_d \mid w_i(x_i - w_i) = 0 \text{ for all } i \in [d] \}.$
- *d*-cross-polytope \Diamond_d : the *d*-cross-polytope \Diamond_d itself and word w in $\{-1, 0, 1\}^d \iff \text{face } \bigtriangleup_w = \operatorname{conv} \{w_i e_i \mid i \in [d] \text{ st } w_i \neq 0\}.$
FACE PROPERTIES

PROP. For a polytope \mathbb{P} ,(a polytope is the convex hull of its vertices),• $\mathbb{P} = \operatorname{conv}(X) \Longrightarrow \mathcal{F}_0(\mathbb{P}) \subseteq X$ (a polytope is the convex hull of its vertices),(all vertices of a polytope are extreme).

PROP. For a face \mathbb{F} of a polytope \mathbb{P} ,

- $\bullet \ \mathbb{F}$ is a polytope,
- $\mathcal{F}_0(\mathbb{F}) = \mathcal{F}_0(\mathbb{P}) \cap \mathbb{F}$,
- $\bullet \ \mathcal{F}(\mathbb{F}) = \{\mathbb{G} \in \mathcal{F}(\mathbb{P}) \mid \mathbb{G} \subseteq \mathbb{F}\} \subseteq \mathcal{F}(\mathbb{P}).$

PROP. $\mathcal{F}(\mathbb{P})$ is stable by intersection: $\mathbb{F}, \mathbb{G} \in \mathcal{F}(\mathbb{P}) \Longrightarrow \mathbb{F} \cap \mathbb{G} \in \mathcal{F}(\mathbb{P}).$

proof ideas: separation theorems, finding a suitable supporting hyperplane, ...

LATTICE

DEF. <u>lattice</u> = partially ordered set (\mathcal{L}, \leq) where any subset $\mathcal{X} \subseteq \mathcal{L}$ admits • a <u>meet</u> $\bigwedge \mathcal{X} =$ greatest lower bound $\bigwedge \mathcal{X} \leq X$ for all $X \in \mathcal{X}$ and $Y \leq X$ for all $X \in \mathcal{X}$ implies $Y \leq \bigwedge \mathcal{X}$.

• a join
$$\bigvee \mathcal{X} = \text{least upper bound}$$

 $X \leq \bigwedge \mathcal{X} \text{ for all } X \in \mathcal{X} \text{ and } X \leq Y \text{ for all } X \in \mathcal{X} \text{ implies } \bigwedge \mathcal{X} \leq Y.$

FACE LATTICE

PROP. The inclusion poset $\mathcal{F}(\mathbb{P})$ of faces of \mathbb{P}

- is a graded lattice (with rank function $rank(\mathbb{F}) = dim(\mathbb{F}) + 1$),
- is <u>atomic</u> (every face is the join of its vertices) and <u>coatomic</u> (every face is the meet of the facets containing it),
- \bullet every interval of $\mathcal{F}(\mathbb{P})$ is the face lattice of a polytope,
- has the diamond property (every interval of rank 2 has 4 elements).

remark:

- any subset $I \subseteq [d+1]$ corresponds to a face $\triangle_I = \operatorname{conv} \{ e_i \mid i \in I \}$ of \triangle_d ,
- $I \subseteq J \iff \triangle_I \subseteq \triangle_J$.

The face lattice of \triangle_d is thus the boolean lattice on subsets of [d+1]:

POLARITY AND FACES

Assume $0 \in int(\mathbb{P})$.

DEF. A face \mathbb{F} of \mathbb{P} defines a polar face $\mathbb{F}^{\diamond} = \{ \boldsymbol{y} \in \mathbb{P}^{\diamond} \mid \langle \boldsymbol{x} \mid \boldsymbol{y} \rangle = 1 \text{ for all } \boldsymbol{x} \in \mathbb{F} \}.$

PROP. The map $\mathbb{F} \longrightarrow \mathbb{F}^{\diamond}$ is a lattice anti-isomorphism $\mathcal{F}(\mathbb{P}) \longrightarrow \mathcal{F}(\mathbb{P}^{\diamond})$.

OPERATIONS AND FACES

PROP. Define $\mathcal{F}_{\star}(\mathbb{P}) = \mathcal{F}(\mathbb{P}) \smallsetminus \{\emptyset\}$ and $\mathcal{F}^{\star}(\mathbb{P}) = \mathcal{F}(\mathbb{P}) \smallsetminus \{\mathbb{P}\}$. Then $\mathcal{F}_{\star}(\mathbb{P} \times \mathbb{P}') = \{\mathbb{F} \times \mathbb{F}' \mid \mathbb{F} \in \mathcal{F}_{\star}(\mathbb{P}) \text{ and } \mathbb{F}' \in \mathcal{F}_{\star}(\mathbb{P}')\}$ $\mathcal{F}^{\star}(\mathbb{P} \oplus \mathbb{P}') = \{\mathbb{F} * \mathbb{F}' \mid \mathbb{F} \in \mathcal{F}^{\star}(\mathbb{P}) \text{ and } \mathbb{F}' \in \mathcal{F}^{\star}(\mathbb{P}')\}$ $\mathcal{F}(\mathbb{P} * \mathbb{P}') = \{\mathbb{F} * \mathbb{F}' \mid \mathbb{F} \in \mathcal{F}(\mathbb{P}) \text{ and } \mathbb{F}' \in \mathcal{F}(\mathbb{P}')\}$

remark: the combinatorial structure of $\mathbb{P} + \mathbb{P}'$ depends on the geometry of \mathbb{P} and \mathbb{P}' .

SIMPLE OR SIMPLICIAL POLYTOPES

- DEF. A d-polytope $\mathbb P$ is
 - simplicial if its vertices are in general position,
 - simple if its facets are in general position.

QU. Show that a simple and simplicial polytope is a polygon or a simplex.

SIMPLE OR SIMPLICIAL POLYTOPES

- DEF. A d-polytope $\mathbb P$ is
 - simplicial if each facet contains d vertices (ie. is a simplex),
 - simple if each vertex is contained in d edges (or equiv. in d facets).

QU. Show that a simple and simplicial polytope is a polygon or a simplex.

