On the type of some semigroups

Francesco Strazzanti

University of Genoa

1st Geometry and Algebra in Combinatorics Workshop

Los Silos, 4th April 2024

A *numerical semigroup S* is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite.

A *numerical semigroup S* is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite.

If *A* is a set of positive integers, there is a semigroup

 $\langle A \rangle = \{\lambda_1 a_1 + \dots + \lambda a_n \mid n, \lambda_1, \dots, \lambda_n \in \mathbb{N}, a_1, \dots, a_n \in A\}$

and in this case we say that *A* is a *system of generators* of $\langle A \rangle$.

A *numerical semigroup S* is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite.

If A is a set of positive integers, there is a semigroup

 $\langle A \rangle = \{\lambda_1 a_1 + \dots + \lambda a_n \mid n, \lambda_1, \dots, \lambda_n \in \mathbb{N}, a_1, \dots, a_n \in A\}$

and in this case we say that *A* is a *system of generators* of $\langle A \rangle$.

Every numerical semigroup *S* has a unique minimal system of generators and it is finite. Its cardinality $\nu(S)$ is the *embedding dimension* of *S*.

A *numerical semigroup S* is a submonoid of $(\mathbb{N}, +)$ such that $\mathbb{N} \setminus S$ is finite.

If A is a set of positive integers, there is a semigroup

 $\langle A \rangle = \{\lambda_1 a_1 + \dots + \lambda a_n \mid n, \lambda_1, \dots, \lambda_n \in \mathbb{N}, a_1, \dots, a_n \in A\}$

and in this case we say that *A* is a *system of generators* of $\langle A \rangle$.

Every numerical semigroup *S* has a unique minimal system of generators and it is finite. Its cardinality $\nu(S)$ is the *embedding dimension* of *S*.

Given a field k, the *numerical semigroup ring* associated with *S* and k is the one-dimensional domain $k[S] = k[t^s | s \in S]$, where *t* is an indeterminate. This ring is strictly related to $k[[S]] = k[[t^s | s \in S]]$.

Since $\mathbb{N} \setminus S$ is finite, there exists $F(S) = \max(\mathbb{N} \setminus S)$ and it is called *Frobenius number* of *S*.

Since $\mathbb{N} \setminus S$ is finite, there exists $F(S) = \max(\mathbb{N} \setminus S)$ and it is called *Frobenius number* of *S*.

The *multiplicity* m(S) is the smallest non-zero element of *S*.

Since $\mathbb{N} \setminus S$ is finite, there exists $F(S) = \max(\mathbb{N} \setminus S)$ and it is called *Frobenius number* of *S*.

The *multiplicity* m(S) is the smallest non-zero element of *S*.

Consider the following numerical semigroup:

 $S = \langle 5, 6, 14 \rangle = \{0, 5, 6, 10, 11, 12, 14 \rightarrow \}$

In this case $\nu(S) = 3$, F(S) = 13, and m(S) = 5.

The multiplicity and embedding dimension of *S* are the multiplicity and embedding dimension of k[[S]].

By definition $F(S) \notin S$. Moreover, if $s \in S$, then $F(S) - s \notin S$ otherwise $F(S) = s + (F(S) - s) \in S$.

By definition $F(S) \notin S$. Moreover, if $s \in S$, then $F(S) - s \notin S$ otherwise $F(S) = s + (F(S) - s) \in S$.

Definition A numerical semigroup *S* is said to be *symmetric* when $s \in S$ if and only if $F(S) - s \notin S$ for every $s \in \mathbb{Z}$.

By definition $F(S) \notin S$. Moreover, if $s \in S$, then $F(S) - s \notin S$ otherwise $F(S) = s + (F(S) - s) \in S$.

Definition A numerical semigroup *S* is said to be *symmetric* when $s \in S$ if and only if $F(S) - s \notin S$ for every $s \in \mathbb{Z}$.

The previous example $S = \langle 5, 6, 14 \rangle = \{0, 5, 6, 10, 11, 12, 14 \rightarrow\}$ is not symmetric because 4 and 13 - 4 = 9 are not in *S*.

While $(5, 6) = \{0, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20 \rightarrow\}$ is symmetric.

By definition $F(S) \notin S$. Moreover, if $s \in S$, then $F(S) - s \notin S$ otherwise $F(S) = s + (F(S) - s) \in S$.

Definition A numerical semigroup *S* is said to be *symmetric* when $s \in S$ if and only if $F(S) - s \notin S$ for every $s \in \mathbb{Z}$.

The previous example $S = \langle 5, 6, 14 \rangle = \{0, 5, 6, 10, 11, 12, 14 \rightarrow\}$ is not symmetric because 4 and 13 - 4 = 9 are not in *S*.

While $(5, 6) = \{0, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20 \rightarrow\}$ is symmetric.

Theorem (Kunz, 1970) *S* is symmetric if and only if $\Bbbk[S]$ is Gorenstein.

This result holds not only for numerical semigroup rings, but also for analytically irreducible rings.

