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“Lattice congruences on the weak order
know a lot of combinatorics and geometry
related to Coxeter groups.”

Reading, Finite Coxeter groups and the weak order ('16)
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PERMUTAHEDRA & ASSOCIAHEDRA

P.—Santos—Ziegler, Celebrating Loday's associahedron ('23)



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]

ordered by paths of simple transpositions ordered by paths of right rotations



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X

4321 M
3421 4231 4312 m
3241 2431 3412 4213 4132 2
3214 2341 3142 2413 4123 1432 s S s
<7
2314]  [3124] [2143] 1342 1423 A A A\
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1234 Al
weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

sylvester congruence = equivalence classes are sets of linear extensions of binary trees
= equivalence classes are fibers of BST insertion
= rewriting rule UacVbW =1, UcaVbW with a < b < ¢




LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X
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weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

sylvester congruence = equivalence classes are sets of linear extensions of binary trees

= equivalence classes are fibers of BST insertion
= rewriting rule UacVbW =g, UcaVOW with a <b < ¢



LATTICES: WEAK ORDER AND TAMARI LATTICE

lattice = partially ordered set L where any X C L admits a meet A X and a join \/X

4321 M
3421 4231 4312 m
3241 2431 3412 4213 4132 2
3214 2341 3142 2413 4123 1432 s S s
<7
2314]  [3124] [2143] 1342 1423 A A A\
2134 1324 1243 <l
1234 Al
weak order = permutations of |n] Tamari lattice = binary trees on [n]
ordered by paths of simple transpositions ordered by paths of right rotations

lattice congruence = equivalence relation = which respects meets and joins

r=2'andy=vy = asAy=2'Ay andzVy=2'Vy
quotient lattice = lattice on classes with X <Y «—= daxe X, yeY z <y




FANS: BRAID FAN AND SYLVESTER FAN

polyhedral cone = positive span of a finite set of vectors

= intersection of a finite set of linear half-spaces
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fan = collection of polyhedral cones closed by faces

and where any two cones intersect along a face
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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braid fan =

— {a: c R" ‘ T(1) < .- <$0—(n)}
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sylvester fan = X(é

CT)={xeR"|z;<z;jifi—=jinT}



FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces

braid fan =

C(a):{meR”‘xa(l)g-..<aza(n)} CT)={xeR"|z;<z;jifi—75inT}



FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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braid fan = sylvester fan :f

C(U)Z{%GR”‘xa(l)g---§$a(n)} C(T)Z{CBER”|$¢§IJ- ifz'—>jinT}

quotient fan = C(T) is obtained by glueing C(o) for all linear extensions o of T’




FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces
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FANS: BRAID FAN AND SYLVESTER FAN

fan = collection of polyhedral cones closed by faces and intersecting along faces

4231
DS

braid fan = sylvester fan =

C(U):{wER”‘xa(l)g-..<xa(n)} CT)={xeR"|z;<z;jifi—jinT}

quotient fan = C(T) is obtained by glueing C(o) for all linear extensions o of T’




POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points
= bounded intersection of a finite set of affine half-spaces

face = intersection with a supporting hyperplane
face lattice = all the faces with their inclusion relations /

>
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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permutahedron PPerm(n)

= conv {[0‘1(72)]2-6[71] ‘ o€ Gn}
=H0 ﬂ@#&@[n} H,

associahedron Asso(n) /

= conv {[E(T, i) - (T, 1) icm ‘ T binary tree}

=H N ﬂ1<z’<j<n H[z’,j] Stasheff ('63)
T Shnider—Sternberg ('93)

where H ; = {:1: c R" ‘ D s T > (m;l)} Loday ('04)



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points
= bounded intersection of a finite set of affine half-spaces
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POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

polytope = convex hull of a finite set of points

= bounded intersection of a finite set of affine half-spaces
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permutahedron PPerm(n)
= conv {[0_1(1')]2-6[71] ’ s Gn}

=Hn ﬂQ#JQ[n] H

associahedron Asso(n) //\

= conv {[E(T, i) - 1m(T,0))icm) ’ T binary tree}

=H N ﬂ1<i<j<n H[i,j] Stasheff ('63)
- Shnider-Sternberg ('93)

where H; = {a: c R" ‘ ZJ-EJ x; > (|J|2+1)} Loday ('04)



POLYTOPES: PERMUTAHEDRON AND ASSOCIAHEDRON

RORWIOOD




outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov
Media File (video/quicktime)