SIMPLE OR SIMPLICIAL POLYTOPE OPERATIONS

PROP.	${\mathbb P}$ and ${\mathbb P}'$ simple	\iff	$\mathbb{P} imes \mathbb{P}'$ simple
	${\mathbb P}$ and ${\mathbb P}'$ simplicial	\iff	$\mathbb{P} \oplus \mathbb{P}'$ simplicial
	${\mathbb P}$ and ${\mathbb P}'$ simplices	\iff	$\mathbb{P}*\mathbb{P}'$ simple (or simplicial)

FANS

FAN

DEF. fan \mathcal{F} = collection of polyhedral cones st

- closed by faces: if $\mathbb{C} \in \mathcal{F}$ and \mathbb{C}' is a face of \mathbb{C} , then $\mathbb{C}' \in \mathcal{F}$,
- intersecting properly: if $\mathbb{C}, \mathbb{C}' \in \mathcal{F}$, the intersection $\mathbb{C} \cap \mathbb{C}'$ is a face of \mathbb{C} and \mathbb{C}' .

FACE FAN

DEF. \mathbb{P} polytope with $\mathbf{0} \in int(\mathbb{P})$. \mathbb{F} face of \mathbb{P} . <u>face cone</u> of $\mathbb{F} = cone \mathbb{R}_{\geq 0} \mathbb{F}$ generated by \mathbb{F} . face fan of $\mathbb{P} = collection$ of face cones of all faces of \mathbb{P} .

NORMAL FAN

DEF. \mathbb{P} polytope. \mathbb{F} face of \mathbb{P} .

normal cone of \mathbb{F} = cone generated by outer normal vectors to facets of \mathbb{P} containing \mathbb{F} . normal fan of \mathbb{P} = collection of normal cones of all faces of \mathbb{P} .

FACE FAN VS NORMAL FAN

PROP. If $0 \in int(\mathbb{P})$, then the face fan of \mathbb{P} coincides with the normal fan of \mathbb{P}^{\diamond} .

NORMAL FANS AND POLYTOPE OPERATIONS

DEF. direct sum
$$\mathcal{F} \oplus \mathcal{F}' = \{\mathbb{C} \times \mathbb{C}' \mid \mathbb{C} \in \mathcal{F} \text{ and } \mathbb{C}' \in \mathcal{F}'\}$$

PROP. normal fan of $\mathbb{P} \times \mathbb{P}' = \text{direct sum of normal fans of } \mathbb{P}$ and \mathbb{P}' .

DEF. common refinement
$$\mathcal{F} \wedge \mathcal{F}' = \{\mathbb{C} \cap \mathbb{C}' \mid \mathbb{C} \in \mathcal{F} \text{ and } \mathbb{C}' \in \mathcal{F}'\}$$

PROP. normal fan of $\mathbb{P} + \mathbb{P}' =$ common refinement of normal fans of \mathbb{P} and \mathbb{P}' .

NORMAL FANS OF ZONOTOPES

DEF. common refinement
$$\mathcal{F} \wedge \mathcal{F}' = \{\mathbb{C} \cap \mathbb{C}' \mid \mathbb{C} \in \mathcal{F} \text{ and } \mathbb{C}' \in \mathcal{F}'\}$$

PROP. normal fan of $\mathbb{P} + \mathbb{P}' =$ common refinement of normal fans of \mathbb{P} and \mathbb{P}' .

PROP. normal fans of zonotopes \iff fans defined by hyperplane arrangements.

F-VECTOR & EULER RELATION

$F\operatorname{-VECTOR}$ & $F\operatorname{-POLYNOMIAL}$

DEF. For a d-polytope \mathbb{P} ,

- $f_i(\mathbb{P}) =$ number of *i*-faces of \mathbb{P} ,
- <u>f-vector</u> $f(\mathbb{P}) = (f_0(\mathbb{P}), \dots, f_d(\mathbb{P})),$

• f-polynomial
$$f(\mathbb{P}, x) = \sum_{i=0}^{d} f_i(\mathbb{P}) x^i$$
.

 $f(\Box_3) = 8 + 12x + 6x^2 + x^3$

In fact, it is convenient to define

$$F(\mathbb{P}, x) = \sum_{i=-1}^{d} f_i(\mathbb{P}) x^{i+1}$$

and to consider

$$f(\mathbb{P}, x) = \sum_{i=0}^{d} f_i(\mathbb{P}) x^i = \frac{F(\mathbb{P}, x) - 1}{x}$$

 and

$$\bar{f}(\mathbb{P}, x) = \sum_{i=-1}^{d-1} f_i(\mathbb{P}) x^{i+1} = F(\mathbb{P}, x) - x^{d+1}$$

EXM: F-VECTOR OF CLASSICAL POLYTOPES

PROP. The *f*-vectors and *F*-polynomials of the *d*-simplex \triangle_d , the *d*-cube \square_d and the *d*-cross-polytope \diamondsuit_d are given by

$$f_i(\triangle_d) = \begin{pmatrix} d+1\\ i+1 \end{pmatrix} \qquad f_i(\square_d) = \begin{pmatrix} d\\ i \end{pmatrix} 2^{d-i} \qquad f_i(\diamondsuit_d) = \begin{pmatrix} d\\ i+1 \end{pmatrix} 2^{i+1}$$
$$F(\triangle_d, x) = (x+1)^{d+1} \qquad F(\square_d, x) = 1 + x(x+2)^d \qquad F(\diamondsuit_d, x) = x^{d+1} + (2x+1)^d$$

REM. In other words,

 $F(\Delta_d, x) = (x+1)^{d+1}$ $f(\Box_d, x) = (x+2)^d$ $\bar{f}(\diamondsuit_d, x) = (2x+1)^d$

EXM: F-VECTOR & POLARITY

PROP. $F(\mathbb{P}, x) = x^{d+1}F(\mathbb{P}^\diamond, 1/x)$

<u>proof</u>: $\mathbb{F} \longrightarrow \mathbb{F}^{\diamond}$ anti-isomorphism, thus $f_i(\mathbb{P}) = f_{d-i-1}(\mathbb{P}^{\diamond})$, thus $F_i(\mathbb{P}) = F_{d+1-i}(\mathbb{P}^{\diamond})$.

remark: sanity check on classical polytopes

 $F(\Box_d, x) = 1 + x(x+2)^d \qquad F(\diamondsuit_d, x) = x^{d+1} + (2x+1)^d \qquad F(\bigtriangleup_d, x) = (x+1)^{d+1}$

