LATTICE QUOTIENTS AND QUOTIENTOPES FOR SOME GENERALIZATIONS OF THE WEAK ORDER PROBLEM SESSION 4: GENTLE ASSOCIAHEDRA

Exercise 1. From a gentle quiver \bar{Q} , we construct its blossoming quiver \bar{Q}^{*} by completing each vertex v of \bar{Q} with 2 - indeg(v) incoming arrows and 2 - outdeg(v) outgoing arrows. See Figure 1. Express the number of vertices $\#\bar{Q}_{0}^{*}$ and arrows $\#\bar{Q}_{1}^{*}$ of the blossoming quiver \bar{Q}^{*} in terms of that of \bar{Q} .

FIGURE 1. A gentle quiver (left), its blossoming quiver (middle left), two kissing walks (middle right), and two non-kissing walks (right).

Exercise 2. The non-kissing complex of a gentle quiver \bar{Q} is the clique complex of the non-kissing relation on walks on the blossoming quiver \bar{Q}^{\circledast} . See Figure 1. The non-kissing lattice is the transitive closure of the increasing flip graph on non-kissing facets. Show that if the gentle quiver \bar{Q} is an orientation of a path with no relation,

- (1) the non-kissing complex of \bar{Q} is isomorphic to the simplicial associahedron,
- (2) the non-kissing lattice is a Cambrian lattice.

Exercise 3. Show that the non-kissing lattice of a quiver \bar{Q} is anti-isomorphic to the non-kissing lattice of the reverse quiver \bar{Q}^{rev} .

Exercise 4. Consider the gentle quiver \overrightarrow{P}_n given by a path with n-1 arcs, oriented from left to right, and with no relation. Show that

- the biclosed sets of strings of \overrightarrow{P} are in bijection with the inversion sets of permutations [n],
- two biclosed sets if strings of \overrightarrow{P} define the same facet of the non-kissing complex if and only if the corresponding permutations of [n] define the same binary search tree.

Exercise 5. Define the multiplicity vector of a multiset $V := \{\{v_1, \ldots, v_m\}\}$ as $m_V := \sum_{i \in [m]} e_{v_i}$. Recall that for a walk w in a non-kissing facet F,

- the *g*-vector of w is $g(w) := m_{\text{peaks}(w)} m_{\text{deeps}(w)}$, where peaks(w) (resp. deeps(w)) denotes the vertices along w where w has two outgoing (resp. incoming) arrows,
- the *c*-vector of *w* in *F* is $c(w \in F) := \varepsilon(w, F) \cdot m_{ds(w,F)}$, where ds(w, F) denotes the distinguished substring of *w* in *F*, and $\varepsilon(w, F) := 1$ if the two distinguished arrows of *w* point towards its ends, and $\varepsilon(w, F) := -1$ otherwise.

Show that the *g*-vectors $\{g(w) \mid w \in F\}$ and the *c*-vectors $\{c(w \in F) \mid w \in F\}$ form dual bases.

 $Chapoton-Fomin-Zelevinski's\ associahedron$