3. THE S-WEAK ORDER AND ITS QUOTIENTS

V. PILAUD (Univ. Barcelona)

arXiv:2405.02092 E. PHILIPPE

THE S-WEAK ORDER

S-WEAK ORDER

 $oldsymbol{s} = (s_1, \dots, s_n)$ weak composition $oldsymbol{\underline{s}-tree} = \mathsf{tree}$ on [n] where i has $s_i + 1$ children, which are either leaves of nodes > i $oldsymbol{\underline{s}-weak order} = oldsymbol{s}$ -trees ordered by $T \leq T'$ if $\mathrm{pos}(T, i, j) \leq \mathrm{pos}(T', i, j)$ for all $1 \leq i < j \leq n$

THM. The s-weak order is a polygonal, semidistributive, and congruence uniform lattice

Ceballos–Pons, *The s-weak order I & II* ('22⁺)

ASCENTS AND DESCENTS IN S-TREES

Fix $1 \le i < j \le n$ ascent (resp. descent) of an s-tree T = (i, j) such that

- $1 \le i < j \le n$
- ullet is the greatest ancestor of j such that the increasing path from i to j in T takes the leftmost (resp. rightmost) outgoing edge at each node, except at node i
- either $s_j = 0$ or the leftmost (resp. rightmost) edge of j is a leaf

COVER RELATIONS IN S-WEAK ORDER

Fix $1 \le i < j \le n$ ascent (resp. descent) of an s-tree T = (i, j) such that

- $1 \le i < j \le n$
- ullet is the greatest ancestor of j such that the increasing path from i to j in T takes the leftmost (resp. rightmost) outgoing edge at each node, except at node i
- either $s_j = 0$ or the leftmost (resp. rightmost) edge of j is a leaf

PROP. The s-trees covered by (resp. covering) an s-tree are obtained by flipping one of its descents (resp. ascents)

Ceballos-Pons, The s-weak order I & II ('22⁺)

S-WEAK ORDER

More generally, if s contains no 0, s-trees \longleftrightarrow Stirling s-permutations

S-TAMARI LATTICE

 \underline{s} -Tamari tree = s-tree T such that $pos(T, a, b) \ge pos(T, a, c)$ for any $1 \le a < b < c \le n$ \underline{s} -Tamari lattice = sublattice of the s-weak order induced by s-Tamari trees

THM. The s-Tamari trees induce a sublattice of the s-weak order

Ceballos-Pons, The s-weak order I & II ('22⁺)

S-TAMARI LATTICE

<u>s-Tamari tree</u> = s-tree T such that $pos(T, a, b) \ge pos(T, a, c)$ for any $1 \le a < b < c \le n$ s-Tamari lattice = sublattice of the s-weak order induced by s-Tamari trees

THM. The s-Tamari trees induce a sublattice of the s-weak order

Ceballos-Pons, The s-weak order I & II ('22⁺)

S-TAMARI LATTICE

More generally, if s contains no 0, s-Tamari trees \leftarrow

Stirling s-permutations avoiding 312

INSERTION IN BUSHES

INSERTION IN INCREASING BINARY TREES

increasing binary tree = binary tree where each node is smaller than its children increasing binary tree insertion of generic $x \in \mathbb{R}^n$ =

- \bullet root = 1
- left subtree = $\{i \in [2, n] \mid x_i < x_1\}$
- right subtree = $\{j \in [2, n] \mid x_1 < x_j\}$

INSERTION IN S-TREES

For each generic $x \in \mathbb{R}^n$, we construct an s-tree T(s, x) inductively as follows:

- start with a single leaf
- \bullet at step j,
 - attach a new node j to the leaf between two labels (u,ρ) and (v,σ) such that $x_u \rho < x_i < x_v \sigma$
 - attach $s_j + 1$ leaves to the node j, with gaps labeled by $(j, s_j 1), \ldots, (j, 1), (j, 0)$
 - add $\max(0,s_j-1)$ to the second entry of all gap labels on the left of j

s-foam =

polytopal complex formed by the fibers of the insertion in s-trees

PROP. Hasse diagram of the s-weak order \simeq oriented dual graph of the s-foam

S-FOAM

s-foam = complete polytopal complex formed by the fibers of the insertion in s-bushes