LATTICES — FANS — POLYTOPES

S

f s
ATRLKINK
NSie

normal cone of I' = positive span of the outer normal vectors of the facets containing I
normal fan of IP = { normal cone of I’ | I’ face of P }

) L

face IF of polytope IP




LATTICES — FANS — POLYTOPES

permutahedron Perm(n)

— braid fan

—> weak order on permutations

A T S3421
4312 A
L3412
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associahedron Asso(n)

— Sylvester fan

— Tamari lattice on binary trees
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MY ZOO OF LATTICE QUOTIENTS

Reading, Lattice congruences, fans and Hopf algebras ('
Reading, Finite Coxeter groups and the weak order ('
Novelli-Reutenauer-Thibon, Generalized descent patterns in permutations (
Hivert—Novelli-Thibon, The algebra of binary search trees (’
P., Brick polytopes, lattice quotients, and Hopf algebras ('
Chatel-P., Cambrian algebras ('
P.—Pons, Permutrees ('
Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees ('
Law—Reading, The Hopf algebra of diagonal rectangulations ('
Reading, Generic rectangulations ('
Cardinal-P., Rectangulotopes ('24™"

05)
16)
11)
05)
18)
17)
18)
12)
12)
12)

)



EXM 1: BOOLEAN LATTICE & CUBE

recoils of o € &,, = positions i € [n — 1] such that o71(4) > o7 1(i + 1)

recoils congruence = “same recoils’ = transitive closure of UijV = UjiV if |i — j| > 1




EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

G*(n) = graph with vertex set [n] and edge set {{z’,j} e [n]? ‘ i <j<i+ k}

& 7 7 Ao Ao A 7 5

k-recoils of 7 € &,, = acyclic orientation of G*(n) with edge i — j for all 7, € [n] such
that |i — j| < k and 771(3) < 771(j)

Novelli-Reutenauer—Thibon, Generalized descent patterns in permutations and associated Hopf Algebras ('11)

k-recoils congruence = “same k-recoils” = transitive closure of UijV = UjiV if |i—j| > k
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EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

\
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Z.ono"( e, el
|z ]|<k

Vertices «— acyclic orientations
of G¥(n)

connections to
e matroids and oriented matroids
e hyperplane arrangements



EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES

— —_— Zono"(n) = > [e;, €]
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EXM 2: K-RECOIL SCHEME LATTICE & ZONOTOPES
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EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

binary search tree insertion of 2751346

AR \ \ \
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sylvester congruence = “same binary tree”
= transitive closure of UacVOW = UcaVbW where a < b < ¢
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EXM 3: TAMARI LATTICE & LODAY'S ASSOCIAHEDRON

Loday's associahedron

Asso(n) = conv {L(T) | T binary tree} = H n () HZ(i,j) = Y Ay,

1<i<j<n+1 1<i<j<n+1

ST
qu,j):{wewﬂ inz(J ;* )}
1<k<j

Shnider-Sternberg, Quantum groups: From coalgebras to Drinfeld algebras ('93)
Loday, Realization of the Stasheff polytope ('04)

L(T) = [(T,i) - r(T,4)]

i€[n+1]




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

12345 12345 12345 12345
j J g o g |
T , = T
J _J r__) jr__J J jr__d
Ins JJ 1
J
12345 1 5y Ly D m ir m
k=0 k=1 k=2 k=3

(k,n)-twist = pipe dream in the trapezoidal shape of height n and width k

contact graph of a twist T = vertices are pipes of T and arcs are elbows of T




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row i and column 57 <+—  diagonal |7, j] of the (n + 2)-gon
(1, n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T*
contact graph of T — dual binary tree of T*
elbow flips in T — diagonal flips in T*
1 345

0 6

N\
/ \ 7 N\
1 3

4
7N\ 7\ 3

1 D

Woo, Catalan numbers and Schubert Polynomials for w = 1(n+1)...2. ('04)
Stump, A new perspective on k-triangulations ('11)
P.—Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row i and column 57 <+—  diagonal |7, j] of the (n + 2)-gon
(1, n)-twist T <— triangulation T* of the (n + 2)-gon
pth relevant pipe of T — pth triangle of T*
contact graph of T — dual binary tree of T*
elbow flips in T — diagonal flips in T*
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Woo, Catalan numbers and Schubert Polynomials for w = 1(n+1)...2. ('04)
Stump, A new perspective on k-triangulations ('11)
P.—Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Correspondence

elbow in row i and column j <+— diagonal |7, j| of the (n + 2k)-gon

(k,n)-twist T +— k-triangulation T* of the (n + 2k)-gon
pth relevant pipe of T — pth k-star of T*
contact graph of T —— dual graph of T*
elbow flips in T T diagonal flips in T*
J