EXM: F-VECTORS & POLYTOPE OPERATIONS

PROP. The *f*-vectors and *f*-polynomials of the Cartesian product $\mathbb{P} \times \mathbb{P}'$, the direct sum $\mathbb{P} \oplus \mathbb{P}'$ and the join $\mathbb{P} * \mathbb{P}'$ are given by

$$f(\mathbb{P} \times \mathbb{P}', x) = f(\mathbb{P}, x) \cdot f(\mathbb{P}', x)$$
$$\bar{f}(\mathbb{P} \oplus \mathbb{P}', x) = \bar{f}(\mathbb{P}, x) \cdot \bar{f}(\mathbb{P}', x)$$
$$F(\mathbb{P} * \mathbb{P}', x) = F(\mathbb{P}, x) \cdot F(\mathbb{P}', x)$$

remark: sanity check on classical polytopes

$$f(\Box_d, x) = (x+2)^d$$
 $\bar{f}(\diamondsuit_d, x) = (2x+1)^d$ $F(\bigtriangleup_d, x) = (x+1)^{d+1}$

HANNER POLYTOPES

DEF. <u>Hanner polytope</u> = either the segment I = [-1, 1] or a Cartesian product or direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:

- d = 1: interval I,
- d = 2: square $I \oplus I \sim I \times I$,
- d = 3: cube $I^{\times 3} := I \times I \times I$ and cross-polytope $I^{\oplus 3} := I \oplus I \oplus I$,
- d = 4: cube $I^{\times 4}$, cross-polytope $I^{\oplus 4}$, prism over an octahedron $I^{\oplus 3} \times I$ and bipyramid over a cube $I^{\times 3} \oplus I$.

(Schlegel diagrams...)

HANNER POLYTOPES

DEF. <u>Hanner polytope</u> = either the segment I = [-1, 1] or a Cartesian product or direct sum of Hanner polytopes.

EXM. The small dimensional Hanner polytopes are:

- d = 1: interval I,
- d = 2: square $I \oplus I \sim I \times I$,
- d = 3: cube $I^{\times 3} := I \times I \times I$ and cross-polytope $I^{\oplus 3} := I \oplus I \oplus I$,
- d = 4: cube $I^{\times 4}$, cross-polytope $I^{\oplus 4}$, prism over an octahedron $I^{\oplus 3} \times I$ and bipyramid over a cube $I^{\times 3} \oplus I$.

REM. The Hanner polytope $P := (I \times I \times I) \oplus (I \times I \times I)$ cannot be

- a bipyramid: it has 16 vertices each of degree 11,
- a prism: it has 36 facets each of degree 8.

3^D CONJECTURE

DEF. <u>Hanner polytope</u> = either the segment I = [-1, 1] or a Cartesian product or direct sum of Hanner polytopes.

PROP. For any *d*-dimensional Hanner polytope \mathbb{H} ,

 $\sum_{i=0}^{d} f_i(\mathbb{H}) = 3^d.$

 $\underline{\text{proof:}} \ \sum_{i=0}^{d} f_i(\mathbb{H}) = f(\mathbb{H}, 1) = \overline{f}(\mathbb{H}, 1) \text{ together with}$ $f(\mathbb{P} \times \mathbb{P}', x) = f(\mathbb{P}, x) \cdot f(\mathbb{P}', x) \quad \text{ and } \quad \overline{f}(\mathbb{P} \oplus \mathbb{P}', x) = \overline{f}(\mathbb{P}, x) \cdot \overline{f}(\mathbb{P}', x).$

CONJ. (Kalai's 3^d conjecture) If \mathbb{P} is centrally symmetric (meaning $\mathbb{P} = -\mathbb{P}$), then $\sum_{i=0}^d f_i(\mathbb{P}) \ge 3^d,$

with equality if and only if \mathbb{P} is a Hanner polytope.

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

PROP. For any polytope ${\mathbb P}$ and hyperplane ${\mathbb H},$

$$\chi(\mathbb{P}) = \chi(\mathbb{P}^+) + \chi(\mathbb{P}^-) - \chi(\mathbb{P}^\circ).$$

where $\mathbb{P}^+ = \mathbb{P} \cap \mathbb{H}^+$, $\mathbb{P}^- = \mathbb{P} \cap \mathbb{H}^-$ and $\mathbb{P}^\circ = \mathbb{P} \cap \mathbb{H}$.

PROP. For any polytopes
$$\mathbb{P}, \mathbb{Q} \subset \mathbb{R}^n$$
 st $\mathbb{P} \cup \mathbb{Q}$ is a polytope,
 $\chi(\mathbb{P} \cup \mathbb{Q}) + \chi(\mathbb{P} \cap \mathbb{Q}) = \chi(\mathbb{P}) + \chi(\mathbb{Q})$

remark: These conditions define weak valuations and strong valuations. For polytopes, any weak valuation is a strong valuation. Exm: indicator function, volume, number of integer points, etc.

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

THM. (Euler relation)
$$\chi(\mathbb{P}) = f_0(\mathbb{P}) - f_1(\mathbb{P}) + \dots + (-1)^d f_d(\mathbb{P}) = 1.$$

proof: Induction on the dimension.

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

THM. (Euler relation)
$$\chi(\mathbb{P}) = f_0(\mathbb{P}) - f_1(\mathbb{P}) + \dots + (-1)^d f_d(\mathbb{P}) = 1.$$

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

$$\chi(\mathbb{C}\operatorname{ay}(\mathbb{P},\mathbb{R})) = \chi(\mathbb{P}) + \chi(\mathbb{R}) + (-1) \cdot \chi(\mathbb{Q})$$
$$= 1 + 1 - 1 = 1$$

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

THM. (Euler relation)
$$\chi(\mathbb{P}) = f_0(\mathbb{P}) - f_1(\mathbb{P}) + \dots + (-1)^d f_d(\mathbb{P}) = 1.$$

proof: Induction on the dimension.