PROP. Hasse diagram of the s-weak order \simeq oriented dual graph of the s-foam

INSERTION IN S-BUSHES

For each $x \in \mathbb{R}^n$, we construct an s-bush B(s,x) inductively as follows:

- start with a single leaf
- \bullet at step j,
 - attach a new node j to
 - * either the leaf between two labels (u, ρ) and (v, σ) such that $x_u \rho < x_i < x_v \sigma$
 - * or the two leaves around a gap label (w, τ) such that $x_j = x_w \tau$
 - attach $s_j + 1$ leaves to the node j, with gaps labeled by $(j, s_j 1), \ldots, (j, 1), (j, 0)$ (except, if $s_j = 0$ and j has indegree 2, then we attach 2 leaves with gap label (j, 0))
 - add $\max(0, s_j 1)$ to the second entry of all gap labels on the left of j

S-FOAM

s-foam = complete polytopal complex formed by the fibers of the insertion in s-bushes

PROP. Hasse diagram of the s-weak order \simeq oriented dual graph of the s-foam

FACIAL S-WEAK ORDER

 $\frac{\text{facial } s\text{-weak order}}{\text{lpos}(\mathbf{B},i,j) \geq \text{lpos}(\mathbf{B}',i,j)} \text{ and } \operatorname{rpos}(\mathbf{B},i,j) \leq \operatorname{rpos}(\mathbf{B}',i,j)$

CANONICAL REPRESENTATIONS OF S-TREES

S-ARCS

s-arc = quintuple (i, j, A, B, r) with

- $1 \le i < j \le n$
- A and B form a partition of $\{k \in]i, j[\mid s_k \neq 0 \}$
- $r \in [s_i]$

s-arcs =
$$\sum_{1 \le i < j \le n} s_i 2^{\#\{k \in]i,j[\mid s_k \ne 0\}}$$

PROP. join irreducible s-trees \longleftarrow s-arcs \longrightarrow meet irreducible s-trees $T_{\lor}(\alpha) \longleftarrow \alpha \longmapsto T_{\land}(\alpha)$

NON-CROSSING S-ARC DIAGRAMS

two s-arcs (i, j, A, B, r) and (i', j', A', r') with $j \leq j'$ are non-crossing if j < j' and either

- $j \leq i'$
- i < i' < j and $i' \in A$ and $j \notin A'$ and $A' \cap]i, j[\subseteq A \cap]i', j'[$
- i < i' < j and $i' \in B$ and $j \notin B'$ and $A' \cap]i, j[\supseteq A \cap]i', j'[$
- i = i' and r < r' and $j \notin A'$ and $A' \cap [i, j] \subseteq A \cap [i', j']$
- \bullet i = i' and r = r' and $s_j = 0$ and $A' \cap]i, j[= A \cap]i', j'[$
- $\bullet i = i' \text{ and } r > r' \text{ and } j \notin B' \text{ and } A' \cap [i, j] \supseteq A \cap [i', j']$
- \bullet i' < i and $i \in A'$ and $j \notin B'$ and $A' \cap]i, j[\supseteq A \cap]i', j'[$
- ullet i' < i and $i \in B'$ and $j \notin A'$ and $A' \cap]i, j[\subseteq A \cap]i', j'[$

PROP. bijection s-trees \longrightarrow non-crossing s-arc diagrams

$$T \longmapsto \delta_{\vee}(T) = \{(i, j, A, B, r) \mid (i, j) \text{ descent of } T\}$$

encoding canonical join representations

$$T = \bigvee_{\alpha \in \delta_{\vee}(T)} T_{\vee}(\alpha)$$

NON-CROSSING S-ARC DIAGRAMS

PROP. bijection $T \mapsto \delta_{\vee}(T)$ encoding canonical join representations $T = \bigvee_{\alpha \in \delta_{\vee}(T)} T_{\vee}(\alpha)$

CANONICAL COMPLEX OF THE S-WEAK ORDER

PROP.

canonical join complex of the s-weak order \longleftrightarrow non-crossing s-arc diagram complex canonical complex of the s-weak order \longleftrightarrow semi-crossing s-arc bidiagram complex