Stump, A new perspective on k-triangulations ('11)
P.—Pocchiola, Multitriangulations, pseudotriangulations and primitive sorting networks ('12)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

k-twist insertion of 31542 k=2
12345 12345 12345
R A
. NS [T z z
3 3 1, 5 3 3
2
1 1 1 1 1 1
k-twist congruence = “same k-twist’ P., Brick polytopes, lattice quotients, and Hopf algebras ('18)

= transitive closure of UacVibiVaoby ... VibiW = UcaVibVabs ... VbW
where a < b; < ¢ for all 7 € [k]
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EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

brick vector of a (k,n)-twist T = vector b(T) € R” fjar’ Lo
with b(T); = number of boxes below the ith pipe of T

brick polytope

Brick®(n) = conv {b(T) | T (k, n)-twist}

Vertices +— acyclic (k, n)-twists

Facets <— 0/1-seqs with no
subseqs 101
for ¢ > k

connections to

e Loday associahedron

e incidence cones

of binary trees ja_j-’

e Tamari lattice

k=1

J

P.—Santos, The brick polytope of a sorting network ('12)
P.—Stump, Brick polytopes of spherical subword complexes and generalized associahedra ('{5)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

1 34
1 3 4

brick vector of a (k,n)-twist T = vector b(T) € R" }[j’dﬁ" j[fdrj—’

with b(T); = number of boxes below the ith pipe of T

brick polytope
Brick®(n) = conv {b(T) | T (k, n)-twist}

Vertices +— acyclic (k, n)-twists
Facets <— 0/1-seqs with no
subseqs 101
for ¢ > k

connections to

e Loday associahedron jﬁf——fj-’
e incidence cones =g
of binary trees

e [amari lattice

k=2

P.—Santos, The brick polytope of a sorting network ('12)
P.—Stump, Brick polytopes of spherical subword complexes and generalized associahedra

T

5)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

brick vector of a (k,n)-twist T = vector b(T) € R” f;:;ﬂ JIA
: 1 -

with b(T); = number of boxes below the ith pipe of T

|

e

C

brick polytope
Brick"(n) = conv {b(T) | T (k,n)-twist} §

Vertices +— acyclic (k, n)-twists
Facets <— 0/1-seqs with no
subseqs 101
for ¢ > k

J.f

connections to JL;'

e Loday associahedron

o A1
e incidence cones =
of binary trees jf‘
e [amari lattice
30" L —3 JFdr;_:j"
P.—Santos, The brick polytope of a sorting network ('

P.—Stump, Brick polytopes of spherical subword complexes and generalized assoc:ahedra_({‘rg)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) C  Brick polytope Brick"(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) <  Brick polytope Brick"(n) € Zonotope Zono*(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) <  Brick polytope Brick"(n) € Zonotope Zono*(n)

Brick'(n) Zono' (n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) <  Brick polytope Brick"(n) € Zonotope Zono*(n)

Brick'(n) Zono' (n)
U U
Brick*(n) Z.ono*(n)



EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) <  Brick polytope Brick"(n) € Zonotope Zono*(n)

Brick'(n) Zono' (n)
U U
Brick*(n) Z.ono*(n)
U U

Brick®(n) Z.ono®(n)




EXM 4: K-TWIST LATTICE & BRICK POLYTOPES

Permutahedron Perm(n) <  Brick polytope Brick"(n) € Zonotope Zono*(n)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

2 4 7
3
¢ 5
i
1 416
permutree = directed (bottom to top) and labeled (bijectively by [n]) tree such that
? ?