1. Observe first that it holds for Cayley polytopes (in particular for pyramids):

$$\begin{split} \chi(\mathbb{C}\mathrm{ay}(\mathbb{P},\mathbb{R})) &= \chi(\mathbb{P}) + \chi(\mathbb{R}) + (-1) \cdot \chi(\mathbb{Q}) \\ &= 1 + 1 - 1 = 1 \end{split}$$

2. Choose a Morse function ϕ , slice the polytope \mathbb{P} into Cayley polytopes, and apply the valuation property:

$$\chi(\mathbb{P}) = \chi(\mathbb{P}_0) - \chi(\mathbb{S}_1) + \dots - \chi(\mathbb{S}_k) + \chi(\mathbb{P}_k)$$
$$= 1 - 1 + \dots - 1 + 1 = 1$$

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

THM. (Euler relation)
$$\chi(\mathbb{P}) = f_0(\mathbb{P}) - f_1(\mathbb{P}) + \dots + (-1)^d f_d(\mathbb{P}) = 1.$$

PROP. Let $\mathbb{P}_{i,d} = \mathbb{P}yr^{d-i}(\Box_i)$ for $i \in [d]$. The *f*-vectors $f(\mathbb{P}_{i,d})$ are affinely independent.

 $\begin{array}{l} \underline{\operatorname{proof:}} \ \text{induction on the dimension } d.\\ \hline \text{Affine dependance among } f\text{-vectors} \longleftrightarrow \text{ affine dependance among } F\text{-polynomials.}\\ \mathbb{P}_{i,d} = \Box_i \ast \bigtriangleup_{d-i} \implies F(\mathbb{P}_{i,d},x) = F(\Box_i,x) \cdot F(\bigtriangleup_{d-i},x) = (1+x(x+2)^i) \cdot (x+1)^{d-i+1}.\\ \hline \text{Assume } 0 = \sum_{i=0}^d \lambda_i F(\mathbb{P}_{i,d},x). \ \text{Two cases:}\\ \bullet \text{ if } \lambda_d = 0, \text{ then } 0 = \sum_{i=0}^{d-1} \lambda_i F(\mathbb{P}_{i,d},x) = (x+1) \cdot \sum_{i=0}^{d-1} \lambda_i F(\mathbb{P}_{i,d-1},x) \text{ and induction.}\\ \bullet \text{ if } \lambda_d \neq 0, \text{ then } F(\mathbb{P}_{d,d},x) = -\sum_{i=0}^{d-1} \lambda_i / \lambda_d F(\mathbb{P}_{i,d},x) \\ (1+x(x+2)^d) \cdot (x+1) = -(x+1)^2 \cdot \sum_{i=0}^{d-1} \lambda_i / \lambda_d (1+x(x+2)^i) \cdot (x+1)^{d-i-1} \end{array}$

a contradiction since -1 is a simple root on the left and a double root on the right.

DEF. Euler characteristic
$$\chi(\mathbb{P}) = \sum_{i=0}^{d} (-1)^i f_i(\mathbb{P}) = f(\mathbb{P}, -1).$$

THM. (Euler relation)
$$\chi(\mathbb{P}) = f_0(\mathbb{P}) - f_1(\mathbb{P}) + \dots + (-1)^d f_d(\mathbb{P}) = 1.$$

PROP. Let $\mathbb{P}_{i,d} = \mathbb{P}yr^{d-i}(\Box_i)$ for $i \in [d]$. The *f*-vectors $f(\mathbb{P}_{i,d})$ are affinely independent.

CORO. The Euler relation is the only relation among f-vectors of general polytopes.

F-VECTORS OF 3-POLYTOPES

QU. Describe the effect on the f-vector of the following (polar) operations:

- simple vertex truncation: cut a vertex whose vertex figure is a simplex,
- simplicial facet stacking: stack a vertex on a facet which is a simplex.

QU. What is the f-vector of a pyramid over a p-gon?

QU. Prove that the *f*-vectors of 3-polytopes are the integer vectors $(f_0, f_1, f_2, 1)$ st

$$f_0 - f_1 + f_2 = 2$$
 $f_0 \le 2f_2 - 4$ and $f_2 \le 2f_0 - 4$.

THM. The *f*-vectors of 3-polytopes are the integer vectors $(f_0, f_1, f_2, 1)$ st

 $f_0 - f_1 + f_2 = 2$ $f_0 \le 2f_2 - 4$ and $f_2 \le 2f_0 - 4$.

proof: For one direction, combine the inequalities

- $f_0 f_1 + f_2 = 2$ (Euler relation),
- $2f_1 \ge 3f_0$ (every vertex is contained in at least 3 edges, every edge contains 2 vertices),
- $2f_1 \ge 3f_2$ (every face contains at least 3 edges, every edge is contained in 2 faces).

THM. The *f*-vectors of 3-polytopes are the integer vectors $(f_0, f_1, f_2, 1)$ st

 $f_0 - f_1 + f_2 = 2$ $f_0 \le 2f_2 - 4$ and $f_2 \le 2f_0 - 4$.

proof: For the other direction, observe that

- the *f*-vector of a pyramid over a *p*-gon is (p + 1, 2p, p + 1, 1),
- a simple vertex truncation adds (2, 3, 1, 0) to the f-vector,
- a simplicial facet stacking adds (1, 3, 2, 0) to the *f*-vector.

H-VECTOR & DEHN-SOMMERVILLE RELATIONS

H-VECTOR & H-POLYNOMIAL

DEF. A *d*-polytope is simple if each vertex is contained in *d* facets, or equiv. *d* edges.

DEF. $\mathbb{P} = \text{simple } d\text{-polytope}$,

$$\phi = \underline{\mathsf{Morse function}} \left(\phi(u) \neq \phi(v) \text{ for any edge } (u, v) \text{ of } \mathbb{P} \right)$$

Orient the edges of $\mathbb P$ according to ϕ and define

• $h_j(\mathbb{P}) =$ number of vertices of \mathbb{P} with indegree j,

• h-vector
$$h(\mathbb{P}) = (h_0(\mathbb{P}), \dots, h_d(\mathbb{P})),$$

• h-polynomial
$$h(\mathbb{P}, x) = \sum_{j=0}^{d} h_j(\mathbb{P}) x^j$$
.

$$h(\Box_3) = 1 + 3x + 3x^2 + x^3$$
EXM: *F*-VECTOR OF CLASSICAL POLYTOPES

PROP. The *h*-vectors and *h*-polynomials of the *d*-simplex \triangle_d and the *d*-cube \square_d are given by

$$h_{j}(\Delta_{d}) = 1 \qquad \qquad h_{j}(\Box_{d}) = \binom{d}{j}$$
$$h(\Delta_{d}, x) = \sum_{j=0}^{d} x^{j} = \frac{x^{d+1} - 1}{x - 1} \qquad h(\Box_{d}, x) = \sum_{j=0}^{d} \binom{d}{j} x^{j} = (x + 1)^{d}$$

