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QUOTIENTOPES FOR HYPERPLANE
ARRANGEMENTS?

Björner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions (’90)
Reading, Lattice congruences, fans and Hopf algebras (’05)

Reading, Lattice theory of the poset of regions (’16)
Padrol–P.–Ritter, Shard polytopes (’23)

P., Acyclic reorientation lattices and their lattice quotients (’21+)
Dana–Hanson–Thomas, Shard polytopes via representation theory (24+)



QUOTIENTOPES FOR HYPERPLANE ARRANGEMENTS?

H hyperplane arrangement in Rn

B distinguished region of Rn rH
inversion set of a region C = set of hyperplanes of H that separate B and C

poset of regions PR(H, B) = regions of Rn rH ordered by inclusion of inversion sets

THM. The poset of regions PR(H, B)

• is never a lattice when B is not a simple region,

• is always a lattice when H is a simplicial arrangement.
Björner-Edelman-Ziegler, Hyperplane arrangements with a lattice of regions (’90)

THM. If PR(H, B) is a lattice, and ≡ is a lattice congruence of PR(H, B), the cones

obtained by glueing together the regions of RnrH in the same congruence class form

a complete fan.
Reading, Lattice congruences, fans and Hopf algebras (’05)

Is the quotient fan polytopal?



SHARDS FOR HYPERPLANE ARRANGEMENTS

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

Reading, Lattice and order properties of the poset of regions in a hyperplane arrangement (’03)
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SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard Σ = polytope such that the union of walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions



SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard Σ = polytope such that the union of walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

If any shard Σ admits a shard polytope SP(Σ), then

• for any lattice congruence ≡ of PR(H, B), the quotient fan F≡ is the normal of the

Minkowski sum of the shard polytopes SP(Σ) for Σ in the shard ideal Σ≡

• if the arrangement H is simplicial, then the shard polytopes SP(Σ) form a basis for

the type cone of the fan defined by H (up to translation)

Padrol–P.–Ritter, Shard polytopes (’23)



SHARD POLYTOPES FOR HYPERPLANE ARRANGEMENTS?

shard = piece of hyperplane obtained after cutting all rank 2 subgroups

shard poset = (pre)poset of forcing relations among shards

shard polytope for a shard Σ = polytope such that the union of walls of its normal fan

• contains the shard Σ,

• is contained in the union of the shards forcing Σ

Find shard polytopes for arbitrary hyperplane arrangement with a lattice of regions

Partial answers: Shard polytopes exist for

• type A and B Coxeter arrangements Padrol–P.–Ritter, Shard polytopes (’23)

• all graphical arrangements whose poset of regions is a semidistributive lattice

P., Acyclic reorientation lattices and their lattice quotients (’21+)

• Coxeter arrangements of simply laced types (A, D, E)

Dana–Hanson–Thomas, Shard polytopes via representation theory (24+)



ACYCLIC REORIENTATION LATTICES

P., Acyclic reorientation lattices and their lattice quotients (’21+)



ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

minimal element D

maximal element D̄

self-dual under reversing all arcs

cover relations = flipping a single arc

flippable arcs of E = transitive reduction of E

= E r {(u, v) ∈ E | ∃ directed path u v in E}



ACYCLIC REORIENTATION POSETS

D directed acyclic graph
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ACYCLIC REORIENTATION POSETS

D directed acyclic graph

ARD = all acyclic reorientations of D, ordered by inclusion of their sets of reversed arcs

D forest D tournament

boolean lattice weak order



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate P. (’21+)

lattice not lattice
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ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate P. (’21+)

X subset of arcs of D is

• closed if all arcs of D in the transitive closure

of X also belong to X

• coclosed if its complement is closed

• biclosed if it is closed and coclosed

PROP. If D vertebrate, P. (’21+)

X biclosed ⇐⇒ the reorientation of X is acyclic



ACYCLIC REORIENTATION LATTICES

D vertebrate = transitive reduction of any induced subgraph of D is a forest

THM. ARD lattice ⇐⇒ D vertebrate P. (’21+)

PROP. If D vertebrate, P. (’21+)

bwd(E1 ∨ . . . ∨ Ek) =

transitive closure of bwd(E1) ∪ · · · ∪ bwd(Ek)

fwd(E1 ∧ . . . ∧ Ek) =

transitive closure of fwd(E1) ∪ · · · ∪ fwd(Ek)

∨ = ∧ =



DISTRIBUTIVITY & SEMIDISTRIBUTIVITY

P., Acyclic reorientation lattices and their lattice quotients (’21+)



DISTRIBUTIVE ACYCLIC REORIENTATION POSETS

THM. ARD distributive lattice ⇐⇒ D forest ⇐⇒ ARD boolean lattice P. (’21+)

distributive not distributive



SEMIDISTRIBUTIVE ACYCLIC REORIENTATION LATTICES

D skeletal =

• D vertebrate = transitive reduction of any induced subgraph of D is a forest

• D filled = any directed path joining the endpoints of an arc in D induces a tournament

THM. ARD semidistributive lattice ⇐⇒ D is skeletal P. (’21+)

semidistributive non semidistributive



ROPES & NON-CROSSING ROPE DIAGRAMS

P., Acyclic reorientation lattices and their lattice quotients (’21+)



ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v, 4,4) where

• (u, v) is an arc of D

• 4t4 partitions the transitive support of (u, v) minus {u, v}

ropes
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ROPES & NON-CROSSING ROPE DIAGRAMS

rope of D = quadruple ρ = (u, v, 4,4) where

• (u, v) is an arc of D

• 4t4 partitions the transitive support of (u, v) minus {u, v}

ropes

join irreducibles

THM. join irreducibles of ARD ←→ ropes of D P. (’21+)

canonical join representations of ARD ←→ non-crossing rope diagrams of ARD

(u, v,

4

,4) and (u′, v′,

4′,4′) are crossing if there are w 6= w′ such that

w ∈ (

4∪ {u, v}) ∩ (4′ ∪ {u′, v′}) and w′ ∈ (4∪ {u, v}) ∩ (

4′ ∪ {u′, v′})



CONGRUENCES & QUOTIENTS

P., Acyclic reorientation lattices and their lattice quotients (’21+)



SUBROPES ORDER

(u, v, 4,4) subrope of (u′, v′, 4′,4′) if u, v ∈ {u′, v′} ∪ 4′ ∪4′ and 4⊆ 4′ and 4 ⊆ 4′

PROP. congruence lattice of ARD ' lower ideal lattice of subrope order P. (’21+)

CORO. ≡ lattice congruence of ARD

• E minimal in its ≡-class ⇐⇒ δ(E) ⊆ R≡
• quotient ARD/≡ ' subposet of ARD induced by {E ∈ ARD | δ(E) ⊆ R≡}



COHERENT CONGRUENCES

(

Ω

,Ω) = two of arbitrary subsets of V

R(

Ω

,Ω) = lower ideal of ropes (u, v,

4

,4) of D such that 4⊆

Ω

and 4 ⊆ Ω

coherent congruence ≡(

Ω

,Ω) = congruence with subrope ideal R(

Ω

,Ω)

P.–Pons, Permutrees (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v, 4,∅)



COHERENT CONGRUENCES

(

Ω

,Ω) = two of arbitrary subsets of V

R(

Ω

,Ω) = lower ideal of ropes (u, v,

4

,4) of D such that 4⊆

Ω

and 4 ⊆ Ω

coherent congruence ≡(

Ω

,Ω) = congruence with subrope ideal R(

Ω

,Ω)

P.–Pons, Permutrees (’18)examples:

• sylvester congruence = subrope ideal contains only ropes (u, v, 4,∅)

• Cambrian congruences = when

Ω

t Ω = V

Reading, Cambrian lattices (’06)



QUOTIENT FANS & QUOTIENTOPES

P., Acyclic reorientation lattices and their lattice quotients (’21+)



GRAPHICAL ARRANGEMENT & GRAPHICAL ZONOTOPE

D directed acyclic graph

graphical arrangement HD = arrangement of hyperplanes xu = xv for all arcs (u, v) ∈ D
graphical zonotope ZD = Minkowski sum of [eu, ev] for all arcs (u, v) ∈ D

hyperplanes of HD ←→ summands of ZD ←→ arcs of D

regions of HD ←→ vertices of ZD ←→ acyclic reorientations of D

poset of regions of HD ←→ oriented graph of ZD ←→ acyclic reorientation poset of D



QUOTIENT FAN

THM. A lattice congruence ≡ of ARD defines a quotient fan F≡ where the chambers

of F≡ are obtained by glueing the chambers of HD corresponding to acyclic reorienta-

tions in the same equivalence class of ≡ P. (’21+)
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QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter P. (’21+)

ρ-alternating matching = pair (M 4,M4) with M 4⊆ {u} ∪ 4and M4 ⊆ 4∪ {v} s.t.

M 4and M4 are alternating along the transitive reduction of D
shard polytope of ρ = convex hull of signed charact. vectors of ρ-alternating matchings



QUOTIENTOPES

THM. The quotient fan F≡ of any lattice congruence ≡ of ARD is the normal fan of

• a Minkowski sum of associahedra of Hohlweg – Lange, and

• a Minkowski sum of shard polytopes of Padrol – P. – Ritter P. (’21+)

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D P. (’21+)



SOME OPEN PROBLEMS



SIMPLE ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to or

⇐⇒ the Hasse diagram of the D-Tamari lattice is regular

⇐⇒ the D-associahedron is a simple polytope

regular non regular



ISOMORPHIC CAMBRIAN ASSOCIAHEDRA

CONJ. D has no induced subgraph isomorphic to

⇐⇒ all Cambrian associahedra of D have the same number of vertices

⇐⇒ all Cambrian associahedra of D have isomorphic 1-skeleta

⇐⇒ all Cambrian associahedra of D have isomorphic face lattices



REMOVAHEDRA

PROP. For the sylvester congruence, all facets defining inequalities of the associahedron

of D are facet defining inequalities of the graphical zonotope of D P. (’21+)

CONJ. For any

Ω

,Ω ⊆ V , the quotient fan F(

Ω

,Ω) is the normal fan of the polytope

obtained by deleting inequalities of the graphical zonotope of D



THANKS