The set $K(S) = \{z \in \mathbb{Z} \mid F(S) - z \notin S\}$ is called *canonical ideal* of *S*. It is not difficult to see that $S \subseteq K(S)$ and that the equality holds if and only if *S* is symmetric.

The fractional ideal $(t^z \mid z \in K(S))$ is a canonical module of $\Bbbk[[S]]$.

The set $K(S) = \{z \in \mathbb{Z} \mid F(S) - z \notin S\}$ is called *canonical ideal* of *S*. It is not difficult to see that $S \subseteq K(S)$ and that the equality holds if and only if *S* is symmetric.

The fractional ideal $(t^z \mid z \in K(S))$ is a canonical module of $\Bbbk[[S]]$.

Definition The set of *pseudo-Frobenius numbers* of *S* is $PF(S) = \{f \in \mathbb{Z} \setminus S \mid f + s \in S \text{ for every } s \in S \setminus \{0\}\}.$ The *type* of *S* is $t(S) = |PF(S)| \ge 1$.

The type t(S) is equal to the Cohen-Macaulay type of $\Bbbk[S]$. In particular, *S* is symmetric if and only if t(S) = 1.

Apéry set

How can we find pseudo-Frobenius numbers?

Definition The *Apéry set* of *S* with respect to $n \in S \setminus \{0\}$ is Ap $(S, n) = \{x \in S \mid x - n \notin S\}.$

Apéry set

How can we find pseudo-Frobenius numbers?

Definition The *Apéry set* of *S* with respect to $n \in S \setminus \{0\}$ is Ap $(S, n) = \{x \in S \mid x - n \notin S\}.$

If $x, y \in Ap(S, n)$, set $x \leq_S y$ if y = x + s for some $s \in S$.

Proposition

- The minimal elements of Ap(S, n) \ {0} with respect to ≤_S are the minimal generators of S.
- The maximal elements of Ap(S, n) with respect to ≤_S minus n are the pseudo-Frobenius numbers of S.

Pseudo-symmetric numerical semigroups

If F(S) is even, it follows that $F(S)/2 \notin S$. Therefore, since also $F(S) - \frac{F(S)}{2} = \frac{F(S)}{2} \notin S$, the semigroup *S* is never symmetric.

This means that the Frobenius number of a symmetric numerical semigroup is always odd.

Pseudo-symmetric numerical semigroups

If F(S) is even, it follows that $F(S)/2 \notin S$. Therefore, since also $F(S) - \frac{F(S)}{2} = \frac{F(S)}{2} \notin S$, the semigroup *S* is never symmetric.

This means that the Frobenius number of a symmetric numerical semigroup is always odd.

Definition A numerical semigroup *S* is said to be *pseudo-symmetric* if F(S) is even and $s \in S$ if and only if $F(S) - s \notin S$ for every $s \in \mathbb{Z} \setminus \{\frac{F(S)}{2}\}$.

The numerical semigroup $\langle 5,6,13\rangle=\{0,5,6,10,11,12,13,15\rightarrow\}$ is pseudo-symmetric.

We note that a pseudo-symmetric numerical semigroup has always type 2, but the converse is not true.

Almost symmetric numerical semigroups

We have already noted that if $s \in S$, then $F(S) - s \notin S$.

Also, we have seen examples in which both *s* and F(S) - s are not in *S*. In this case we say that *s* and F(S) - s are *gaps of the second type* for *S* and we denote the set of these gaps by L(S).

Almost symmetric numerical semigroups

We have already noted that if $s \in S$, then $F(S) - s \notin S$.

Also, we have seen examples in which both *s* and F(S) - s are not in *S*. In this case we say that *s* and F(S) - s are *gaps of the second type* for *S* and we denote the set of these gaps by L(S).

Definition (Barucci and Fröberg, 1997) A numerical semigroup *S* is *almost symmetric* if $L(S) \subseteq PF(S)$, or equivalently $F(S) - f \in PF(S)$ for every $f \in PF(S) \setminus \{F(S)\}$.

Let $S = \langle 4, 6, 9, 11 \rangle = \{0, 4, 6, 8 \rightarrow \}$. In this case $L(S) = \{2, 5\}$ and $PF(S) = \{2, 5, 7\}$, then *S* is almost symmetric.

Almost symmetric numerical semigroups

We have already noted that if $s \in S$, then $F(S) - s \notin S$.

Also, we have seen examples in which both *s* and F(S) - s are not in *S*. In this case we say that *s* and F(S) - s are *gaps of the second type* for *S* and we denote the set of these gaps by L(S).

Definition (Barucci and Fröberg, 1997) A numerical semigroup *S* is *almost symmetric* if $L(S) \subseteq PF(S)$, or equivalently $F(S) - f \in PF(S)$ for every $f \in PF(S) \setminus \{F(S)\}$.

Let $S = \langle 4, 6, 9, 11 \rangle = \{0, 4, 6, 8 \rightarrow \}$. In this case $L(S) = \{2, 5\}$ and $PF(S) = \{2, 5, 7\}$, then *S* is almost symmetric.