F-VECTOR VS H-VECTOR

THM. The *f*-vector and *h*-vector of any simple *d*-polytope \mathbb{P} are related by $f_i(\mathbb{P}) = \sum_{j=0}^d \binom{j}{i} h_j(\mathbb{P}) \quad \text{and} \quad h_j(\mathbb{P}) = \sum_{i=0}^d (-1)^{i+j} \binom{i}{j} f_i(\mathbb{P})$ and the *f*-polynomial and *h*-polynomial are related by $f(\mathbb{P}, x) = h(\mathbb{P}, x+1) \quad \text{and} \quad h(\mathbb{P}, x) = f(\mathbb{P}, x-1).$

remark: sanity check on classical polytopes

$$f(\triangle_d, x) = \frac{(x+1)^{d+1} - 1}{x} = h(\triangle_d, x+1) \text{ and } f(\square_d, x) = (x+2)^d = h(\square_d, x+1)$$

F-VECTOR VS H-VECTOR

THM. The *f*-vector and *h*-vector of any simple *d*-polytope \mathbb{P} are related by $f_i(\mathbb{P}) = \sum_{j=0}^d \binom{j}{i} h_j(\mathbb{P}) \quad \text{and} \quad h_j(\mathbb{P}) = \sum_{i=0}^d (-1)^{i+j} \binom{i}{j} f_i(\mathbb{P})$ and the *f*-polynomial and *h*-polynomial are related by $f(\mathbb{P}, x) = h(\mathbb{P}, x+1) \quad \text{and} \quad h(\mathbb{P}, x) = f(\mathbb{P}, x-1).$

<u>proof</u>: double counting the set $S(i, \phi)$ of pairs (v, \mathbb{F}) where \mathbb{F} is an *i*-face of \mathbb{P} and v is the ϕ -maximal vertex of \mathbb{F} :

$$f_i(\mathbb{P}) = \sum_{\mathbb{F}\in\mathcal{F}_i(\mathbb{P})} 1 = |\mathcal{S}(i,\phi)| = \sum_{\boldsymbol{v}\in\mathcal{F}_0(\mathbb{P})} \left(\begin{array}{c} \operatorname{indeg}(\boldsymbol{v}) \\ i \end{array} \right) = \sum_{j=0}^d \left(\begin{array}{c} j \\ i \end{array} \right) h_j(\mathbb{P}).$$

This implies all other relations since

$$\mathsf{LEM.} \ f_i = \sum_{j=0}^d \binom{j}{i} h_j \quad \Longleftrightarrow \quad f(x) = h(x+1) \quad \Longleftrightarrow \quad h_j = \sum_{i=0}^d (-1)^{i+j} \binom{i}{j} f_i.$$

F-VECTOR VS H-VECTOR

DEHN-SOMMERVILLE RELATIONS

<u>proof</u>: consider the Morse functions ϕ and $-\phi$... A degree with ϕ -indegree j has $(-\phi)$ -indegree d - j.

<u>remark</u>: for j = 0, $h_0(\mathbb{P}) = h_d(\mathbb{P})$ is the Euler relation.

DEHN-SOMMERVILLE RELATIONS

PROP. The *f*-vectors $f(\mathbb{Cyc}_{d,d+i}^{\diamond})$ for $i \in [\lfloor d/2 \rfloor + 1]$ are affinely independent.

CORO. The Dehn-Sommerville relations are the only relations among f-vectors of simple polytopes.

MANY FACES: CYCLIC POLYTOPES

MOMENT CURVE & CYCLIC POLYTOPES

DEF. moment curve = curve parametrized by $\mu_d : t \mapsto (t, t^2, \dots, t^d) \in \mathbb{R}^d$. <u>cyclic polytope</u> $\mathbb{Cyc}_d(n) = \operatorname{conv} \{\mu_d(t_i) \mid i \in [n]\}$ for arbitrary reals $t_1 < \dots < t_n$.

exm: two views of $\mathbb{C}yc_3(9)$

remark: we will see later that the combinatorics of $\mathbb{C}yc_d(n)$ is independent of $t_1 < \cdots < t_n$.

CYCLIC POLYTOPES ARE NEIGHBORLY

DEF. moment curve = curve parametrized by $\mu_d : t \mapsto (t, t^2, \dots, t^d) \in \mathbb{R}^d$. <u>cyclic polytope</u> $\operatorname{Cyc}_d(n) = \operatorname{conv} \{\mu_d(t_i) \mid i \in [n]\}$ for arbitrary reals $t_1 < \dots < t_n$.

- THM. The cyclic polytope $\mathbb{C}yc_d(n)$ is
 - simplicial: all facets are simplices,
 - <u>neighborly</u>: all *j*-subsets of vertices define a (j-1)-face of $\mathbb{C}yc_d(n)$ for $j \leq \lfloor d/2 \rfloor$.

proof: use polynomials!

- If $\mu_d(s_1), \ldots, \mu_d(s_{d+1})$ belong to an affine hyperplane $\sum_{i \in [d]} \alpha_i x_i = -\alpha_0$, then s_1, \ldots, s_{d+1} are all roots of the polynomial $\sum_{i=0}^d \alpha_i t^i$. A contradiction.
- For $j \leq \lfloor d/2 \rfloor$ and $s_1, \ldots, s_j \in \{t_1, \ldots, t_n\}$, the polynomial $\sum_{i=0}^d \alpha_i t^i = \prod_{i \in [j]} (t s_i)^2$ is non-negative and vanishes on s_1, \ldots, s_j . Thus the hyperplane $\sum_{i \in [d]} \alpha_i x_i = -\alpha_0$ supports a face of $\mathbb{C}yc_d(n)$ with vertices $\mu_d(s_1), \ldots, \mu_d(s_j)$.