<) | =1 <0 | =)

j ) f M
A

P.—Pons, Permutrees ('18)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

Examples. decoration permutrees
" > permutations of [n]
Q" — standard binary search trees
{D, @} — Cambrian trees
X" — binary sequences
3 6,7 11213,415\6;,7
)
172Y3%'4'576"'7 ‘1 2 415 172Y3'4°5%'6° 7
permutation binary tree Cambrian tree binary sequence

P.—Pons, Permutrees ('18)



EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

J-permutree insertion of 2751346
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)-permutree congruence = ‘'same J-permutree”

= tr. cl. UacVOW = UcaVbW where a < b < c and §, € {®D,®}
and UbVacW = UbVcaW where a < b < cand §, € {®,®}

4321
3421 4231
3241 2431 3412
3214 2341 3142
2314 3124 2143
2134 1324
1234

2413

I

4312 /////////iégi\\\\\\\\\

4213 4132 5&} %;? %té
N

4123 1432

4

1342 1423

<

P.—Pons, Permutrees ('18)
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EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA

permutreehedron

PT(5) = conv{L(T) | T 6-permutree} = H N (| H~()

1 5-cut

H=(I) = {az c R"*!

L(T) = [1 +di T4 — Zm] i€[n+1]

oz ()

P.—Pons, Permutrees ('18)




EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA
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EXM 5: PERMUTREE LATTICES AND PERMUTREEHEDRA
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outsidahedra_permutreehedra_penche_framed_ultraFast_bothWays_reversed_cropped.mov
Media File (video/quicktime)


EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Twin binary trees = pair of binary trees with opposite canopy

= (S, T) where S and T°P have a common linear extension

Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees ('12)

in bijection with diagonal rectangulations

Law—Reading, The Hopf algebra of diagonal rectangulations ('12)

Baxter insertion = insert ¢ in a binary tree and ¢°P in another binary tree




EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Twin binary trees = pair of binary trees with opposite canopy

= (S, T) where S and T°P have a common linear extension

Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees ('12)

in bijection with diagonal rectangulations

Law—Reading, The Hopf algebra of diagonal rectangulations ('12)

Baxter insertion = insert ¢ in a binary tree and ¢°P in another binary tree




EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter congruence = “same twin binary trees’ = tr. cl. of UbVacWt' X = UbVecaWb' X

et

where a < b,V < ¢
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EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter congruence = “same twin binary trees’ = tr. cl. of UbVacWt' X = UbVecaWb' X

where a < b,V < ¢




EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter polytope = Minkowski sum of two opposite associahedra

= conv {L(R) | R diagonal rectangulation}

_ i 7 P g ,

L = Zie[n] (v} - b — vy - h) - €
\ ) Law—Reading, The Hopf algebra of diagonal rectangulations ('12)
Cardinal-P., Rectangulotopes ('24™)



EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS

Baxter polytope = Minkowski sum of two opposite associahedra

= conv {L(R) | R diagonal rectangulation}

General tuplization process:

e tuples of objects representing classes
e intersection of lattice congruences
e Minkowski sum of polytopes

Law—Reading, The Hopf algebra of diagonal rectangulations ('12)
Cardinal-P., Rectangulotopes ('24™)



EXM 6: TWIN BINARY TREES AND DIAGONAL RECTANGULATIONS
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EXM 7: GENERIC RECTANGULATIONS

generic rectangulations = rectangulations of the square / wall slides

12

10

11

13

14

15

16

generic rectangulation congruence = tr. cl. of

UbVdWaeXcY = UbVdWeaXcY
UdVbiWaeXcY = UdVbiWeaXcY
UcVaeWbXdY = UcVeaWbXdY
UcVaeWdXbY = UcVealWdXbY

wherea<b<c<d<e

Reading, Generic rectangulations ('12)



EXM 7: GENERIC RECTANGULATIONS

generic rectangulations = rectangulations of the square / wall slides

Reading, Generic rectangulations ('12)




EXM 7: GENERIC RECTANGULATIONS

generic rectangulations polytope = conv { L(R) | R generic rectangulation}

(12

Cardinal-P., Rectangulotopes ('24™)



DEIAGONAL RECTANGULATIONS VS. GENERIC RECTANGULATIONS

diagonal rectangulations generic rectangulations
twisted / cotwisted Baxter permutations 2-clumped / 2-coclumped permutations
up and down arcs up, down, yin and yang arcs

Cardinal-P., Rectangulotopes ('24™)



SUMMARY OF CONGRUENCE Z0O

lattice congruence = equiv. rel. = on L which respects meets and joins

r=2 and y=14 — crANy=2'ANy and zVy=2 VY

sylvester congruence multiplization Cambrianization tuplization
ceac---b--- ceeac--obyeocbpeoo leftif be {@, Q) intersection
=.--ca---b--- =---ca---by---bp--- rightif b e {®D R} of congruences
fa<b<ec ifa<b <c
1 2345 !
,_JI___)I_)
I
b,
o\ sty lshg 17 ~ 1 416

binary trees multitriangulations permutrees diagonal rectangulations



LATTICE THEORY OF THE WEAK ORDER

Reading, Lattice congruences, fans and Hopf algebras

Reading, Noncrossing arc diagrams and canonical join representations
Reading, Finite Coxeter groups and the weak order