The symmetric and pseudo-symmetric semigroups are exactly the almost symmetric semigroups with type 1 and 2 respectively.

Nearly Gorenstein rings

Let k be a field and let *R* be a Cohen-Macaulay positively graded kalgebra with graded maximal ideal m and canonical module ω_R . The *trace ideal* of ω_R is the ideal

$$\operatorname{tr}(\omega_R) = \sum_{\varphi \in \operatorname{Hom}_R(\omega_R, R)} \varphi(\omega_R).$$

It describes the non-Gorenstein locus of *R*: if $\mathfrak{p} \in \operatorname{Spec}(R)$, the ring $R_{\mathfrak{p}}$ is not Gorenstein if and only if $\operatorname{tr}(\omega_R) \subseteq \mathfrak{p}$.

Let k be a field and let *R* be a Cohen-Macaulay positively graded kalgebra with graded maximal ideal m and canonical module ω_R . The *trace ideal* of ω_R is the ideal

$$\operatorname{tr}(\omega_R) = \sum_{\varphi \in \operatorname{Hom}_R(\omega_R, R)} \varphi(\omega_R).$$

It describes the non-Gorenstein locus of R: if $\mathfrak{p} \in \operatorname{Spec}(R)$, the ring $R_{\mathfrak{p}}$ is not Gorenstein if and only if $\operatorname{tr}(\omega_R) \subseteq \mathfrak{p}$.

Definition (Herzog, Hibi, and Stamate, 2019) The ring *R* is said to be *nearly Gorenstein* if $\mathfrak{m} \subseteq tr(\omega_R)$.

Let k be a field and let *R* be a Cohen-Macaulay positively graded kalgebra with graded maximal ideal m and canonical module ω_R . The *trace ideal* of ω_R is the ideal

$$\operatorname{tr}(\omega_R) = \sum_{\varphi \in \operatorname{Hom}_R(\omega_R, R)} \varphi(\omega_R).$$

It describes the non-Gorenstein locus of R: if $\mathfrak{p} \in \operatorname{Spec}(R)$, the ring $R_{\mathfrak{p}}$ is not Gorenstein if and only if $\operatorname{tr}(\omega_R) \subseteq \mathfrak{p}$.

Definition (Herzog, Hibi, and Stamate, 2019) The ring *R* is said to be *nearly Gorenstein* if $\mathfrak{m} \subseteq tr(\omega_R)$.

These rings also appear in other previous works by Ding (1993), Huneke-Vraciu (2006), Striuli-Vraciu (2011)...

Computing the trace

With some assumptions on *R*, it holds that $tr(\omega_R) = \omega_R \omega_R^{-1}$, where $\omega_R^{-1} = (R :_{Q(R)} \omega_R) = \{x \in Q(R) \mid x \omega_R \subseteq R\}.$

This gives a concrete way to compute the trace of ω_R .

Computing the trace

With some assumptions on *R*, it holds that $\operatorname{tr}(\omega_R) = \omega_R \omega_R^{-1}$, where $\omega_R^{-1} = (R :_{Q(R)} \omega_R) = \{x \in Q(R) \mid x \omega_R \subseteq R\}.$

This gives a concrete way to compute the trace of ω_R . In numerical semigroup terms we have

$$\operatorname{tr}(K(S)) = K(S) + K'(S),$$

where $K'(S) = S - K(S) = \{x \in \mathbb{Z} \mid x + K(S) \subseteq S\}$ and *S* is a *nearly Gorenstein semigroup* exactly when $S \setminus \{0\} \subseteq tr(K(S))$.

Computing the trace

With some assumptions on *R*, it holds that $tr(\omega_R) = \omega_R \omega_R^{-1}$, where $\omega_R^{-1} = (R :_{Q(R)} \omega_R) = \{x \in Q(R) \mid x \omega_R \subseteq R\}.$

This gives a concrete way to compute the trace of ω_R . In numerical semigroup terms we have

$$\operatorname{tr}(K(S)) = K(S) + K'(S),$$

where $K'(S) = S - K(S) = \{x \in \mathbb{Z} \mid x + K(S) \subseteq S\}$ and *S* is a *nearly Gorenstein semigroup* exactly when $S \setminus \{0\} \subseteq tr(K(S))$.

Example

Consider the semigroup $S = \langle 5, 6, 9, 13 \rangle = \{0, 5, 6, 9 \rightarrow\}$. Then, $K(S) = \{0, 1, 4, 5, 6, 7, 9 \rightarrow\}$ and $K'(S) = \{5, 9 \rightarrow\}$; it follows that $tr(K(S)) = \{5, 6, 9 \rightarrow\} = S \setminus \{0\}$. Therefore, *S* is nearly Gorenstein.

We want to study the type of a numerical semigroup *S* with respect to its embedding dimension $\nu(S)$, the number of minimal generators.

- If $\nu(S) = 2$, then t(S) = 1.
- If $\nu(S) = 3$, then $t(S) \le 2$.

We want to study the type of a numerical semigroup *S* with respect to its embedding dimension $\nu(S)$, the number of minimal generators.

