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THE S-WEAK ORDER

Ceballos—Pons, The s-weak order | & Il ('227)



S-WEAK ORDER

s = (s1,...,5,) weak composition
s-tree = tree on [n| where ¢ has s; + 1 children, which are either leaves of nodes > i

s-weak order = s-trees ordered by T < T" if pos(T, i, 7) < pos(T’,4,j) forall 1 <i < j<n
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THM. The s-weak order is a polygonal, semidistributive, and congruence uniform lattice
Ceballos—Pons, The s-weak order | & I ('227)




ASCENTS AND DESCENTS IN S-TREES

Fix 1 <i<j<n
ascent (resp. descent) of an s-tree T = (i, j) such that

o1 <1< y3<n

e i is the greatest ancestor of j such that the increasing path from ¢
to j in T takes the leftmost (resp. rightmost) outgoing edge at
each node, except at node ¢

e either s; = 0 or the leftmost (resp. rightmost) edge of j is a leaf




COVER RELATIONS IN S-WEAK ORDER

Fix 1 <i<j<n
ascent (resp. descent) of an s-tree T = (i, j) such that

o1 <1< y3<n

e i is the greatest ancestor of j such that the increasing path from ¢
to j in T takes the leftmost (resp. rightmost) outgoing edge at
each node, except at node ¢

e either s; = 0 or the leftmost (resp. rightmost) edge of j is a leaf

PROP. The s-trees covered by (resp. covering) an s-tree are obtained

by flipping one of its descents (resp. ascents)
Ceballos—Pons, The s-weak order | & Il ('227)




S-WEAK ORDER

When s = (1,1,...,1),

s-trees — permutations
s-weak order — weak order
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More generally, if s contains no 0,
s-trees — Stirling s-permutations



S-TAMARI LATTICE

s- Tamari tree = s-tree T such that pos(T,a,b) > pos(T,a,c) forany 1 <a<b<c<n

s-Tamari lattice = sublattice of the s-weak order induced by s-Tamari trees

= (1,2,0)
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THM. The s-Tamari trees induce a sublattice of the s-weak order
Ceballos—Pons, The s-weak order | & Il ('227)




S-TAMARI LATTICE

s- Tamari tree = s-tree T such that pos(T,a,b) > pos(T,a,c) forany 1 <a<b<c<n

s-Tamari lattice = sublattice of the s-weak order induced by s-Tamari trees

= (1,2,0) @% %/%@ s =(2,1,0)
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THM. The s-Tamari trees induce a sublattice of the s-weak order
Ceballos—Pons, The s-weak order | & Il ('227)




S-TAMARI LATTICE

When s = (1,1,...,1)

,Tamari s-trees — binary trees
s- Tamari lattice o Tamari lattice
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More generally, if s contains no 0,

s-Tamari trees — Stirling s-permutations avoiding 312



INSERTION IN BUSHES

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24)



INSERTION IN INCREASING BINARY TREES

increasing binary tree = binary tree where each node is smaller than its children

increasing binary tree insertion of generic x € R" =

e root = 1
o left subtree = {i € 2,n] | z; < 21}
o right subtree = {j € 2,n] | x; < z,}




INSERTION IN S-TREES

For each generic x € R", we construct an s-tree T(s, ) inductively as follows:
e start with a single leaf
e at step 7,
— attach a new node j to the leaf between two labels (u, p) and (v, o)
such that z, —p <z, <2, —0
— attach s; + 1 leaves to the node j, with gaps labeled by (7,s; —1),...,(4,1),(4,0)
— add max(0, s; — 1) to the second entry of all gap labels on the left of j

T3 —3<T9g<xg—1

s=1(1,2,2,0,2,2,1,2,1)
x=(57,3,53.5,3.75,5.5,1,.5)




S-FOAM

s-foam = polytopal complex formed by the fibers of the insertion in s-trees

s =(1,2,0) s=(2,1,0)

PROP. Hasse diagram of the s-weak order ~ oriented dual graph of the s-foam

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




S-FOAM

s-foam = complete polytopal complex formed by the fibers of the insertion in s-bushes

s =(1,2,0) s=(2,1,0)

PROP. Hasse diagram of the s-weak order ~ oriented dual graph of the s-foam

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




INSERTION IN S-BUSHES

For each x € R", we construct an s-bush B(s, x) inductively as follows:
e start with a single leaf
e at step 7,
— attach a new node j to
« either the leaf between two labels (u, p) and (v,0) such that z,—p <z, < x,—0
« or the two leaves around a gap label (w,7) such that z; =z, — 7
— attach s; + 1 leaves to the node j, with gaps labeled by (j,s; —1),...,(4,1), (4,0)
(except, if s; = 0 and j has indegree 2, then we attach 2 leaves with gap label (j,0))
— add max(0, s; — 1) to the second entry of all gap labels on the left of j
T3 —3 < Tg<xg—1
s=(1,2,2,0,2,2,1,2,1) T3 — 3 < 25 < 75— 2
x = (5,6,3,54,4,5.5,1,.5) T4 < 27 < T