Reading, Lattice theory of the poset of regions



CANONICAL JOIN REPRESENTATIONS

join representation of y € L = subset J C L such that y =\/ J
y =\ J irredundant if AJ C J with y =\/J’

ordered by containement of order ideals: J < J' «<— Vze J e J,6 2<7

canonical join representation of ¥ = minimal irredundant join representation of y

— lowest way to write y as a join

— a canonical join representation is an antichain of join irreducible elements of L



DISTRIBUTIVE & SEMIDISTRIBUTIVE LATTICES

(L, <, A, V) finite lattice is

e distributive if xt V (y A z) = (zVy)A(zV z) for any z,y,z € L

e join semidistributive if t Vy =2V z impliesx V (y A z) =z Vy forany z,y,z € L

e semidistributive if both join and meet semidistributive

| aVb
d aVbVc c/ \d aVb=aVc=bVc
I N N
aVb aVec bVce . ; a b/C
|
| N < ~
\ ‘ / %)

distributive semidistributive not semidistributive



DISTRIBUTIVE & SEMIDISTRIBUTIVE LATTICES

(L, <, A, V) finite lattice is

e distributive if xt V (y A z) = (zVy)A(zV z) for any z,y,z € L

— canonical join representations = antichains of join irreducibles
—> L =~ inclusion poset of lower ideals of JI(L)

e join semidistributive if t Vy =2V z impliesx V (y A z) =z Vy forany z,y,z € L

— any y € L admits the canonical join representation y = \/x<y ky(x,y)

where ky(x,y) is the unique minimal element of {z € L | 2V 2 =y}

e semidistributive if both join and meet semidistributive

cVd
| aVb
d aVbVc c/ \d aVb=aVc=bVc
I N P N
aVb aVc bVe . ; a\b/c
| | |
a C N/ %)

distributive semidistributive not semidistributive



FROM PERMUTATIONS TO NONCROSSING ARC DIAGRAMS

draw all points (o;,7) and all segments permutation o = 5327164
from (0;,7) to (0i41,%+ 1) with o; > 0,44

and project down to an horizontal line allowing
arcs to bend but not to cross or pass points
arc =
(a,b,A,B) with 1 <a<b<mnand AUB =]a,b|
LU
o 6 o\ofe\e 90 0 o
A

crossing arcs =
(a,b, A, B) and (a’,b', A’, B") such that there is x # x" with
v e (AU{a,b}) N (B U{d b)) (N

and z' € (BU {CZ, b}) N (A"U {Cb;a 0'})

noncrossing arc diagram §(o

noncrossing arc diagrams =

set of pairwise non-crossing arcs

THM. 0 is a bijection from permutations to noncrossing arc diagrams Reading ('15)




CANONICAL JOIN REPRESENTATIONS & NONCROSSING ARC DIAGRAMS

*—0—0—@

N O U

T = e

THM. 0 =\ 50 0~ ({a}) is the canonical join representation

Reading ('15)




LATTICE CONGRUENCES & LATTICE QUOTIENTS

lattice congruence of L = equivalence relation = which respects meets and joins

r=2'andy=y = xAy=2'ANy andazVvy=2' Vv

lattice quotient of L /= = lattice on equivalence classes of L under = where

e X <Y «<— dzxeX,yeY, zxz<y
e X \NY =equiv. classof Ay foranyz € X andy €Y

e X VY =equiv. classof zVy foranyz € X andy € Y




LATTICE QUOTIENTS & CANONICAL JOIN REPRESENTATIONS

= lattice congruence on L, then
e each class X is an interval |7 (X), 7T(X)]
e /= is isomorphic (as poset) to the restriction of L to the elements x with 7 (z) =
o 7 (x) =« if and only if m (j) = j for all canonical joinands j of z
e canonical join representations in L /= are canonical join representations in L that only
involve join irreducibles j with 7 (j) = j




LATTICE QUOTIENTS OF THE WEAK ORDER

THM. = lattice congruence of the weak order on G,
A= = arcs corresponding to join irreducibles o with 7 (0) = o
S,,/= =~ subposet induced by noncrossing arc diagrams with all arcs in A_