• If
$$\nu(S) = 2$$
, then $t(S) = 1$.

- If $\nu(S) = 3$, then $t(S) \le 2$.
- If $\nu(S) = 4$, then there is no bound for t(S).

Example (Backelin, 1987)

Given $n \ge 2$ and $r \ge 3n + 2$, let s = r(3n + 2) + 3 and $S = \langle s, s + 3, s + 3n + 1, s + 3n + 2 \rangle$. Then, $\nu(S) = 4$ and $t(S) \ge 2n + 2$.

We want to study the type of a numerical semigroup *S* with respect to its embedding dimension $\nu(S)$, the number of minimal generators.

• If
$$\nu(S) = 2$$
, then $t(S) = 1$.

- If $\nu(S) = 3$, then $t(S) \le 2$.
- If $\nu(S) = 4$, then there is no bound for t(S).

Example (Backelin, 1987)

Given
$$n \ge 2$$
 and $r \ge 3n + 2$, let $s = r(3n + 2) + 3$ and

$$S = \langle s, s+3, s+3n+1, s+3n+2 \rangle.$$

Then, $\nu(S) = 4$ and $t(S) \ge 2n + 2$.

Numata conjectured that if $\nu(S) = 4$ and *S* is almost symmetric, then $t(S) \leq 3$.

We want to study the type of a numerical semigroup *S* with respect to its embedding dimension $\nu(S)$, the number of minimal generators.

• If
$$\nu(S) = 2$$
, then $t(S) = 1$.

- If $\nu(S) = 3$, then $t(S) \le 2$.
- If $\nu(S) = 4$, then there is no bound for t(S).

Example (Backelin, 1987)

Given
$$n \ge 2$$
 and $r \ge 3n+2$, let $s = r(3n+2) + 3$ and

$$S = \langle s, s+3, s+3n+1, s+3n+2 \rangle.$$

Then, $\nu(S) = 4$ and $t(S) \ge 2n + 2$.

Numata conjectured that if $\nu(S) = 4$ and *S* is almost symmetric, then $t(S) \leq 3$. *This was proved by Moscariello (2016)*.

Row factorization matrices

Let $S = \langle n_1, \dots, n_{\nu} \rangle$, where n_1, n_2, \dots, n_{ν} are minimal generators. For every $f \in PF(S)$ and every $i = 1, \dots, \nu$ we have

$$f+n_i=\sum_{j=1}^\nu a_{ij}n_j$$

with $a_{ij} \ge 0$ and $a_{ii} = 0$.

Row factorization matrices

Let $S = \langle n_1, \dots, n_{\nu} \rangle$, where n_1, n_2, \dots, n_{ν} are minimal generators. For every $f \in PF(S)$ and every $i = 1, \dots, \nu$ we have

$$f+n_i=\sum_{j=1}^\nu a_{ij}n_j$$

with $a_{ij} \ge 0$ and $a_{ii} = 0$.

Definition (Moscariello, 2016) A square matrix $A = (a_{ij})$ of order ν is a *row factorization matrix* for f (briefly RF^+ *matrix*), if $a_{ii} = -1$, $a_{ij} \in \mathbb{N}$ when $i \neq j$ and $f = \sum_{j=1}^{\nu} a_{ij}n_j$ for all i.

A pseudo-Frobenius number can have more RF^+ matrices.

Moscariello's idea

Let $S = \langle 4, 7, 10, 13 \rangle$. In this case $PF(S) = \{3, 6, 9\}$. For example $3 + 4 = 1 \cdot 7, 3 + 7 = 1 \cdot 10, 3 + 10 = 1 \cdot 13, 3 + 13 = 4 \cdot 4$.

$$\mathrm{RF}^+(3) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix},$$

Moscariello's idea

Let $S = \langle 4, 7, 10, 13 \rangle$. In this case $PF(S) = \{3, 6, 9\}$. For example $3 + 4 = 1 \cdot 7, 3 + 7 = 1 \cdot 10, 3 + 10 = 1 \cdot 13, 3 + 13 = 4 \cdot 4$.

$$\mathrm{RF}^+(3) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix}, \ \mathrm{RF}^+(6) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 4 & 0 & -1 & 0 \\ 3 & 1 & 0 & -1 \end{pmatrix}$$

Moscariello's idea

Let $S = \langle 4, 7, 10, 13 \rangle$. In this case $PF(S) = \{3, 6, 9\}$. For example $3 + 4 = 1 \cdot 7, 3 + 7 = 1 \cdot 10, 3 + 10 = 1 \cdot 13, 3 + 13 = 4 \cdot 4$.

$$\mathrm{RF}^+(3) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix}, \ \mathrm{RF}^+(6) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 4 & 0 & -1 & 0 \\ 3 & 1 & 0 & -1 \end{pmatrix}$$

Proposition (Moscariello, 2016) Assume that $f, F(S) - f \in PF(S)$. Let (a_{ij}) and (b_{ij}) be two RF⁺ matrices for f and F(S) - f resp. Then, $a_{ij}b_{ji} = 0$ for every $i \neq j$.
Moscariello's idea