QUOTIENTS OF THE S-WEAK ORDER

SUBARC ORDER

(i,j,A,B,r) subarc of (i',j',A',B',r') if all the following conditions hold

- $i' \le i < j \le j'$
- \bullet $A \subseteq A'$ and $B \subseteq B'$
- if $s_j = 0$ then j = j'
- if i' = i then r = r'
- \bullet if i' < i then either $i \in A'$ and r = 1, or $i \in B'$ and $r = s_i$

subarc order = s-arcs ordered by the subarc relation

PROP. forcing order on join irreducible s-tree \longleftrightarrow subarc order on s-arcs

CONGRUENCE LATTICE OF THE S-WEAK ORDER

CORO. congruence of the s-weak order \longleftrightarrow down set of the subarc order on s-arcs

SOME RELEVANT CONGRUENCES

<u>s-sylvester congruence</u> = down set of arcs is the set of right arcs $(i, j, \{k \in]i, j[\mid s_k \neq 0 \}$ quotient = s-Tamari lattice...

... but different from that of Ceballos–Pons when s contains some 0

 α -Cambrian congruence = down set of arcs is the set of subarcs of α

CONJ. The following only depend on the endpoints of α :

- ullet the cardinality of the lpha-Cambrian lattice
- the f-vector of the canonical join complex of the α -Cambrian lattice
- ullet the undirected cover graph of the lpha-Cambrian lattice
- the face poset of the α -Cambrian foam, or dually, of the α -Cambrian quotientoplex

 $\delta: \{k \in [n] \mid s_k \neq 0\} \rightarrow \{\emptyset, \emptyset, \emptyset, \emptyset\}$ decoration

 $\underline{\pmb{\delta}\text{-permutree congruence}} = \text{down set of arcs which do not pass on the right of a point } j$ with $\pmb{\delta}(j) \in \{ \heartsuit, \lozenge \}$ nor on the left of the points j with $\pmb{\delta}(j) \in \{ \diamondsuit, \lozenge \}$.

GEOMETRIC REALIZATIONS

Ceballos-Pons, The s-weak order I & II ('22⁺)
González-D'León-Morales-Philippe-Tamayo-Jiménez-Yip,
Realizing the s-permutahedron via flow polytopes ('23⁺)
Philippe-P., Geometric realizations of the s-weak order and its quotients ('24⁺)

S-FAOM

PROP. Hasse diagram of the s-weak order \simeq oriented dual graph of the s-foam

QUOTIENT FAOMS

s-arc $\alpha = (i, j, A, B, r)$

 α -shard $\Sigma_{\alpha} = \text{polyhedron of } \mathbb{R}^n \text{ defined by }$

- the equality $x_i x_j = r 1 + \sum_{k \in B} \max(0, s_k 1)$,
- the inequalities $x_i x_a \ge r 1 + \sum_{k \in B \cap [i,a[} \max(0, s_k 1))$ for all $a \in A$, and
- the inequalities $x_i x_b \le r 1 + \sum_{k \in B \cap [i,b[} \max(0, s_k 1))$ for all $b \in B$.

QUOTIENT FAOMS

THM. Hasse diagram of the quotient of the s-weak order by a congruence \equiv \longleftrightarrow oriented dual graph of the polyhedral complex obtained equivalently by

- ullet glueing the maximal cells of the s-foam corresponding to congruent s-trees for \equiv
- ullet keeping only the lpha-shards for lpha uncontracted by \equiv

QUOTIENT FAOMS

THM. Hasse diagram of the quotient \simeq oriented dual graph of the quotient foam

s-arc $\alpha = (i, j, A, B, r) \longrightarrow \text{arc } \tilde{\alpha} = (i, j, A, B)$

q vertex of the s-foam

local shard polytope \mathbb{S}^q_α = face of the shard polytope $\mathbb{SP}_{\tilde{\alpha}}$ maximizing the scalar product with the vector

$$\sum_{\ell \in]i,j]} \left(\boldsymbol{q}_{\ell} - \boldsymbol{q}_{i} - r + 1 - \sum_{k \in B \cap]i,\ell[} \max(0,s_{k}-1) \right) \boldsymbol{e}_{\ell}.$$

