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Basic definitions

A numerical semigroup S is a submonoid of (N,+) such that N \ S is
finite.

If A is a set of positive integers, there is a semigroup

⟨A⟩ = {λ1a1 + · · ·+ λan | n, λ1, . . . , λn ∈ N,a1, . . . ,an ∈ A}

and in this case we say that A is a system of generators of ⟨A⟩.

Every numerical semigroup S has a unique minimal system of gener-
ators and it is finite. Its cardinality ν(S) is the embedding dimension
of S.

Given a field k, the numerical semigroup ring associated with S and
k is the one-dimensional domain k[S] = k[t s | s ∈ S], where t is an
indeterminate. This ring is strictly related to k[[S]] = k[[t s | s ∈ S]].
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Basic definitions

Since N \ S is finite, there exists F(S) = max(N \ S) and it is called
Frobenius number of S.

The multiplicity m(S) is the smallest non-zero element of S.

Consider the following numerical semigroup:

S = ⟨5, 6, 14⟩ = {0, 5, 6, 10, 11, 12, 14 →}

In this case ν(S) = 3, F(S) = 13, and m(S) = 5.

The multiplicity and embedding dimension of S are the multiplicity
and embedding dimension of k[[S]].
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Symmetric numerical semigroups

By definition F(S) /∈ S. Moreover, if s ∈ S, then F(S)−s /∈ S otherwise
F(S) = s + (F(S)− s) ∈ S.

Definition A numerical semigroup S is said to be symmetric when
s ∈ S if and only if F(S)− s /∈ S for every s ∈ Z.

The previous example S = ⟨5, 6, 14⟩ = {0, 5, 6, 10, 11, 12, 14 →} is not
symmetric because 4 and 13 − 4 = 9 are not in S.

While ⟨5, 6⟩ = {0, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20 →} is symmetric.

Theorem (Kunz, 1970) S is symmetric if and only if k[S] is Gorenstein.

This result holds not only for numerical semigroup rings, but also for
analytically irreducible rings.
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Symmetric numerical semigroups

The set K (S) = {z ∈ Z | F(S)− z /∈ S} is called canonical ideal of S. It
is not difficult to see that S ⊆ K (S) and that the equality holds if and
only if S is symmetric.

The fractional ideal (t z | z ∈ K (S)) is a canonical module of k[[S]].

Definition The set of pseudo-Frobenius numbers of S is

PF(S) = {f ∈ Z \ S | f + s ∈ S for every s ∈ S \ {0}}.

The type of S is t(S) = |PF(S)| ≥ 1.

The type t(S) is equal to the Cohen-Macaulay type of k[S]. In partic-
ular, S is symmetric if and only if t(S) = 1.
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Apéry set

How can we find pseudo-Frobenius numbers?

Definition The Apéry set of S with respect to n ∈ S \ {0} is

Ap(S,n) = {x ∈ S | x − n /∈ S}.

If x, y ∈ Ap(S,n), set x ≤S y if y = x + s for some s ∈ S.

Proposition

• The minimal elements of Ap(S,n) \ {0} with respect to ≤S are the
minimal generators of S.

• The maximal elements of Ap(S,n) with respect to ≤S minus n are
the pseudo-Frobenius numbers of S.
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Pseudo-symmetric numerical semigroups

If F(S) is even, it follows that F(S)/2 /∈ S. Therefore, since also F(S)−
F(S)

2 = F(S)
2 /∈ S, the semigroup S is never symmetric.

This means that the Frobenius number of a symmetric numerical
semigroup is always odd.

Definition A numerical semigroup S is said to be pseudo-symmetric
if F(S) is even and s ∈ S if and only if F(S) − s /∈ S for every s ∈
Z \ {F(S)

2 }.

The numerical semigroup ⟨5, 6, 13⟩ = {0, 5, 6, 10, 11, 12, 13, 15 →} is
pseudo-symmetric.

We note that a pseudo-symmetric numerical semigroup has always
type 2, but the converse is not true.
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Almost symmetric numerical semigroups

We have already noted that if s ∈ S, then F(S)− s /∈ S.

Also, we have seen examples in which both s and F(S) − s are not in
S. In this case we say that s and F(S) − s are gaps of the second type
for S and we denote the set of these gaps by L(S).

Definition (Barucci and Fröberg, 1997) A numerical semigroup S is
almost symmetric if L(S) ⊆ PF(S), or equivalently F(S) − f ∈ PF(S)
for every f ∈ PF(S) \ {F(S)}.

Let S = ⟨4, 6, 9, 11⟩ = {0, 4, 6, 8 →}. In this case L(S) = {2, 5} and
PF(S) = {2, 5, 7}, then S is almost symmetric.