S-FOAM

s-foam = complete polytopal complex formed by the fibers of the insertion in s-bushes

s =(1,2,0) s=(2,1,0)

PROP. Hasse diagram of the s-weak order ~ oriented dual graph of the s-foam

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




FACIAL S-WEAK ORDER

facial s-weak order = s-bushes ordered by B < B’ if for 1 <i < j <n,
Ipos(B, 7, j) > Ipos(B', 4, 7) and rpos(B, 4, j) < rpos(B’, 1, j)

s=(1,2,0) 30 /%%\\ s=(2,1,0)
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Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)



CANONICAL REPRESENTATIONS OF S-TREES

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24)



S-ARCS

©
s-arc = quintuple (7, j, A, B, r) with ©)
e <1< 7<n
e A and B form a partition of {k € |7, j| | sy # 0} 20 &
o €[] b
Q) &
4 s-arcs — Z s, o#H{keliil | 50} 2
1<i<ji<n @ 0
Q T, ()
PROP. join irreducible s-trees <+— s-arcs —> meet irreducible s-trees

T(a) «— a = Ti(a)

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




NON-CROSSING S-ARC DIAGRAMS

two s-arcs (2,5, A, B,r) and (¢, 5", A", r") with 7 < 7’ are non-crossing if 7 < j' and either

o j <7
ei<i<jandi e Aandj¢ A and A'NJi,j[C AN, |
ei<i <jandi? e Bandjé¢ B and A NJi,j| D AN|, |
ei=7andr <7 and j¢ A" and A'Ni,j| C AN]i, '
oi:i’andr:r’andsj:OandA’ li, 5= AN, 7
ei=4 andr >r"and j ¢ B' and A'N}i,j| D AN]i, ']
ei’<iandic A and j ¢ B and A'N]i,j[ D AN, ']
e/ <iandie€ B'and j ¢ A and A'N]i,j[C AN, |

PROP. bijection s-trees — non-crossing s-arc diagrams
T — ou(T)={(:,4,A,B,r) | (i,7) descent of T}

encoding canonical join representations

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




NON-CROSSING S-ARC DIAGRAMS

PROP. bijection T — dy(T) encoding canonical join representations T = \/ T ()
CYECS\/(T)

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)

1
N s=(2,1,0)




CANONICAL COMPLEX OF THE S-WEAK ORDER

PROP.
canonical join complex of the s-weak order «—> non-crossing s-arc diagram complex
canonical complex of the s-weak order «— semi-crossing s-arc bidiagram complex

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




QUOTIENTS OF THE S-WEAK ORDER

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24)



SUBARC ORDER

(¢, 7, A, B,r) subarc of (i, 5', A’, B',r") if all the following conditions hold
o <i< <y
e AC A and BC B’
oif s; =0 then j = j'
o if i/ =ithenr=1r
o if / <itheneitheric A andr=1,0ori € B and r = s

subarc order = s-arcs ordered by the subarc relation

s=(1,2,0) ™ -
I1/3\_/C \, \XD\ /C/(/

1

. I1 . 11 . QI s =(2,1,0)

PROP. forcing order on join irreducible s-tree «— subarc order on s-arcs

Philippe—P., Geometric realizations of the s-weak order and its quotients ('247)




CONGRUENCE LATTICE OF THE S-WEAK ORDER

CORO. congruence of the s-weak order +— down set of the subarc order on s-arcs
Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)
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s =(1,2,0) s=(2,1,0)



SOME RELEVANT CONGRUENCES

s-sylvester congruence = down set of arcs is the set of right arcs (i, j, {k € |7, j| | sk # 0}

quotient = s-Tamari lattice...
... but different from that of Ceballos—Pons when s contains some 0

a-Cambrian congruence = down set of arcs is the set of subarcs of «

CONJ. The following only depend on the endpoints of a:
e the cardinality of the a-Cambrian lattice
e the f-vector of the canonical join complex of the a-Cambrian lattice
e the undirected cover graph of the a-Cambrian lattice
e the face poset of the a-Cambrian foam, or dually, of the a-Cambrian quotientoplex

d:{ken]|si#0} - {D,] Q,&} decoration

d-permutree congruence = down set of arcs which do not pass on the right of a point j

with 6(j) € {®@,®} nor on the left of the points j with §(j) € {®, ®}.