 $\underline{\mathsf{shardoplex}} = \mathsf{polytopal}$ complex formed by the local shard polytopes \mathbb{S}^q_α for all vertices q of the quotient foam

s-arc $\alpha = (i, j, A, B, r) \longrightarrow \text{arc } \tilde{\alpha} = (i, j, A, B)$

q vertex of the s-foam

local shard polytope \mathbb{S}^q_{α} = face of the shard polytope $\mathbb{SP}_{\tilde{\alpha}}$ maximizing the scalar product with the vector

$$\sum_{\ell \in]i,j]} \left(\boldsymbol{q}_{\ell} - \boldsymbol{q}_{i} - r + 1 - \sum_{k \in B \cap]i,\ell[} \max(0, s_{k} - 1) \right) \boldsymbol{e}_{\ell}.$$

 $\underline{\sf shardoplex} = {\sf polytopal}$ complex formed by the local shard polytopes \mathbb{S}^q_{α} for all vertices q of the quotient foam

s-arc $\alpha = (i, j, A, B, r) \longrightarrow \text{arc } \tilde{\alpha} = (i, j, A, B)$

q vertex of the s-foam

local shard polytope \mathbb{S}^q_α = face of the shard polytope $\mathbb{SP}_{\tilde{\alpha}}$ maximizing the scalar product with the vector

$$\sum_{\ell \in]i,j]} (\boldsymbol{q}_{\ell} - \boldsymbol{q}_{i} - r + 1 - \sum_{k \in B \cap]i,\ell[} \max(0, s_{k} - 1)) \boldsymbol{e}_{\ell}.$$

 $\underline{\sf shardoplex} = {\sf polytopal}$ complex formed by the local shard polytopes \mathbb{S}^q_{α} for all vertices q of the quotient foam

 \equiv congruence of the s-weak order $\underline{\mathsf{quotientoplex}}\ \mathbb{Q}_{\equiv} = \mathsf{polytopal}\ \mathsf{complex}\ \mathsf{obtained}\ \mathsf{as}\ \mathsf{the}\ \mathsf{Minkowski}\ \mathsf{sum}\ \mathsf{of}\ \mathsf{the}\ \mathsf{shardoplexes}\ \mathbb{S}_{\alpha}$ of the s-arcs α uncontracted by \equiv

THM. ullet Hasse diagram of the quotient \simeq oriented skeleton of the quotientoplex \mathbb{Q}_{\equiv}

ullet quotientoplex \mathbb{Q}_{\equiv} is a polytopal subdivision of the quotientope $\mathbb{Q}_{ ilde{\equiv}}$

- THM. ullet Hasse diagram of the quotient \simeq oriented skeleton of the quotientoplex \mathbb{Q}_{\equiv}
 - ullet quotientoplex \mathbb{Q}_{\equiv} is a polytopal subdivision of the quotientope $\mathbb{Q}_{\widetilde{\equiv}}$

$$\boldsymbol{s} = (1, 2, 0)$$

- THM. ullet Hasse diagram of the quotient \simeq oriented skeleton of the quotientoplex \mathbb{Q}_{\equiv}
 - ullet quotientoplex \mathbb{Q}_{\equiv} is a polytopal subdivision of the quotientope $\mathbb{Q}_{\widetilde{\equiv}}$

Philippe-P., Geometric realizations of the s-weak order and its quotients ('24 $^+$)

For the trivial congruence, this solves the conjecture of Ceballos-Pons

THM. Hasse diagram of the s-weak order \simeq oriented skeleton of polytopal subdivision of a graphical zonotope combinatorially equivalent to $\sum_{1 \le i \le j \le n} s_i \operatorname{conv}\{e_i, e_k\}$

González-D'León-Morales-Philippe-Tamayo-Jiménez-Yip, Realizing the s-permutahedron via flow polytopes ('23⁺)

Philippe-P., Geometric realizations of the s-weak order and its quotients ('24⁺)

- THM. ullet Hasse diagram of the quotient \simeq oriented skeleton of the quotientoplex \mathbb{Q}_{\equiv}
 - ullet quotientoplex \mathbb{Q}_{\equiv} is a polytopal subdivision of the quotientope $\mathbb{Q}_{\widetilde{\equiv}}$

- THM. ullet Hasse diagram of the quotient \simeq oriented skeleton of the quotientoplex \mathbb{Q}_{\equiv}
 - ullet quotientoplex \mathbb{Q}_{\equiv} is a polytopal subdivision of the quotientope $\mathbb{Q}_{\widetilde{\equiv}}$

$$s = (1, 2, 1, 1)$$

