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dissection subset of 72
accordion monotone path
non-crossing complex non-kissing complex

Baryshnikov, On Stokes sets ('01)
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SIMPLICIAL ASSOCIAHEDRA ARE NON-KISSING COMPLEXES

simplicial associahedron = simplicial complex with

e vertices = internal diagonals of an (n + 3)-gon
e faces = collections of pairwise non-crossing [internal] diagonals of the (n + 3)-gon

0 9 1 2 3 4 5 6 7
) I R
1 - ! 0 T Tﬁ:T—ﬂ 0
S - 2 3 4 5 6 7 8
diagonal — walk
crossing — kissing
dissection <y non-kissing face
simplicial associahedron —— non-kissing complex

McConville, Lattice structures of grid Tamari orders ('17)
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FIRST HALF OF THE TALK

Show that non-crossing and non-kissing complexes coincide

To this end, generalize both:

non-crossing complex non-kissing complex
to dissections of surfaces to gentle quivers

Palu—P.—Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras ('19)



NON-CROSSING COMPLEX

Palu—P.—Plamondon,
Non-kissing and non-crossing complexes for locally gentle algebras ('19)



DUAL DISSECTIONS

BB &

S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S



DUAL DISSECTIONS
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S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S

blossom vertices = white vertices, alternating with V U V* along the boundary of &




DUAL DISSECTIONS
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S = orientable surface with or without boundaries
V and V* two families of marked points
D and D* two dual dissections of S

blossom vertices = white vertices, alternating with V U V* along the boundary of &
B-curve = curve which at each endpoint either reaches a blossom point or infinitely circles

around a puncture of S



ACCORDIONS
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D-accordion = B-curve « such that whenever o meets a face f of D,

&%, = e O‘mo%r >/-o.<
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(i) it enters crossing an edge a of f and leaves crossing an edge b of f
(ii) the two edges a and b of f crossed by o are consecutive along the boundary of f,
(iii) «, a and b bound a disk inside f that does not contain f*.

D-accordion complex = simplicial complex of pairwise non-crossing sets of D-accordions




SLALOMS
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D*-slalom = B-curve o of S such that, whenever o crosses an edge a* of D* contained in

two faces f*, ¢* of D*, the marked points f and ¢ lie on opposite sides of « in the union

of f* and ¢* glued along a*.

D*-slalom complex = simplicial complex of pairwise non-crossing sets of D*-slaloms




D-ACCORDIONS = D*-SLALOMS
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(D, D*)-non-crossing complex = D-accordion complex = D*-slalom complex
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NON-KISSING COMPLEX

Briistle—=Douville—Mousavand—Thomas—Yildirim,
On the combinatorics of gentle algebras ('20)
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)



GENTLE QUIVERS AND STRINGS
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gentle quiver ) =

® e quiver () = oriented graph (Qy, Q1, s, 1)
e relations I = forbid certain paths

(] where

@ e forbidden paths all of length 2
e locally at each vertex, subgraph of >0<



GENTLE QUIVERS AND STRINGS

gentle quiver ) =
e quiver () = oriented graph (Qy, Q1, s, 1)

® @
e relations I = forbid certain paths
(4 where
e forbidden paths all of length 2
0 ® ® e locally at each vertex, subgraph of >0<

€1

string 0 = a}'...q; with a; € Qy, g, € {—1,1}
such that
£
o {(a)f) = s(a)
e contains no factor 7 or 77! for any path m € I
1

o ®

e contains no aa~ ! or ata for any arrow o € )4



BLOSSOMING QUIVERS AND WALKS
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blossoming quiver Q% =

add blossoms to complete each vertex to

Pt



BLOSSOMING QUIVERS AND WALKS
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o ! blossoming quiver Q% =
o add blossoms to complete each vertex to >0<
OW ® v
o
® ® c\t;

walk w = maximal string in Q*

from blossoms to blossoms




KISSING




NON-KISSING COMPLEX

KISS

[reduced] non-kissing complex N'K(Q) =
e vertices = [bending] walks in Q%

(that are not self-kissing)
e faces = collections of pairwise

non-kissing [bending] walks in Q%




NON-CROSSING VS NON-KISSING

Palu—P.—Plamondon,
Non-kissing and non-crossing complexes for locally gentle algebras ('19)