GEOMETRIC REALIZATIONS

Ceballos—Pons, The s-weak order | & Il ('227)
Gonzalez-D'Ledn—Morales—Philippe—Tamayo-Jiménez—Yip,

Realizing the s-permutahedron via flow polytopes ('23™)

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24)



S-FAOM

PROP. Hasse diagram of the s-weak order ~ oriented dual graph of the s-foam

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




QUOTIENT FAOMS

s-arc a = (1,4, A, B,r)

a-shard X, = polyhedron of R" defined by
o the equality z; —z; =7 — 1+ ), _pmax(0,s; — 1),
e the inequalities z; —x, > 7 — 1+ ZkeBm]i’a[maX(O, s — 1) for all a € A, and
o the inequalities z; —xy <r—1+ ), 5 max(0, s, — 1) forall b € B.




QUOTIENT FAOMS

THM. Hasse diagram of the quotient of the s-weak order by a congruence =
+— oriented dual graph of the polyhedral complex obtained equivalently by
e glueing the maximal cells of the s-foam corresponding to congruent s-trees for =
e keeping only the a-shards for o uncontracted by =

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




QUOTIENT FAOMS

THM. Hasse diagram of the quotient ~ oriented dual graph of the quotient foam

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)
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s=(2,1,0)



SHARDOPLEXES

s-arc o = (4,5, A,B,r) — arc a = (1,4, A, B)
g vertex of the s-foam
local shard polytope 59 = face of the shard polytope SIP; maximizing the scalar product

with the vector
Z (qg—qz-—’rJrl— Z max (0, s — 1)

¢€li.jl ke B)i (|

€y.

N——"

shardoplex = polytopal complex formed by the local shard polytopes 59 for all vertices q

of the quotient foam



SHARDOPLEXES

s-arc o = (4,5, A,B,r) — arc a = (1,4, A, B)
g vertex of the s-foam
local shard polytope 59 = face of the shard polytope SIP; maximizing the scalar product

with the vector
Z (qe —q,— T+ 1 — Z max((),sk — 1))65

¢€li.jl ke B)i (|

shardoplex = polytopal complex formed by the local shard polytopes 59 for all vertices q

of the quotient foam

s:(l,Q,O)% %
/N /N \X\ /X/

\ / \ s=1(2,1,0)



SHARDOPLEXES

s-arc o = (4,5, A,B,r) — arc a = (1,4, A, B)
g vertex of the s-foam
local shard polytope 59 = face of the shard polytope SIP; maximizing the scalar product

with the vector
Z (qe —q,— T+ 1 — Z max((),sk — 1>)€g

¢€li.jl ke BNi (]

shardoplex = polytopal complex formed by the local shard polytopes 59 for all vertices g

of the quotient foam

s:(1,2,0)$<< }Jﬁ
/N /N \X\ /X/

X %7( X -' s=(2,1,0)
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QUOTIENTOPLEXES

= congruence of the s-weak order
quotientoplex ()= = polytopal complex obtained as the Minkowski sum of the shardo-

plexes 5, of the s-arcs a uncontracted by =

/
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THM. e Hasse diagram of the quotient ~ oriented skeleton of the quotientoplex Q=
e quotientoplex )= is a polytopal subdivision of the quotientope Q=

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




QUOTIENTOPLEXES

THM. e Hasse diagram of the quotient ~ oriented skeleton of the quotientoplex Q-
e quotientoplex Q)= is a polytopal subdivision of the quotientope Q)=

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)
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= (1,2,0) ~ S s=(2,1,0)
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QUOTIENTOPLEXES

THM. e Hasse diagram of the quotient ~ oriented skeleton of the quotientoplex Q-
e quotientoplex Q)= is a polytopal subdivision of the quotientope Q)=

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)

For the trivial congruence, this solves the conjecture of Ceballos—Pons

THM. Hasse diagram of the s-weak order ~ oriented skeleton of polytopal subdivision

of a graphical zonotope combinatorially equivalent to ) siconv{e;, e}

1<i<j<n

Gonzalez-D'Leén—Morales—Philippe—Tamayo-Jiménez-Yip, Realizing the s-permutahedron via flow polytopes ('231)
Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)




QUOTIENTOPLEXES

THM. e Hasse diagram of the quotient ~ oriented skeleton of the quotientoplex Q-
e quotientoplex Q)= is a polytopal subdivision of the quotientope Q)=

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)

trivial congruence sylvester congruence




QUOTIENTOPLEXES

THM. e Hasse diagram of the quotient ~ oriented skeleton of the quotientoplex Q-
e quotientoplex Q)= is a polytopal subdivision of the quotientope Q)=

Philippe—P., Geometric realizations of the s-weak order and its quotients ('24™)

trivial congruence sylvester congruence



QUOTIENTOPLEXES

s=(1,2,1,1)
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