The symmetric and pseudo-symmetric semigroups are exactly the
almost symmetric semigroups with type 1 and 2 respectively.

Francesco Strazzanti On the type of some semigroups



Almost symmetric numerical semigroups

We have already noted that if s ∈ S, then F(S)− s /∈ S.

Also, we have seen examples in which both s and F(S) − s are not in
S. In this case we say that s and F(S) − s are gaps of the second type
for S and we denote the set of these gaps by L(S).

Definition (Barucci and Fröberg, 1997) A numerical semigroup S is
almost symmetric if L(S) ⊆ PF(S), or equivalently F(S) − f ∈ PF(S)
for every f ∈ PF(S) \ {F(S)}.

Let S = ⟨4, 6, 9, 11⟩ = {0, 4, 6, 8 →}. In this case L(S) = {2, 5} and
PF(S) = {2, 5, 7}, then S is almost symmetric.

The symmetric and pseudo-symmetric semigroups are exactly the
almost symmetric semigroups with type 1 and 2 respectively.

Francesco Strazzanti On the type of some semigroups



Almost symmetric numerical semigroups

We have already noted that if s ∈ S, then F(S)− s /∈ S.

Also, we have seen examples in which both s and F(S) − s are not in
S. In this case we say that s and F(S) − s are gaps of the second type
for S and we denote the set of these gaps by L(S).

Definition (Barucci and Fröberg, 1997) A numerical semigroup S is
almost symmetric if L(S) ⊆ PF(S), or equivalently F(S) − f ∈ PF(S)
for every f ∈ PF(S) \ {F(S)}.

Let S = ⟨4, 6, 9, 11⟩ = {0, 4, 6, 8 →}. In this case L(S) = {2, 5} and
PF(S) = {2, 5, 7}, then S is almost symmetric.

The symmetric and pseudo-symmetric semigroups are exactly the
almost symmetric semigroups with type 1 and 2 respectively.

Francesco Strazzanti On the type of some semigroups



Nearly Gorenstein rings

Let k be a field and let R be a Cohen-Macaulay positively graded k-
algebra with graded maximal ideal m and canonical module ωR. The
trace ideal of ωR is the ideal

tr(ωR) =
∑

φ∈HomR(ωR,R)

φ(ωR).

It describes the non-Gorenstein locus of R: if p ∈ Spec(R), the ring Rp

is not Gorenstein if and only if tr(ωR) ⊆ p.

Definition (Herzog, Hibi, and Stamate, 2019) The ring R is said to
be nearly Gorenstein if m ⊆ tr(ωR).

These rings also appear in other previous works by Ding (1993), Huneke-
Vraciu (2006), Striuli-Vraciu (2011)...
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Computing the trace

With some assumptions on R, it holds that tr(ωR) = ωRω
−1
R , where

ω−1
R = (R :Q(R) ωR) = {x ∈ Q(R) | xωR ⊆ R}.

This gives a concrete way to compute the trace of ωR.

In numerical
semigroup terms we have

tr(K (S)) = K (S) + K ′(S),

where K ′(S) = S − K (S) = {x ∈ Z | x + K (S) ⊆ S} and S is a nearly
Gorenstein semigroup exactly when S \ {0} ⊆ tr(K (S)).

Example

Consider the semigroup S = ⟨5, 6, 9, 13⟩ = {0, 5, 6, 9 →}. Then,
K (S) = {0, 1, 4, 5, 6, 7, 9 →} and K ′(S) = {5, 9 →}; it follows that
tr(K (S)) = {5, 6, 9 →} = S \ {0}. Therefore, S is nearly Gorenstein.
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Type of semigroups with few generators

We want to study the type of a numerical semigroup S with respect to
its embedding dimension ν(S), the number of minimal generators.

• If ν(S) = 2, then t(S) = 1.

• If ν(S) = 3, then t(S) ≤ 2.

• If ν(S) = 4, then there is no bound for t(S).

Example (Backelin, 1987)

Given n ≥ 2 and r ≥ 3n + 2, let s = r(3n + 2) + 3 and

S = ⟨s, s + 3, s + 3n + 1, s + 3n + 2⟩.

Then, ν(S) = 4 and t(S) ≥ 2n + 2.

Numata conjectured that if ν(S) = 4 and S is almost symmetric, then
t(S) ≤ 3. This was proved by Moscariello (2016).
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Row factorization matrices

Let S = ⟨n1, . . . ,nν⟩, where n1,n2, . . . ,nν are minimal generators.
For every f ∈ PF(S) and every i = 1, . . . , ν we have

f + ni =

ν∑
j=1

aijnj

with aij ≥ 0 and aii = 0.