Reading ('15)



SUBARC ORDER

THM. = lattice congruence of the weak order on G,
— = arcs corresponding to join irreducibles o with 7 (0) = 0o
S,,/= =~ subposet induced by noncrossing arc diagrams with all arcs in A_

THM. The following are equivalent for a set of arcs A:
e there exists a lattice congruence = on G,, with A = A_
e A is a lower ideal of the subarc order

Reading ('15) —o o o o o—o o o o o—o




ARC IDEALS

arc ideal =

lower ideal of the subarc order @
5 a5
@ B & B :
MM
/ \ (G G () @b & 0y
£ /1 AR TN
N e
e Vi e G N O\
\/ e A S < TR
essential congruences: BB Y D =
1,1, 4, 47, 3322, .. N X L/

AN
OEIS A330039 S 2~ alla R -

Nl LA AT
all congruences Al
1,2, 7, 60, 3444, ... SN/

OEIS A091687
Reading ('15)



ARC IDEALS

arc ideal = lower ideal of the subarc order

\ &
L a
N @ o
& B @ P,
essent;a_l.;.ngruences r“ @ @ ::' e
1,1, 4, 47, 3322, .. m <§> @
OEIS A330039 @

all congruences
1,2, 7,60, 3444, ...

OEIS A091687
Reading ('15)



QUOTIENT FANS

Reading, Lattice congruences, fans and Hopf algebras ('05)



ARCS AND SHARDS

arc (a,b,A,B) with 1 <a<b<nand AUDB =a,b| QWQO
shard X(a,b, A, B) = {a: c R" ‘ Ty <xa=1u, < xy foralld € Aand V' € B}

m..w
/)




ARCS AND SHARDS

arc (a,b,A,B) with 1 <a<b<nand AUDB =a,b| QWQQ
shard >(a,b, A, B) = {a: c R" ‘ Ty < x,=xp < axy foralla’ € Aand V' € B}




QUOTIENT FANS

quotient fan = =

e the chambers are obtained by glueing the chambers C(o) of the permutations o in
the same congruence class of =

e the walls are given by the union of shards of = Reading ('05)

D)

2 N
NS




QUOTIENT FANS

quotient fan = =

e the chambers are obtained by glueing the chambers C(o) of the permutations o in
the same congruence class of =

e the walls are given by the union of shards of = Reading ('05)




QUOTIENT FANS

trivial sylvester recoils

2-twists diagonal rectangulations generic rectangulations



QUOTIENTOPES (BY LUCK)

P.—Santos, Quotientopes ('19)



QUOTIENTOPES

quotientope = polytope whose normal fan is F-

AN

o000

s00000

f300003(
N ST N
N X Te=—==X_X | /

£ A 59 47 &7 &7
N+ A7

T XA
Ny~

P.—Santos, Quotientopes ('19)




QUOTIENTOPES

quotientope = polytope whose normal fan is F-

od

/‘/ .{ Py




QUOTIENTOPES

quotientope = polytope whose normal fan is 7=

O\

RO

B{W(00

o000

o @000

,@oooooq
P TIE C TN
N X=X | /

R8N A
N+l A AT

' XL
N,

P.—Santos, Quotientopes ('19)




insidahedra_quotientopes_penche_framed_ultraFast_bothWays_cropped.mov
Media File (video/quicktime)


3D PRINTING PROJECT!

print the common refinement of all 47 (essential) 3-dimensional quotientopes
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3D PRINTING PROJECT!

print the common refinement of all 47 (essential) 3-dimensional quotientopes

’AVI Avaw,
/4 ea//\A//)/) v ' (
Y )R A S
WAL A DI NTY N

XA AR HREA RN
IR PP A 7
(S SN ws, 1Y), 72

Vi, | " N 2

N
3
SN

2

) [ 25 :
P NI X TS D
A Y WYV IR D
%7 N7 AN I
% v Ny A\ vy
%Y:*‘
A\\\ ‘/ .,\

L
7z
NS /
ALK
n \

1(IP
2287 polytopes to print 3 max — (Perm) — /3888 ~ 16

vol(IPiece)



QUOTIENTOPES (BY MINKOWSKI SUMS)

Padrol-P.—Ritter, Shard polytopes ('23)



INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ...,=;,

then the quotient fan F= is the common refinement of the quotient fans 7—,, ...




INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ..., =,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., 7=,
o s Ny s

C
|
-

)L '

Minkowski sum P+ Q ={p+q|pe P, g Q}

+ i -

Normal fan of IP + Q = common refinement of normal fans of P and Q)




INTERSECTIONS OF CONGRUENCES

If the congruence = is the intersection of the congruences =1, ...,=;,
then the quotient fan F= is the common refinement of the quotient fans F—,, ... F=
and a Minkowski sum of quotientopes for =1, ..., = is a quotientope for =

k1




MINKOWSKI SUMS OF ASSOCIAHEDRA

If the congruence = is the intersection of the congruences =1, ...,=;,
then the quotient fan F= is the common refinement of the quotient fans 7=, ..., F=,,
and a Minkowski sum of quotientopes for =1, ..., = is a quotientope for =

Principal arc ideals are Cambrian congruences

Any quotient fan is realized by a Minkowski sum of (low dim.) associahedra

Padrol-P.—Ritter, Shard polytopes ('23)




SHARD POLYTOPES

Padrol-P.—Ritter, Shard polytopes ('23)



SHARD POLYTOPES

for an arc a = (a,b, A, B), define

e a-matching = sequence a < a; < by < --- < a < by < b where

{aie{a}UA

b, € BU {b}
e characteristic vector y(M) = Zie[,ﬁ] €, — €,

shard polytope SP(«) = conv {X(M) ‘ M a—matching}

( 7 =0 for all j € [n] ~ [a,0] )
_Jzer 0<zy <1 foralla/’G{a}UA >
—1<ay <0 forall¥ € BU{b}
\ 0<> ,;zi <1 forall j€n] }
®..0 ..
®0- .

N

exm: for an up arc (a, b, |a, b, &), we get the standard simplex Ay, ;) — e




SHARD POLYTOPES

shard polytope SP(«) = conv {X(M) ’ M a—matching}

The union of the walls of the normal fan of the shard polytope SIP(a)
e contains the shard X(a),
e is contained in the union of the shards ¥(a’) for o’ subarc of a

O ¥ O




SHARD POLYTOPES

shard polytope SP(«) = conv {X(M) ’ M a—matching}

The union of the walls of the normal fan of the shard polytope SIP(a)
e contains the shard X(a),
e is contained in the union of the shards ¥(a’) for o’ subarc of a

For any lattice congruence =, the quotient fan J- is the normal fan of the Minkowski
sum of the shard pontopes SIP(OJ) for a € A= Padrol-P.—Ritter, Shard polytopes ('23)

00> =il
oo o oo = Fe £




SHARD POLYTOPES

shard polytope SP(«) = conv {X(M) ’ M a—matching}

The union of the walls of the normal fan of the shard polytope SIP(a)
e contains the shard X(a),
e is contained in the union of the shards ¥(a’) for o’ subarc of a

For any lattice congruence =, the quotient fan J- is the normal fan of the Minkowski
sum of the shard pontopes SIP(OJ) for a € A= Padrol-P.—Ritter, Shard polytopes ('23)

S
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SHARD POLYTOPES AND TYPE CONES




CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

3 2
AN N\ .
NN N
: J



CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x € R" | Gz < h}




CHOOSING RIGHT-HAND-SIDES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

3 2
\ AN N
44 1
5

When is F the normal fan of P,?



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a helght vector h € RY, consider the polytope P, = {x € R" | Gz < h}

4 At oy




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

4™ 5



WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>0
R

wall-crossing inequality for a wall R = Z arshs >0 where
seRU{rr'}
e v’ = rays such that RU {r} and R U {7’} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
seRU{r r'}




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>0
R

wall-crossing inequality for a wall R = Z arshs >0 where
seRU{rr'}
e v’ = rays such that RU {r} and R U {7’} are chambers of F
e ap s = coeff. of unique linear dependence Z arpss=0with ag, +ag, =2
seRU{r r'}

F is the normal fan of IP;, <= h satisfies all wall-crossing inequalities of F




WALL-CROSSING INEQUALITIES

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY,, consider the polytope Py, = {x € R" | Gz < h}

A
|
|

A

wall-crossing inequalities:

wall 1 :
wall 2 :
wall 3 :
wall 4 :

wall 5 :

ho + hs > 0
hi+ hs > ho
ho + ha > hs
hs + hs > hy
hi+hy >0

B C

\ﬁ
VA




TYPE CONE

F = complete simplicial fan in R"” with N rays

G = (N x n)-matrix whose rows are representatives of the rays of F

for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) =

realization space of F
{h c RV ! F is the normal fan of IPh}

McMullen ('73)