Let $S = \langle 4, 7, 10, 13 \rangle$. In this case $PF(S) = \{3, 6, 9\}$. For example $3 + 4 = 1 \cdot 7, 3 + 7 = 1 \cdot 10, 3 + 10 = 1 \cdot 13, 3 + 13 = 4 \cdot 4$.

$$\mathrm{RF}^+(3) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix}, \ \mathrm{RF}^+(6) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 4 & 0 & -1 & 0 \\ 3 & 1 & 0 & -1 \end{pmatrix}$$

Proposition (Moscariello, 2016) Assume that $f, F(S) - f \in PF(S)$. Let (a_{ij}) and (b_{ij}) be two RF⁺ matrices for f and F(S) - f resp. Then, $a_{ij}b_{ji} = 0$ for every $i \neq j$.

If $\nu = 4$, in (a_{ij}) and (b_{ij}) there are at least 12 zeroes and 4 rows with two 0.

Moscariello's idea

Let $S = \langle 4, 7, 10, 13 \rangle$. In this case $PF(S) = \{3, 6, 9\}$. For example $3 + 4 = 1 \cdot 7, 3 + 7 = 1 \cdot 10, 3 + 10 = 1 \cdot 13, 3 + 13 = 4 \cdot 4$.

$$\mathrm{RF}^+(3) = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 0 & 0 & -1 \end{pmatrix}, \ \mathrm{RF}^+(6) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 4 & 0 & -1 & 0 \\ 3 & 1 & 0 & -1 \end{pmatrix}$$

Proposition (Moscariello, 2016) Assume that $f, F(S) - f \in PF(S)$. Let (a_{ij}) and (b_{ij}) be two RF⁺ matrices for f and F(S) - f resp. Then, $a_{ij}b_{ji} = 0$ for every $i \neq j$.

If $\nu = 4$, in (a_{ij}) and (b_{ij}) there are at least 12 zeroes and 4 rows with two 0.

IDEA: $an_i - n_j$ and $bn_i - n_j$ cannot be both in PF(S). There are 12 writings $\lambda n_i - n_j$ and these correspond to the rows with two 0.

Nearly Gorenstein vectors

Let G(S) be the generators of *S*. Recall that *S* is almost symmetric if $F(S) - f \in PF(S)$ for all $f \in PF(S)$; equivalently $n + F(S) - f \in S$ for all $f \in PF(S)$ and every $n \in G(S)$.

Nearly Gorenstein vectors

Let G(S) be the generators of *S*. Recall that *S* is almost symmetric if $F(S) - f \in PF(S)$ for all $f \in PF(S)$; equivalently $n + F(S) - f \in S$ for all $f \in PF(S)$ and every $n \in G(S)$.

Proposition (Moscariello and S., 2021) A semigroup S is nearly Gorenstein if and only if for every $n_i \in G(S)$ there exists $f_i \in PF(S)$ such that $n_i + f_i - f \in S$ for all $f \in PF(S)$.

In particular, an almost symmetric semigroup is nearly Gorenstein.

Nearly Gorenstein vectors

Let G(S) be the generators of *S*. Recall that *S* is almost symmetric if $F(S) - f \in PF(S)$ for all $f \in PF(S)$; equivalently $n + F(S) - f \in S$ for all $f \in PF(S)$ and every $n \in G(S)$.

Proposition (Moscariello and S., 2021) A semigroup S is nearly Gorenstein if and only if for every $n_i \in G(S)$ there exists $f_i \in PF(S)$ such that $n_i + f_i - f \in S$ for all $f \in PF(S)$.

In particular, an almost symmetric semigroup is nearly Gorenstein.

Definition Let $S = \langle n_1, ..., n_\nu \rangle$, where $n_1 < \cdots < n_\nu$ are minimal generators. We call $(f_1, ..., f_\nu) \in PF(S)^\nu$ *nearly Gorenstein vector* for *S*, briefly NG-*vector*, if $n_i + f_i - f \in S$ for all $f \in PF(S)$ and $i = 1, ..., \nu$.

Hence, S is nearly Gorenstein if and only if it admits a NG-vector.

An example

Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$.

An example

Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$. Note that

 $10 + 65 - 38 = 37 \in S$ $10 + 65 - 63 = 12 \in S$ $10 + 65 - 65 = 10 \in S$

An example

Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$. Note that

 $10 + 65 - 38 = 37 \in S \quad 10 + 65 - 63 = 12 \in S \quad 10 + 65 - 65 = 10 \in S$ $12 + 63 - 38 = 37 \in S \quad 12 + 63 - 63 = 12 \in S \quad 12 + 63 - 65 = 10 \in S$

Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$. Note that

So, (65, 63, 38, 38) is an NG-vector, and hence *S* is nearly Gorenstein.

Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$. Note that

So, (65, 63, 38, 38) is an NG-vector, and hence *S* is nearly Gorenstein. Note also that

 $75 + 63 - 38 = 100 \in S \quad 75 + 63 - 63 = 75 \in S \quad 75 + 63 - 65 = 73 \in S$ $75 + 65 - 38 = 102 \in S \quad 75 + 65 - 63 = 77 \in S \quad 75 + 65 - 65 = 75 \in S$ Let S = (10, 12, 37, 75). We have $PF(S) = \{38, 63, 65\}$. Note that

So, (65, 63, 38, 38) is an NG-vector, and hence *S* is nearly Gorenstein. Note also that

 $75 + 63 - 38 = 100 \in S \quad 75 + 63 - 63 = 75 \in S \quad 75 + 63 - 65 = 73 \in S$ $75 + 65 - 38 = 102 \in S \quad 75 + 65 - 63 = 77 \in S \quad 75 + 65 - 65 = 75 \in S$

Therefore, also (65, 63, 38, 63) and (65, 63, 38, 65) are NG-vectors. It is easy to see that these three are the only ones.

RF^- matrices

Let $S = \langle n_1, ..., n_\nu \rangle$ be nearly Gorenstein, where $n_1 < \cdots < n_\nu$ are minimal generators. Fix an NG-vector $(f_1, ..., f_\nu)$.

For every $f \in PF(S)$ and for every *i* such that $f \neq f_i$ we have

$$n_i+f_i-f=\sum_{j=1}^{
u}b_{ij}n_j$$

with $b_{ij} \ge 0$ and $b_{ii} = 0$.

RF⁻ matrices

Let $S = \langle n_1, \ldots, n_\nu \rangle$ be nearly Gorenstein, where $n_1 < \cdots < n_\nu$ are minimal generators. Fix an NG-vector (f_1, \ldots, f_{ν}) .

For every $f \in PF(S)$ and for every *i* such that $f \neq f_i$ we have

$$n_i+f_i-f=\sum_{j=1}^{
u}b_{ij}n_j$$

with $b_{ii} \ge 0$ and $b_{ii} = 0$. Thus, we can define another matrix:

Definition A square matrix $B = (b_{ij})$ of order ν is an RF⁻ matrix for *f* if *B* satisfies the following properties:
if *f* = *f_i*, in the *i*-th row of *B* there are only zeroes;
otherwise *b_{ii}* = −1 and *f_i* − *f* = ∑^ν_{j=1} *b_{ij}n_j*.

RF^- matrices

 $S=\langle 10,12,37,75\rangle$ is nearly Gorenstein since (65,63,38,63) is an NG-vector for S. Then

$$\mathrm{RF}^{+}(38) = \begin{pmatrix} -1 & 4 & 0 & 0 \\ 5 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 3 & 1 & -1 \end{pmatrix}, \ \mathrm{RF}^{-}(38) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & -1 \end{pmatrix}$$

$$\begin{array}{ll} 10+f_1-38=1\cdot 37 & 12+f_2-38=1\cdot 37 \\ f_3=38 & 75+f_4-38=4\cdot 10+5\cdot 12 \end{array}$$

RF^- matrices

 $S=\langle 10,12,37,75\rangle$ is nearly Gorenstein since (65,63,38,63) is an NG-vector for S. Then

$$\mathrm{RF}^+(38) = \begin{pmatrix} -1 & 4 & 0 & 0 \\ 5 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 3 & 1 & -1 \end{pmatrix}, \ \mathrm{RF}^-(38) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & -1 \end{pmatrix}$$

$$10 + f_1 - 38 = 1 \cdot 37 \qquad 12 + f_2 - 38 = 1 \cdot 37 f_3 = 38 \qquad 75 + f_4 - 38 = 4 \cdot 10 + 5 \cdot 12$$

Lemma Let (a_{ij}) and (b_{ij}) be an RF^+ and an RF^- matrix for $f \in PF(S)$ respectively. Then, $a_{jk}b_{kj} = 0$ for every $j \neq k$.

RF^- matrices

 $S=\langle 10,12,37,75\rangle$ is nearly Gorenstein since (65,63,38,63) is an NG-vector for S. Then

$$\mathrm{RF}^{+}(38) = \begin{pmatrix} -1 & 4 & 0 & 0 \\ 5 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 4 & 3 & 1 & -1 \end{pmatrix}, \ \mathrm{RF}^{-}(38) = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 5 & 0 & -1 \end{pmatrix}$$

$$\begin{array}{ll} 10+f_1-38=1\cdot 37 & 12+f_2-38=1\cdot 37 \\ f_3=38 & 75+f_4-38=4\cdot 10+5\cdot 12 \end{array}$$

Lemma Let (a_{ij}) and (b_{ij}) be an RF⁺ and an RF⁻ matrix for $f \in$ PF(S) respectively. Then, $a_{jk}b_{kj} = 0$ for every $j \neq k$.

We have two matrices associated with a pseudo-Frobenius number!

Theorem (Moscariello and S., 2021) If $S = \langle n_1, n_2, n_3, n_4 \rangle$ is nearly *Gorenstein, then* $t(S) \leq 3$.