$H\operatorname{-}\mathsf{VECTORS}$ OF POLAR CYCLIC POLYTOPES

CORO. The polar of the cyclic polytope $\mathbb{C}yc_d(n)^\diamond$ is simple and its *h*-vector is given by $h_j = \binom{n-d+j-1}{j}$ for $j \leq \lfloor \frac{d}{2} \rfloor$ and $h_j = \binom{n-j-1}{d-j}$ for $j > \lfloor \frac{d}{2} \rfloor$.

proof:
$$\mathbb{C}yc_d(n)$$
 is neighborly $\implies f_i(\mathbb{C}yc_d(n)) = \binom{n}{i}$ for $i \le \lfloor d/2 \rfloor$
 $\implies f_i(\mathbb{C}yc_d(n)^\diamond) = \binom{n}{d-i}$ for $i > \lfloor d/2 \rfloor$

Therefore

$$h_{j}\left(\mathbb{C}\mathrm{yc}_{d}(n)^{\diamond}\right) = \sum_{i=j}^{d} (-1)^{i+j} \binom{i}{j} \binom{n}{d-i} = \binom{n-j-1}{d-j}. \quad \text{if } j > \left\lfloor \frac{d}{2} \right\rfloor \qquad (\star)$$
$$= h_{d-j}\left(\mathbb{C}\mathrm{yc}_{d}(n)^{\diamond}\right) = \binom{n-d+j-1}{j} \quad \text{if } j \le \left\lfloor \frac{d}{2} \right\rfloor$$

For (\star) , check that

- it holds when j = 0 and j = d, and
- if it holds for (j, d) and (j + 1, d) then it holds for (j + 1, d + 1).

THM. (Upper Bound Theorem, McMullen) For any d-polytope \mathbb{P} with n vertices: $f_i(\mathbb{P}) \leq f_i(\mathbb{C}yc_d(n)).$

remark:

- clear for $i \leq \lfloor d/2 \rfloor$ since $f_i(\mathbb{Cyc}_d(n)) = \binom{n}{i+1}$,
- equivalent to polar version $f_i(\mathbb{P}) \leq f_i(\mathbb{C}yc_d(n)^\diamond)$ for any *d*-polytope \mathbb{P} with *n* facets,
- enough to prove it for simplicial/simple polytopes,
- thus implied by *h*-vector version:

THM. (Upper Bound Theorem, McMullen) For any simple *d*-polytope \mathbb{P} with *n* facets: $h_j(\mathbb{P}) \leq \binom{n-d+j-1}{j}$ for $j \leq \lfloor \frac{d}{2} \rfloor$ and $h_j(\mathbb{P}) \leq \binom{n-j-1}{d-j}$ for $j > \lfloor \frac{d}{2} \rfloor$.

THM. (Upper Bound Theorem, McMullen) For any simple *d*-polytope
$$\mathbb{P}$$
 with *n* facets:
 $h_j(\mathbb{P}) \leq \binom{n-d+j-1}{j}$ for $j \leq \lfloor \frac{d}{2} \rfloor$ and $h_j(\mathbb{P}) \leq \binom{n-j-1}{d-j}$ for $j > \lfloor \frac{d}{2} \rfloor$.

proof:

1. $h_i(\mathbb{F}) \leq h_i(\mathbb{P})$ for $\mathbb{F} \in \mathcal{F}_{d-1}(\mathbb{P})$

 ϕ obtained by perturbation of the inner normal of \mathbb{F} then $\mathrm{indeg}_{\mathbb{F}}(\boldsymbol{v}) = \mathrm{indeg}_{\mathbb{P}}(\boldsymbol{v})$ for all $\boldsymbol{v} \in \mathbb{F}$

THM. (Upper Bound Theorem, McMullen) For any simple *d*-polytope
$$\mathbb{P}$$
 with *n* facets:
 $h_j(\mathbb{P}) \leq \binom{n-d+j-1}{j}$ for $j \leq \lfloor \frac{d}{2} \rfloor$ and $h_j(\mathbb{P}) \leq \binom{n-j-1}{d-j}$ for $j > \lfloor \frac{d}{2} \rfloor$.

proof:

Let $\boldsymbol{v} \in \mathbb{F}$, and e the edge of \mathbb{P} st $\boldsymbol{v} \in e \not\subset \mathbb{F}$

then $\operatorname{indeg}_{\mathbb{F}}(\boldsymbol{v}) = i \iff \begin{cases} \operatorname{indeg}_{\mathbb{P}}(\boldsymbol{v}) = i \text{ and } e \text{ leaving } \boldsymbol{v}, \text{ or} \\ \operatorname{indeg}_{\mathbb{P}}(\boldsymbol{v}) = i + 1 \text{ and } e \text{ entering } \boldsymbol{v}. \end{cases}$

THM. (Upper Bound Theorem, McMullen) For any simple *d*-polytope
$$\mathbb{P}$$
 with *n* facets:
 $h_j(\mathbb{P}) \leq \binom{n-d+j-1}{j}$ for $j \leq \lfloor \frac{d}{2} \rfloor$ and $h_j(\mathbb{P}) \leq \binom{n-j-1}{d-j}$ for $j > \lfloor \frac{d}{2} \rfloor$.

proof:

1.
$$h_i(\mathbb{F}) \leq h_i(\mathbb{P})$$
 for $\mathbb{F} \in \mathcal{F}_{d-1}(\mathbb{P})$
 ϕ obtained by perturbation of the inner normal of \mathbb{F}
then $\operatorname{indeg}_{\mathbb{F}}(\boldsymbol{v}) = \operatorname{indeg}_{\mathbb{P}}(\boldsymbol{v})$ for all $\boldsymbol{v} \in \mathbb{F}$
2. $\sum_{\mathbb{F} \in \mathcal{F}_{d-1}(\mathbb{P})} h_i(\mathbb{F}) = (d-i) h_i(\mathbb{P}) + (i+1) h_{i+1}(\mathbb{P})$
Let $\boldsymbol{v} \in \mathbb{F}$, and e the edge of \mathbb{P} st $\boldsymbol{v} \in e \not\subset \mathbb{F}$
then $\operatorname{indeg}_{\mathbb{F}}(\boldsymbol{v}) = i \iff \begin{cases} \operatorname{indeg}_{\mathbb{P}}(\boldsymbol{v}) = i \text{ and } e \text{ leaving } \boldsymbol{v}, \text{ or } \\ \operatorname{indeg}_{\mathbb{P}}(\boldsymbol{v}) = i+1 \text{ and } e \text{ entering } \boldsymbol{v}. \end{cases}$

 $1+2 \implies (d-i) h_i(\mathbb{P}) + (i+1) h_{i+1}(\mathbb{P}) \le n h_i(\mathbb{P}) \implies h_{i+1}(\mathbb{P}) \le \frac{n+a-i}{i+1} h_i(\mathbb{P}).$ and induction...