— {h c RN | h satisfies all wall-crossing inequalities of ]-"}




TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
4 \ > 1
5
some properties of TC(F):
e TC(F) is an open cone (dilations preserve normal fans)
e TC(F) has lineality space G R" (translations preserve normal fans)

e dimension of TC(F)/GR" = N —n



TYPE CONE

F = complete simplicial fan in R"” with N rays
G = (N x n)-matrix whose rows are representatives of the rays of F
for a height vector h € RY, consider the polytope P, = {x ¢ R" | Gz < h}

>01

type cone TC(F) = realization space of F McMullen ('73)
— {h c RV | F is the normal fan of IPh}
— {h c RN | h satisfies all wall-crossing inequalities of ]-"}

3 2
4\ )
5}

some properties of TC(F):
e closure of TC(F) = polytopes whose normal fan coarsens F = deformation cone
e Minkowski sums <— positive linear combinations



SIMPLICIAL TYPE CONE

Assume that the type cone T'C(F) is simplicial
K = (N —n)x N-matrix whose rows are inner normal vectors of the facets of TC(F(§))
All polytopal realizations of F are affinely equivalent to

Rg:{ze]RN‘Kz:EandzZO}

for any positive vector £ € RY ™" Padrol-Palu-P.—Plamondon ('19+)

Fundamental exms: g-vector fans of cluster-like complexes

T1+x9+73 T1+2To+13
T9T3 173

0-1 1
T1t+x2+73 1 0-1
120 ~1 10

sylvester fans finite type g-vector fans finite gentle fans

wrt any seed (acyclic or not)  for brick and 2-acyclic quivers
Arkani-Hamed—Bai—-He—Yan ('18) BMCLDMTY ('18%) Palu—P.—Plamondon ('18)



SUBMODULAR FUNCTIONS

3421

4321\3421

7
431331\ 3412

4132 Vau "4

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

IDefo(z):{a:ER" ’ (1| )=z and <ﬂ3\m>223forallR§[n]}

[n]
for some vector z € R?" such that zp + 29 < 2pus + 2png and zg = 0
Postnikov ('09)  Postnikov—Reiner-Williams ('08)




SUBMODULAR FUNCTIONS

3421

4321\3421

7
431331\ 3412

4132 Vau "4

closed type cone of braid fan = {deformed permutahedra} = {submodular functions}

deformed permutahedron = polytope whose normal fan coarsens the braid fan

IDefo(z):{meRgO’ (IL|x)=2zpand (Lg|x)>zpforall Re T}

for some vector z € R2" such that zp+ 25 < zpus + Zrns and zg = 2z = 0,
where J = {J C [n] | |J| > 2} Postnikov ('09)  Postnikov—Reiner-Williams ('08)




SUBMODULAR FUNCTIONS

diagonal
rectangulation
polytope SP(e=—o -

associahedron
— Assq3

associahedron
Asso3

SP(m) = - @0 T fu—

permutahedron
Perm,

dmTC(F)=N-n=6—-2=14



SUBMODULAR FUNCTIONS

eO-
SP(e=—o0 -)::\\\\\\\

*®0

SP(. e—0)



SUBMODULAR FUNCTIONS

e0-
SP(e—o0 ) =\

all quotientopes of PS ('18)
are Minkowski sums of

scaled shard polytopes

Padrol-P.—Ritter, Shard polytopes ('23)




SUBMODULAR FUNCTIONS

all quotientopes of PS ('18)
are Minkowski sums of

scaled shard polytopes

shard polytopes are
Minkowski indecomposable

(thus rays of the type cone)

= Newton polytopes F-polyn.
= brick polytope summands

Padrol-P.—Ritter, Shard polytopes ('23)




SUBMODULAR FUNCTIONS

shard polytopes are
SP(e—o -) =\ Minkowski indecomposable

(thus rays of the type cone)

all quotientopes of PS ('18)
are Minkowski sums of

= Newton polytopes F-polyn.
scaled shard polytopes

= brick polytope summands

Padrol-P.—Ritter, Shard polytopes ('23)

Any deformed permutahedron is a Minkowski sum and difference of shard polytopes

Defo(z) = ZyJ Ny = Z sy SIP(ay)
JeJ IeJ
with explicit (combinatorial) exchange matrices between the parameters s, y and z
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