Definition (Moscariello, 2016) A square matrix A = (aij) of order ν
is a row factorization matrix for f (briefly RF+ matrix), if aii = −1,
aij ∈ N when i ̸= j and f =

∑ν
j=1 aijnj for all i.

A pseudo-Frobenius number can have more RF+ matrices.
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Moscariello’s idea

Let S = ⟨4, 7, 10, 13⟩. In this case PF(S) = {3, 6, 9}. For example
3 + 4 = 1 · 7, 3 + 7 = 1 · 10, 3 + 10 = 1 · 13, 3 + 13 = 4 · 4.

RF+(3) =


−1 1 0 0
0 −1 1 0
0 0 −1 1
4 0 0 −1

 ,

RF+(6) =


−1 0 1 0
0 −1 0 1
4 0 −1 0
3 1 0 −1


Proposition (Moscariello, 2016) Assume that f ,F(S) − f ∈ PF(S).
Let (aij) and (bij) be two RF+ matrices for f and F(S) − f resp. Then,
aijbji = 0 for every i ̸= j.

If ν = 4, in (aij) and (bij) there are at least 12 zeroes and 4 rows with
two 0.

IDEA: ani − nj and bni − nj cannot be both in PF(S). There are 12
writings λni − nj and these correspond to the rows with two 0.
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If ν = 4, in (aij) and (bij) there are at least 12 zeroes and 4 rows with
two 0.

IDEA: ani − nj and bni − nj cannot be both in PF(S). There are 12
writings λni − nj and these correspond to the rows with two 0.
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Nearly Gorenstein vectors

Let G(S) be the generators of S. Recall that S is almost symmetric if
F(S) − f ∈ PF(S) for all f ∈ PF(S); equivalently n + F(S) − f ∈ S for
all f ∈ PF(S) and every n ∈ G(S).

Proposition (Moscariello and S., 2021) A semigroup S is nearly
Gorenstein if and only if for every ni ∈ G(S) there exists fi ∈ PF(S)
such that ni + fi − f ∈ S for all f ∈ PF(S).

In particular, an almost symmetric semigroup is nearly Gorenstein.

Definition Let S = ⟨n1, . . . ,nν⟩, where n1 < · · · < nν are minimal
generators. We call (f1, . . . , fν) ∈ PF(S)ν nearly Gorenstein vector for
S, briefly NG-vector, if ni + fi − f ∈ S for all f ∈ PF(S) and i = 1, . . . , ν.

Hence, S is nearly Gorenstein if and only if it admits a NG-vector.
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An example

Let S = ⟨10, 12, 37, 75⟩. We have PF(S) = {38, 63, 65}.

Note that

10 + 65 − 38 = 37 ∈ S 10 + 65 − 63 = 12 ∈ S 10 + 65 − 65 = 10 ∈ S
12 + 63 − 38 = 37 ∈ S 12 + 63 − 63 = 12 ∈ S 12 + 63 − 65 = 10 ∈ S
37 + 38 − 38 = 37 ∈ S 37 + 38 − 63 = 12 ∈ S 37 + 38 − 65 = 10 ∈ S
75 + 38 − 38 = 75 ∈ S 75 + 38 − 63 = 50 ∈ S 75 + 38 − 65 = 48 ∈ S

So, (65, 63, 38, 38) is an NG-vector, and hence S is nearly Gorenstein.
Note also that

75 + 63 − 38 = 100 ∈ S 75 + 63 − 63 = 75 ∈ S 75 + 63 − 65 = 73 ∈ S
75 + 65 − 38 = 102 ∈ S 75 + 65 − 63 = 77 ∈ S 75 + 65 − 65 = 75 ∈ S

Therefore, also (65, 63, 38, 63) and (65, 63, 38, 65) are NG-vectors. It
is easy to see that these three are the only ones.
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RF− matrices

Let S = ⟨n1, . . . ,nν⟩ be nearly Gorenstein, where n1 < · · · < nν are
minimal generators. Fix an NG-vector (f1, . . . , fν).

For every f ∈ PF(S) and for every i such that f ̸= fi we have

ni + fi − f =

ν∑
j=1

bijnj

with bij ≥ 0 and bii = 0.

Thus, we can define another matrix:

Definition A square matrix B = (bij) of order ν is an RF− matrix for
f if B satisfies the following properties:

• if f = fi , in the i-th row of B there are only zeroes;

• otherwise bii = −1 and fi − f =
∑ν

j=1 bijnj .
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RF− matrices

S = ⟨10, 12, 37, 75⟩ is nearly Gorenstein since (65, 63, 38, 63) is an NG-
vector for S. Then

RF+(38) =


−1 4 0 0
5 −1 0 0
0 0 −1 1
4 3 1 −1

 , RF−(38) =


−1 0 1 0
0 −1 1 0
0 0 0 0
4 5 0 −1


10 + f1 − 38 = 1 · 37 12 + f2 − 38 = 1 · 37
f3 = 38 75 + f4 − 38 = 4 · 10 + 5 · 12

Lemma Let (aij) and (bij) be an RF+ and an RF− matrix for f ∈
PF(S) respectively. Then, ajkbkj = 0 for every j ̸= k.