DEF. For $I \subseteq [n] = \{1, \ldots, n\}$, define

- block of I =intervals of I,
- even block of I =block of I of even size,
- internal block of I =block of I that does not contain 1 or n.

THM. (Gale's evenness criterion) For a *d*-subset *I* of [n], conv { $\mu_d(t_i) \mid i \in I$ } is a facet of $\mathbb{C}yc_d(n) \iff$ all internal blocks of *I* are even.

<u>exm</u>: The facets $\mathbb{C}yc_3(n)$ correspond to $\{i, i+1, n\}$ and $\{1, i+1, i+2\}$ for $i \in [n-2]$.

DEF. For $I \subseteq [n] = \{1, \ldots, n\}$, define

- block of I = maximal intervals of I,
- even block of I =block of I of even size,
- internal block of I =block of I that does not contain 1 or n.

THM. (Gale's evenness criterion) For a *d*-subset *I* of [n], conv { $\mu_d(t_i) \mid i \in I$ } is a facet of $\mathbb{C}yc_d(n) \iff$ all internal blocks of *I* are even.

<u>proof</u>: For any $I = \{i_1, \ldots, i_d\} \subseteq [n]$ and $k \in [n]$, the position of $\mu_d(t_k)$ with respect to the hyperplane \mathbb{H} containing $\mu_d(t_{i_1}), \ldots, \mu_d(t_{i_d})$ is given by the sign of the Vandermonde determinant

$$\det \begin{bmatrix} 1 & \dots & 1 & 1 \\ t_{i_1} & \dots & t_{i_d} & t_k \\ \vdots & \ddots & \vdots & \vdots \\ t_{i_1}^d & \dots & t_{i_d}^d & t_k^d \end{bmatrix} = \prod_{1 \le p < q \le d} (t_{i_q} - t_{i_p}) \prod_{1 \le p \le d} (t_k - t_{i_p}).$$

which is 0 if $k \in I$ and -1 to the parity of the number of $p \in [d]$ such that $i_p > k$. Therefore, all points $\mu_d(t_k)$ lie on the same side of \mathbb{H} iff all internal blocks of I are even.

THM. (Gale's evenness criterion) For a *d*-subset *I* of [n], conv { $\mu_d(t_i) \mid i \in I$ } is a facet of $\mathbb{C}yc_d(n) \iff$ all internal blocks of *I* are even.

CORO. $\mathbb{C}yc_d(n)$ is neighborly and independent of the choice of $t_1 < \cdots < t_n$.

proof:

- neighborly since for any <≤ ⌊d/2⌋, any j-subset can be completed into a d-subset satisfying Gale's evenness criterion (complete all odd blocks and add the remaining elements at the end).
- independent of the choice of $t_1 < \cdots < t_n$ since Gale's evenness criterion tells the vertices-facets incidences, which determine the whole combinatorics.

THM. (Gale's evenness criterion) For a *d*-subset *I* of [n], conv { $\mu_d(t_i) \mid i \in I$ } is a facet of $\mathbb{C}yc_d(n) \iff$ all internal blocks of *I* are even.

CORO. $\mathbb{C}yc_d(n)$ is neighborly and independent of the choice of $t_1 < \cdots < t_n$.

CORO.
$$f_{d-1}(\operatorname{Cyc}_d(n)) = \binom{n - \lceil \frac{d}{2} \rceil}{\lfloor \frac{d}{2} \rfloor} + \binom{n - 1 - \lceil \frac{d-1}{2} \rceil}{\lfloor \frac{d-1}{2} \rfloor}.$$

<u>proof</u>: number of 2k-subsets of [n] where all blocks are even = $\binom{n-k}{k}$

 $\circ \bullet \circ \bullet \bullet \bullet \bullet \circ \circ \bullet \bullet \quad \longleftrightarrow \quad \circ \bullet \circ \bullet \bullet \circ \circ \bullet$

Then case analysis:

1 in an odd blockotherwisen in an odd blockd even
$$\begin{pmatrix} n-2-\frac{d-2}{2} \\ \frac{d-2}{2} \end{pmatrix} \\ \frac{d-2}{2} \end{pmatrix} d odd$$
 $\begin{pmatrix} n-1-\frac{d-1}{2} \\ \frac{d-1}{2} \end{pmatrix} \\ \begin{pmatrix} n-1-\frac{d-1}{2} \\ \frac{d-1}{2} \end{pmatrix} \end{pmatrix}$ otherwised odd $\begin{pmatrix} n-1-\frac{d-1}{2} \\ \frac{d-1}{2} \end{pmatrix} \\ \frac{d-1}{2} \end{pmatrix} d$ d even $\begin{pmatrix} n-\frac{d}{2} \\ \frac{d}{2} \end{pmatrix} \end{pmatrix}$

FEW FACES: STACKED POLYTOPES

STACKING OVER A FACET

DEF. stacking over a facet \mathbb{F} of \mathbb{P} = constructing $conv(\mathbb{P} \cup \{p\})$ where p is beyond \mathbb{F} but beneath all other facets of \mathbb{P} .

LEM. If \mathbb{P}' is obtained from \mathbb{P} by staking on \mathbb{F} , then

$$f_0(\mathbb{P}') = f_0(\mathbb{P}) + 1,$$

$$f_i(\mathbb{P}') = f_i(\mathbb{P}) + f_{i-1}(\mathbb{F}), \quad \text{for } 0 \le i \le d-2,$$

$$f_{d-1}(\mathbb{P}') = f_{d-1}(\mathbb{P}) + f_{d-2}(\mathbb{F}) - 1.$$

$F\operatorname{-VECTORS}$ of stacked polytopes

LEM. The *f*-vector of a stacked polytope on d + n vertices is

$$f_0 = d + 1 + n,$$

$$f_i = \binom{d+1}{i+1} + n\binom{d}{i} \quad \text{for } 0 \le i \le d-2,$$

$$f_{d-1} = d + 1 + n(d-1).$$

LOWER BOUND THEOREM

THM. (Lower Bound Theorem, Barnette) For any simplicial d-polytope \mathbb{P} with n vertices:

 $f_i(\mathbb{P}) \ge f_i(\mathbb{Q})$

where \mathbb{Q} is a stacked polytope on n vertices. Moreover, equality holds $\iff d = 3$ or $d \ge 4$ and \mathbb{P} is stacked.