Theorem (Moscariello and S., 2021) If $S = \langle n_1, n_2, n_3, n_4 \rangle$ is nearly *Gorenstein, then* $t(S) \leq 3$.

Question (Stamate, 2018) *Is there an upper bound for the type of S in terms of its embedding dimension when S is nearly Gorenstein?*

Theorem (Moscariello and S., 2021) If $S = \langle n_1, n_2, n_3, n_4 \rangle$ is nearly *Gorenstein, then* $t(S) \leq 3$.

Question (Stamate, 2018) *Is there an upper bound for the type of S in terms of its embedding dimension when S is nearly Gorenstein?*

Question (Moscariello and S., 2021) Let *S* be a nearly Gorenstein numerical semigroup with embedding dimension 5. Is it true that $t(S) \le 5$ and that the equality holds only if *S* is almost symmetric?

Theorem (Moscariello and S., 2021) If $S = \langle n_1, n_2, n_3, n_4 \rangle$ is nearly *Gorenstein, then* $t(S) \leq 3$.

Question (Stamate, 2018) *Is there an upper bound for the type of S in terms of its embedding dimension when S is nearly Gorenstein?*

Question (Moscariello and S., 2021) Let *S* be a nearly Gorenstein numerical semigroup with embedding dimension 5. Is it true that $t(S) \le 5$ and that the equality holds only if *S* is almost symmetric?

There exist nearly Gorenstein numerical semigroups s.t. $\nu(S) < t(S)$.

If $S = \langle 64, 68, 73, 77, 84, 93 \rangle$, then $\nu(S) = 6$ and t(S) = 9, since $PF(S) = \{159, 179, 188, 195, 197, 206, 215, 394, 403\}.$

Affine semigroups

Let $a_1, a_2, ..., a_n \in \mathbb{N}^d$, where *d* is a positive integer. The associated *affine semigroup* is the semigroup

$$S = \left\{ \sum_{i=1}^n \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{N} \text{ for } i = 1, \dots, n
ight\}.$$

We always assume that *S* is fully embedded in \mathbb{N}^d .

Affine semigroups

Let $a_1, a_2, ..., a_n \in \mathbb{N}^d$, where *d* is a positive integer. The associated *affine semigroup* is the semigroup

$$S = \left\{ \sum_{i=1}^n \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{N} \text{ for } i = 1, \dots, n \right\}.$$

We always assume that *S* is fully embedded in \mathbb{N}^d .

Given a field k, the *affine semigroup ring* associated with *S* and k is the *d*-dimensional subalgebras of $k[x_1, \ldots, x_d]$ given by

$$\mathbb{k}[S] = \mathbb{k}[\boldsymbol{x^{\boldsymbol{u}}} \mid \boldsymbol{a} \in S],$$

where $\boldsymbol{a} = (a_1, a_2, \dots, a_d)$ and $\boldsymbol{x^{\boldsymbol{a}}} = x_1^{a_1} x_2^{a_2} \cdots x_d^{a_d}.$

$$\operatorname{cone}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{R} \text{ for } i = 1, \dots, n \right\}$$

is the intersection of finitely many closed linear half-spaces in \mathbb{R}^d , each of whose bounding hyperplanes contains the origin.

$$\operatorname{cone}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{R} \text{ for } i = 1, \dots, n \right\}$$

is the intersection of finitely many closed linear half-spaces in \mathbb{R}^d , each of whose bounding hyperplanes contains the origin.

When d = 2, these hyperplanes are one-dimensional vector spaces, which are called the *extremal rays* of cone(*S*).

$$\operatorname{cone}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{R} \text{ for } i = 1, \dots, n \right\}$$

is the intersection of finitely many closed linear half-spaces in \mathbb{R}^d , each of whose bounding hyperplanes contains the origin.

When d = 2, these hyperplanes are one-dimensional vector spaces, which are called the *extremal rays* of cone(*S*).

When d > 2, the intersection of two adjacent hyperplane is a onedimensional vector space, which is called an *extremal ray* of cone(*S*).

$$\operatorname{cone}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{R} \text{ for } i = 1, \dots, n \right\}$$

is the intersection of finitely many closed linear half-spaces in \mathbb{R}^d , each of whose bounding hyperplanes contains the origin.

When d = 2, these hyperplanes are one-dimensional vector spaces, which are called the *extremal rays* of cone(*S*).

When d > 2, the intersection of two adjacent hyperplane is a onedimensional vector space, which is called an *extremal ray* of cone(*S*).

There are at least *d* extremal rays, and *S* is called *simplicial* when cone(S) has exactly *d* extremal rays.

$$\operatorname{cone}(S) = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{a}_i \mid \lambda_i \in \mathbb{R} \text{ for } i = 1, \dots, n \right\}$$

is the intersection of finitely many closed linear half-spaces in \mathbb{R}^d , each of whose bounding hyperplanes contains the origin.

When d = 2, these hyperplanes are one-dimensional vector spaces, which are called the *extremal rays* of cone(*S*).