We have two matrices associated with a pseudo-Frobenius number!
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Upper bounds for the type

Theorem (Moscariello and S., 2021) If S = ⟨n1,n2,n3,n4⟩ is nearly
Gorenstein, then t(S) ≤ 3.

Question (Stamate, 2018) Is there an upper bound for the type of S in
terms of its embedding dimension when S is nearly Gorenstein?

Question (Moscariello and S., 2021) Let S be a nearly Gorenstein
numerical semigroup with embedding dimension 5. Is it true that
t(S) ≤ 5 and that the equality holds only if S is almost symmetric?

There exist nearly Gorenstein numerical semigroups s.t. ν(S) < t(S).

If S = ⟨64, 68, 73, 77, 84, 93⟩, then ν(S) = 6 and t(S) = 9, since
PF(S) = {159, 179, 188, 195, 197, 206, 215, 394, 403}.
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Affine semigroups

Let a1,a2, . . . ,an ∈ Nd , where d is a positive integer. The associated
affine semigroup is the semigroup

S =

{
n∑

i=1

λiai | λi ∈ N for i = 1, . . . ,n

}
.

We always assume that S is fully embedded in Nd .

Given a field k, the affine semigroup ring associated with S and k is
the d-dimensional subalgebras of k[x1, . . . , xd ] given by

k[S] = k[xa | a ∈ S],

where a = (a1,a2, . . . ,ad) and xa = xa1
1 xa2

2 · · · xad
d .
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Simplicial affine semigroups

cone(S) =

{
n∑

i=1

λiai | λi ∈ R for i = 1, . . . ,n

}
is the intersection of finitely many closed linear half-spaces in Rd ,
each of whose bounding hyperplanes contains the origin.

When d = 2, these hyperplanes are one-dimensional vector spaces,
which are called the extremal rays of cone(S).

When d > 2, the intersection of two adjacent hyperplane is a one-
dimensional vector space, which is called an extremal ray of cone(S).

There are at least d extremal rays, and S is called simplicial when
cone(S) has exactly d extremal rays.

We assume that S is simplicial and a1,a2, . . . ,ad are the componen-
twise smallest non-zero vectors of S of each extremal ray of cone(S).
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Apéry sets

Define Ap(S,a) = {b ∈ S | b − a /∈ S}

and

Ap(S,E) =
d⋂

i=1

Ap(S,ai).

This is a finite set. If x, y ∈ Ap(S,E), set x ≤S y if y = x + s for s ∈ S.

Proposition (Jafari and Yaghmaei, 2021) If k[S] is Cohen-Macaulay,
its type t(S) is equal to the number of maximal elements in Ap(S,E)

with respect to ≤S .

Let G be the group generated by a1,a2, . . . ,ad .

Proposition (Rosales and García-Sánchez, 1998) TFAE:

• k[S] is Cohen-Macaulay;

• For all w1,w2 ∈ Ap(S,E), if w1 − w2 ∈ G, then w1 = w2.
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its type t(S) is equal to the number of maximal elements in Ap(S,E)

with respect to ≤S .

Let G be the group generated by a1,a2, . . . ,ad .

Proposition (Rosales and García-Sánchez, 1998) TFAE:

• k[S] is Cohen-Macaulay;

• For all w1,w2 ∈ Ap(S,E), if w1 − w2 ∈ G, then w1 = w2.
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Trace

Let m1, . . . ,mt be the maximal elements in Ap(S,E) wrt ≤S .

Proposition (Jafari, Zarzuela Armengou) k[S] is nearly Gorenstein if
and only if for every ai there exists mi s.t. ai + mi − mj ∈ S for all
j = 1, . . . , t .

Therefore, the notion of NG-vector can be defined also in this context.

Actually, a more general result holds.

Theorem The trace of the canonical module of k(S) is

{b | there exists i s.t. b + mi − mj ∈ S for all j = 1, . . . , t}.
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Type

Theorem (Jafari, Zarzuela Armengou) If S is nearly Gorenstein but
not Gorenstein, then t(S) ≥ d.

Problem If S is nearly Gorenstein, is its type bounded by a function of
its embedding dimension?

Recalling that for a numerical semigroup with embedding dimension
4 the type is at most three, it is natural to ask:

Question Let S be a nearly Gorenstein affine semigroup with embed-
ding dimension d + 3. Is t(S) ≤ d + 2?
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THANK YOU!
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