GRAPHS OF POLYTOPES

POLYTOPE SKELETA

DEF. \mathbb{P} *d*-polytope, $k \leq d$. <u>graph</u> of \mathbb{P} = graph with same vertices and edges as \mathbb{P} . *k*-skeleton of \mathbb{P} = all $\leq k$ -dimensional faces of \mathbb{P} .

POLYTOPAL GRAPHS

DEF. \mathbb{P} *d*-polytope, $k \leq d$. <u>graph</u> of \mathbb{P} = graph with same vertices and edges as \mathbb{P} . *k*-skeleton of \mathbb{P} = all $\leq k$ -dimensional faces of \mathbb{P} .

QU. Which of the following graphs are graphs of polytopes? In which dimension?

POLYTOPAL GRAPHS

DEF. \mathbb{P} *d*-polytope, $k \leq d$. <u>graph</u> of \mathbb{P} = graph with same vertices and edges as \mathbb{P} . *k*-skeleton of \mathbb{P} = all $\leq k$ -dimensional faces of \mathbb{P} .

QU. Which of the following graphs are graphs of polytopes? In which dimension?

GRAPHS & POLYTOPE OPERATIONS

PROP. Define $E^{\star}(\mathbb{P}) = E(\mathbb{P}) \smallsetminus \{\mathbb{P}\}$ (if dim $\mathbb{P} = 1$, then $E^{\star}(\mathbb{P}) = \emptyset$). $V(\mathbb{P} \times \mathbb{P}') = V(\mathbb{P}) \times V(\mathbb{P}')$ $E(\mathbb{P} \times \mathbb{P}') = (V(\mathbb{P}) \times E(\mathbb{P}')) \cup (E(\mathbb{P}) \times V(\mathbb{P}'))$ $V(\mathbb{P} \oplus \mathbb{P}') = V(\mathbb{P}) \cup V(\mathbb{P}')$ $E(\mathbb{P} \oplus \mathbb{P}') = E^{\star}(\mathbb{P}) \cup E^{\star}(\mathbb{P}') \cup (V(\mathbb{P}) \times V(\mathbb{P}'))$ $V(\mathbb{P} * \mathbb{P}') = V(\mathbb{P}) \cup V(\mathbb{P}')$ $E(\mathbb{P} * \mathbb{P}') = E(\mathbb{P}) \cup E(\mathbb{P}') \cup (V(\mathbb{P}) \times V(\mathbb{P}'))$

GRAPHS OF 3-POLYTOPES

THM. (Steinitz) 3-polytopal \iff planar and 3-connected.

Different proofs are possible:

- See Ziegler, Lect. 4 for the proof based on ΔY operations.
- Lift Tutte's barycentric embedding.

THM. (Mnëv, Richter-Gebert) Polytopality of graphs is NP-hard.

SOME NECESSARY CONDITIONS

- THM. If G is the graph of a d-polytope, then
- (1) Balinski's Theorem: G is d-connected.
- (2) <u>Principal Subdivision Property</u>: Every vertex of G is the principal vertex of a principal subdivision of K_{d+1} .
- (3) Separation Property: The maximal number of components into which G may be separated by removing n > d vertices equals $f_{d-1}(\operatorname{Cyc}_d(n))$.

THM. (Whitney) In a 3-polytope, graphs of faces = non-separating induced cycles.

REM. In general, the graph does not determine the face lattice of the polytope (even for a fixed dimension).

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope \mathbb{P} . An orientation \mathcal{O} of G is:

- acyclic = no oriented cycle,
- good = each face of \mathbb{P} has a unique sink.

Intuitively, good acyclic orientations of $G \quad \longleftrightarrow \quad$ linear orientations of $\mathbb P$

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope \mathbb{P} . An orientation \mathcal{O} of G is:

- $\underline{acyclic} = no oriented cycle$,
- good = each face of \mathbb{P} has a unique sink.
- 1. Good acyclic orientations can be recognized from G: $h_j(\mathcal{O}) =$ number indegree j vertices for \mathcal{O} . $F(\mathcal{O}) := h_0(\mathcal{O}) + 2 h_1(\mathcal{O}) + \dots + 2^d h_d(\mathcal{O})$. Since \mathbb{P} is simple, each indegree j vertex is a sink in 2^j faces. Thus $F(\mathcal{O}) \geq$ number of faces of \mathbb{P} with equality iff \mathcal{O} is good.

THM. (Blind & Mani-Levitska, Kalai)

Two simple polytopes with isomorphic graphs have isomorphic face lattices.

proof: G graph of a simple d-polytope \mathbb{P} . An orientation \mathcal{O} of G is:

- $\underline{acyclic} = no oriented cycle$,
- $\underline{good} = each face of \mathbb{P}$ has a unique sink.
- 1. Good acyclic orientations can be recognized from G
- 2. Faces of \mathbb{P} can be determined from good acyclic orientations: H regular induced subgraph of G, with vertices W. H is the graph of a face of \mathbb{P}

 $\iff W$ is initial wrt some good acyclic orientation.

- \Longrightarrow perturb a linear functional defining the face
- \Leftarrow assume *H k*-regular subgraph of *G* induced by *W* initial for \mathcal{O} .
- Let v be a sink of H, and \mathbb{F} be the k-face containing the k edges of H incident to v.
- Since $\mathcal O$ is good, v is the unique sink of the graph of $\mathbb F.$
- Since W is initial, all vertices of \mathbb{F} are in W.
- Since H and the graph of $\mathbb F$ are k-regular, they coincide.

DIAMETERS OF POLYTOPES & THE SIMPLEX METHOD

DEF. diameter of G = minimum δ such that any two vertices are connected by a path with at most δ edges.

 $\Delta(d, n) =$ maximal diameter of a d-polytope with at most n facets.

<u>remark</u>: diameters of polytopes are important in linear programming and its resolution via the classical simplex algorithm.

CONJ. (Hirsh, disproved by Santos) $\Delta(d, n) \leq n - d$.

PROB. Is $\Delta(d, n)$ bounded polynomially in both n and d.

THM. (Kalai and Kleitman) $\Delta(d, n) \leq n^{\log_2(d)+1}$.

THM. (Barnette, Larman)
$$\Delta(d,n) \leq \frac{2^{d-2}}{3}n.$$