QUIVER OF A DISSECTION

quiver Qp of a dissection =

e vertices = edges of D (boundary edges are blossom vertices)

e arrows = two consecutive edges around a face of D
e relations = three consecutive edges around a face of D
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QUIVER OF A DISSECTION

quiver Qp of a dissection =

e vertices = edges of D (boundary edges are blossom vertices)

e arrows = two consecutive edges around a face of D

e relations = three consecutive edges around a face of D

e
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SURFACE OF A GENTLE QUIVER

surface S; of quiver ) = surface obtained from the blossoming quiver Q% as follows:

(i) for each arrow o € QF, consider a lozenge

(i) for any a, B € Q¥ with t(a) = s(f),

/\<
proceed to the following identifications:

e if af € I, then glue E'(a) with E3(S
o if af ¢ I, then glue E! () with ES

f Oz)
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NON-CROSSING VS NON-KISSING

PROP. The two previous constructions are inverse to each other and define bijections:
pairs of dual dissections on a surface «— gentle quivers

1 | >\ﬁ/
% A

PROP. It defines isomorphisms between:
non-crossing complex of dissections «<— non-kissing complex of gentle quiver




SECOND HALF OF THE TALK

non-kissing complex NK(Q) =

; .~ . N |_
o vertices = walks in Q¥ (that are not self-kissing) ( >
e faces = collections of pairwise non-kissing walks in Q% ® ®

... generalizing the associahedron

Flip graph Associahedron Tamari lattice




DISTINGUISHED ARROWS AND FLIPS

McConville, Lattice structures of grid Tamari orders ('17)
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)



DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of NK(Q)
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F face of NK(Q)

a € Q)
F,={weF|acw}

w <, w' countercurrent order at «

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of NK(Q)

a € Q)
F,={weF|acw}

w <, w' countercurrent order at «

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}

PROP. For any facet F' € NK(Q),
e cach bending walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.




DISTINGUISHED WALKS, ARROWS AND STRINGS

F face of NK(Q)

a € Qq
F,={weF|aecuw}

w <, w' countercurrent order at o

distinguished walk at o in F' = dw(«a, F') = max__F,

distinguished arrows of w in F = da(w, F) ={a € Q1 | w =dw(a, F')}

PROP. For any facet F' € NK(Q),
e cach bending walk of F' contains 2 distinguished arrows in F' pointing opposite,
e each straight walk of F' contains 1 distinguished arrows in F' pointing as the walk.

CORO. N'K(Q) is pure of dimension |Q|.




FLIPS

F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)
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F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)

AW

w € F we want to “flip”



FLIPS
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F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 6} = da(w, F)



FLIPS

F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)

w € F we want to “flip”

{a, 8} =da(w, F)

o, 8" € @y such that d’'a € I and 5'5 € I
/

A%

M



FLIPS

oTﬂ»—fo

F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)
w € F we want to “flip”

{a,f} = da(w, F)

o, 8" € @y such that d’'a € I and 5'5 € I
p=dw(c, F)and v =dw(f', F)
w=v|,v|opw,:




FLIPS

F facet of NK(Q) (ie. maximal collection of pairwise non-kissing walks)
w € F we want to “flip”

{a, B} = da(w, F)

o, 8" € @y such that d’'a € I and 5'5 € I
p=dw(a, F)and v =dw(g', F)
w=v|,v|o pw,-|

W=l vl oviw, ]




FLIPS

is the only such walk.

, [l

w' kisses w but no other walk of F'. Moreover, w

PROP.




flip graph =




GENTLE ASSOCIAHEDRA

Manneville—P., Geometric realizations of the accordion complex ('19)
Hohlweg—P.—Stella, Polytopal realizations of finite type g-vector fans ('18)
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)



G-VECTORS & C-VECTORS

multiplicity vector my of multiset V' = {{v,..

g-vector g(w) of a walk w

S, Um ) of Qg

—  IMpeaks(w) — Mdeeps(w)

c-vector c(w € F) of a walk w in a non-kissing facet F' =

O

RN&3

S O = W o —

Y e, € R%
i€[m]

€<w7 F) Mys(w,F)

o e o o
/00000—1\
000 0—10
01010 0
000-10 0
0010 1 0
\100000)
g(F)

S O == W DN
-




G-VECTORS & C-VECTORS

multiplicity vector my of multiset V = {{v1,...,v,,}} of Qy

g-vector g(w) of awalk w = Mpeaks() — Maeeps(w)

c-vector c(w € F') of a walk w in a non-kissing facet ' =

Y e, € R%
i€[m]

5<w7 F) Mys(w,F)

o o ( J e o o

1 /0000 0-1

< 6T\3 2(0000—10\
slo101 0 0

11o000-10 0

sloo10 1 0

6\1 0000 0/

g(F)

S O = W N~

PROP. For any non-kissing facet F', the sets of vectors

g(F)={gw)|weF} and c(F)={clweF)|weF}

form dual bases.

Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)




G-VECTOR FAN

.ﬁ THM. For any gentle quiver @, the collection of cones
E ° F5(Q)={Ru0g(F) | F € NK(Q)}
[ )

o forms a compl. simpl. fan, called g-vector fan of Q.

stereographic projection
from (1,1, 1)




NON-KISSING ASSOCIAHEDRON

kissing number kn(w) = Z number of times w and w’ kiss

<A}/

THM. For a gentle quiver Q with finite non-kissing complex N'K(Q),
the two sets of R% given by

(i) the convex hull of the points

an clwe F),

weF

for all non-kissing facets F' € N'K(Q),

(i) the intersection of the halfspaces o f
C

H=(w {XERQO’< ()\X}ﬁkn(w)}. OE. o

for all walks w of Q, ° oi

define the same polytope, whose normal fan is the g-vector fan F8. We call it the
(Q-associahedron and denote it by Asso.

Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)




NON-KISSING LATTICE

McConville, Lattice structures of grid Tamari orders ('17)
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)



NON-KISSING LATTICE

THM. For a gentle quiver () with finite non-kissing

complex N'K(Q), the non-kissing flip graph

is the Hasse diagram of a /
congruence-uniform lattice. %

L4

Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)







BICLOSED SETS OF STRINGS

o, T oriented strings
concatenation o o7 = {acw } a € @1 and carT string of Q}

closure S = U ogi0---00, = all strings obtained by concatenation
(eN of some strings of S
O1yeeey oy
closed < S99 =239 coclosed < S9 =239 biclosed = closed and coclosed

i

THM. For any gentle quiver Q such that NX(Q) is finite, the inclusion poset on biclosed
sets of strings of () is a congruence-uniform lattice.

McConville, Lattice structures of grid Tamari orders ('17)
Garver—McConville, Oriented flip graphs and non-crossing tree partitions ('18)
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)



NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

@) @)
©) @)
Te o
o) A .CV
) (g
. \. — @ .)\O
@) @) @)
S biclosed, v € Q4
w(a, S) = walk constructed with the local rules:
Q cS c S Q
—r)— G —<— —>—G—)—
—»— e —_—( D—H—
Q ¢S ¢ S o)

McConville, Lattice structures of grid Tamari orders ('17)
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets
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\Eo o
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S biclosed, v € Q4
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

S biclosed, a € )4
w(a, S) = walk constructed with the local rules:

Q cS c S Q
—>— D —<— —>—laa—y—
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NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a, S) | « € @1} is a non-kissing facet.

McConville, Lattice structures of grid Tamari orders ('17)



EXM: BINARY SEARCH TREE INSERTION AGAIN

inversion set of 2751346




NON-KISSING INSERTION

Surjection from biclosed sets of strings to non-kissing facets

PROP. n(S) = {w(a, S) | « € @1} is a non-kissing facet.

THM. The map 7 defines a lattice morphism from biclosed sets to non-kissing facets.

McConville, Lattice structures of grid Tamari orders ('17)






NON-KISSING LATTICE

THM. For a gentle quiver Q with finite non-kissing complex N'K(Q), the non-kissing
flip graph is the Hasse diagram of a congruence-uniform lattice.
Palu—P.—Plamondon, Non-kissing complexes and T-tilting for gentle algebras ('21)

Much more nice combinatorics:

e join-irreducible elements of £,,(Q) are in bijection with distinguishable strings
J)

e canonical join complex of £,(Q) is a generalization of non-crossing partitions

; !

<. < A/ \A



SUMMARY

non-kissing complex NK(Q) =

; .~ . N |_
o vertices = walks in Q¥ (that are not self-kissing) ( >
e faces = collections of pairwise non-kissing walks in Q% ® ®

... generalizing the associahedron

Flip graph Associahedron Tamari lattice
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