When d > 2, the intersection of two adjacent hyperplane is a onedimensional vector space, which is called an *extremal ray* of cone(*S*).

There are at least *d* extremal rays, and *S* is called *simplicial* when cone(S) has exactly *d* extremal rays.

We assume that *S* is simplicial and $a_1, a_2, ..., a_d$ are the componentwise smallest non-zero vectors of *S* of each extremal ray of cone(*S*).

Apéry sets

Define $\operatorname{Ap}(S, \boldsymbol{a}) = \{ \boldsymbol{b} \in S \mid \boldsymbol{b} - \boldsymbol{a} \notin S \}$

Apéry sets

Define $\operatorname{Ap}(S, \boldsymbol{a}) = \{\boldsymbol{b} \in S \mid \boldsymbol{b} - \boldsymbol{a} \notin S\}$ and $\operatorname{Ap}(S, E) = \bigcap_{i=1}^{d} \operatorname{Ap}(S, \boldsymbol{a}_i).$

Define
$$\operatorname{Ap}(S, \boldsymbol{a}) = \{\boldsymbol{b} \in S \mid \boldsymbol{b} - \boldsymbol{a} \notin S\}$$
 and
 $\operatorname{Ap}(S, E) = \bigcap_{i=1}^{d} \operatorname{Ap}(S, \boldsymbol{a}_i)$

This is a finite set.

Define $\operatorname{Ap}(S, \boldsymbol{a}) = \{\boldsymbol{b} \in S \mid \boldsymbol{b} - \boldsymbol{a} \notin S\}$ and $\operatorname{Ap}(S, E) = \bigcap_{i=1}^{d} \operatorname{Ap}(S, \boldsymbol{a}_i).$

This is a finite set. If $x, y \in Ap(S, E)$, set $x \leq_S y$ if y = x + s for $s \in S$.

Proposition (Jafari and Yaghmaei, 2021) *If* $\Bbbk[S]$ *is Cohen-Macaulay, its type* t(S) *is equal to the number of maximal elements in* $A_{P}(S, E)$ *with respect to* \leq_{S} *.*

Define $\operatorname{Ap}(S, \boldsymbol{a}) = \{\boldsymbol{b} \in S \mid \boldsymbol{b} - \boldsymbol{a} \notin S\}$ and $\operatorname{Ap}(S, E) = \bigcap_{i=1}^{d} \operatorname{Ap}(S, \boldsymbol{a}_i).$

This is a finite set. If $x, y \in Ap(S, E)$, set $x \leq_S y$ if y = x + s for $s \in S$.

Proposition (Jafari and Yaghmaei, 2021) *If* $\Bbbk[S]$ *is Cohen-Macaulay, its type* t(S) *is equal to the number of maximal elements in* $A_{P}(S, E)$ *with respect to* \leq_{S} *.*

Let *G* be the group generated by a_1, a_2, \ldots, a_d .

Proposition (Rosales and García-Sánchez, 1998) TFAE:

- k[S] is Cohen-Macaulay;
- For all $w_1, w_2 \in Ap(S, E)$, if $w_1 w_2 \in G$, then $w_1 = w_2$.

Let m_1, \ldots, m_t be the maximal elements in Ap(S, E) wrt \leq_S .

Proposition (Jafari, Zarzuela Armengou) $\Bbbk[S]$ is nearly Gorenstein if and only if for every a_i there exists m_i s.t. $a_i + m_i - m_j \in S$ for all j = 1, ..., t.

Therefore, the notion of NG-vector can be defined also in this context.

Let m_1, \ldots, m_t be the maximal elements in Ap(S, E) wrt \leq_S .

Proposition (Jafari, Zarzuela Armengou) $\Bbbk[S]$ is nearly Gorenstein if and only if for every a_i there exists m_i s.t. $a_i + m_i - m_j \in S$ for all j = 1, ..., t.

Therefore, the notion of NG-vector can be defined also in this context.

Actually, a more general result holds.

Theorem The trace of the canonical module of $\Bbbk(S)$ is

 $\{\boldsymbol{b} \mid \text{there exists } i \text{ s.t. } \boldsymbol{b} + \boldsymbol{m}_i - \boldsymbol{m}_j \in S \text{ for all } j = 1, \dots, t\}.$

Theorem (Jafari, Zarzuela Armengou) If S is nearly Gorenstein but not Gorenstein, then $t(S) \ge d$.

Theorem (Jafari, Zarzuela Armengou) If S is nearly Gorenstein but not Gorenstein, then $t(S) \ge d$.

Problem If S is nearly Gorenstein, is its type bounded by a function of its embedding dimension?
Theorem (Jafari, Zarzuela Armengou) If S is nearly Gorenstein but not Gorenstein, then $t(S) \ge d$.

Problem If S is nearly Gorenstein, is its type bounded by a function of its embedding dimension?

Recalling that for a numerical semigroup with embedding dimension 4 the type is at most three, it is natural to ask:

Question Let *S* be a nearly Gorenstein affine semigroup with embedding dimension d + 3. Is $t(S) \le d + 2$?

THANK YOU!