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1. Introduction

Let M be a complex manifold and B a small neighbourhood of 0 in C. In previous sessions we have
seen that giving an almost complex structure on M × B is equivalent to giving a smooth section
ξ(t) ∈ A01(M, T10M), which corresponds to an integrable almost complex structure over M × B
if and only if it satisfies the Maurer-Cartan equation ∂̄ξ(t) + 1

2 [ξ(t), ξ(t)] = 0 and ξ(t) depends
homomorphically on t.

If we assume that ξ(t) = ∑i≥1 ξiti with ξi ∈ A01(M, T10), we obtain a system of equations:

∂̄ξ1 = 0

∂̄ξ2 +
1
2 [ξ1, ξ1] = 0

∂̄ξ3 +
1
2 [ξ1, ξ2] = 0

...

Since ξ1 is ∂̄-closed it represents a cohomology class [ξ1] ∈ H01(M, T10), called the Kodaira-Spence
class of ξ(t). In consequence, it is natural to ask if given α ∈ H01(M, T10), there exists a solution ξ(t)
such that [ξ1] = α.

In general, the solution does not exists. For example, A. Douady showed that M×CP1, where M
is the Iwasawa manifold, is obstructed ([1]), E. Ghys proved that Sl(2, C)/Γ is obstructed for some
cocompact lattices Γ ([2]) and S. Rollenske showed that there are obstructions for some complex
nilmanifolds ([6]).

However if M has extra properties then it may be possible to always solve the Maurer-Cartan
equation for any α ∈ H01(M, T10). The aim of this talk is to prove the following theorem:

Theorem 1.1. (Bogomolov-Tian-Todorov) Let M be a Calabi-Yau manifold, then for every v ∈ H1(M, T10)

there exists a solution ξ(t) of the Maurer-Cartan equation such that [ξ1] = v.

2. Calabi-Yau manifolds

2.1. Contraction on exterior algebras. Let E be a vector space over K of dimension n, let E∗ be its
dual and consider the linear map E× E∗ −→ K such that (v, f ) 7→ f (v). Then for any v ∈ E we
define a linear map iv :

∧b E∗ −→ ∧b−1 E∗ such that

iv( f1 ∧ · · · ∧ fb) =
b

∑
i=1

(−1)i−1 fi(v) f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fb.
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For any v1 ∧ · · · ∧ va ∈
∧a E we can generalize the above linear map to a linear map iv1∧···∧va :∧b E∗ −→ ∧b−a E∗ by defining iv1∧···∧va( f1 ∧ · · · ∧ fb) = iv1(iv2(. . . iva( f1 ∧ · · · ∧ fb) . . . )). Then there

is an induced bilinear map
a∧

E×
b∧

E∗ −→
b−a∧

E∗.

In particular, for any Ω ∈ ∧n E∗ we can define an isomorphism η :
∧a E −→ ∧n−a E∗ such that

η(v1 ∧ · · · ∧ va) = iv1∧···∧va(Ω).

Recall that we have a similar construction if we have an inner product ⟨·, ·⟩ : E × E −→ K. This
inner product induces an inner product on

∧k E for each k. If we fix an orientation on E, there is a
unique ω ∈ ∧n E such that ⟨ω, ω⟩ = 1. Thus we have a liner map

∗ :
a∧

E −→
n−a∧

E,

called the Hodge star operator, which is completely determined by the property that for any v, w ∈∧a E we have that v ∧ ∗w = ⟨v, w⟩ω.

2.2. Review on Kähler manifolds. In order to find a solution ξ(t) = ∑i≥0 ξiti we will need to
choose ξi in a clever way by using the Hodge decomposition and the ∂∂̄ lemma.

Assume that M is a compact complex manifold with and hermitian metric h. Then TM is an
orientable vector bundle of real dimension 2n. We can extend the Hodge star operator to vector
bundles, ∗ :

∧a TM −→ ∧2n−a TM. Moreover, one can see that the Hodge star operator induces a
map ∗ : Ap,q(M) −→ An−p,n−q(M). Thus we can define new operators ∂∗ = − ∗ ∂∗ : Ap,q(M) −→
Ap−1,q(M) and ∂̄∗ = − ∗ ∂̄∗ : Ap,q(M) −→ Ap,q−1(M).

Finally, there are operators ∆∂ = ∂∂∗ + ∂∗∂ and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ and spaces Hp,q
∂ = {α ∈ Ap,q(M) :

∆∂α = 0} and Hp,q
∂̄

= {α ∈ Ap,q(M) : ∆∂̄α = 0} (a form in any of these spaces is called harmonic).
Then we have a way to decompose Ap,q(M) by using these subspaces:

Theorem 2.1. (Hodge decomposition theorem) Let (M, h) be a compact Kähler manifold. Then there exists
two natural decompositions

Ap,q(M) = ∂Ap−1,q(M)⊕Hp,q
∂ (M)⊕ ∂∗Ap+1,q(M)

and
Ap,q(M) = ∂̄Ap,q−1(M)⊕Hp,q

∂̄
(M)⊕ ∂̄∗Ap,q+1(M).

Moreover, we have that Hp,q
∂̄
(M) = Hp,q

∂ (M) ∼= Hp,q(M).

We will also use the following relations:

Theorem 2.2. (∂∂̄ lemma) Let M be a compact Kähler manifold. If α is a d-closed form of type (p, q) then
the following are equivalent:

(1) The form α is d-exact.

(2) The form α is ∂-exact.

(3) The form α is ∂̄-exact.

(4) The form α is ∂∂̄-exact.
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2.3. Calabi-Yau manifolds.

Definition 2.3. A compact Kähler manifold of dimension n is Calabi-Yau if the canonical line bundle associ-
ated to the holomorphic tangent bundle T10M, denoted by KM =

∧n T10M, is trivial.

Remark 2.4. One can find slightly inequivalent definitions of Calabi-Yau manifolds in the literature. For
example, the next three conditions below have been used to define a Calabi-Yau manifold. Let M be a compact
Kähler manifold, then:

(1) M is Calabi-Yau if the holonomy is SU(n).

(2) M is Calabi-Yau the canonical bundle is trivial.

(3) M is Calabi-Yau if the first Chern class c1(M) vanishes.

Each condition is weaker than the one above it. For example, condition (2) implies that the holonomy of M
is contained in SU(n) ([4, Corollary 6.2.5]). Hence, a complex tori is Calabi-Yau in the sense of (2) (the
definition that we take) but not in the sense of (1).

Another example of Calabi-Yau manifold is a nonsingular hypersurfaces of degree n + 1 in CPn with n ≥ 3.
Recall that a hypersurface of degree d in CPn is of the form X = {[z0, ..., zn] : f (z0, ..., zn) = 0}, where f is
a non-zero homogeneous polynomial of degree d. If X is nonsingular, then X is a compact Kähler manifold of
dimension n− 1 such that c1(X) = 0 if and only if d = n + 1. However, one can see that X has holonomy
SU(n − 1) for n ≥ 3 and therefore it is Calabi-Yau in the sense of (1) (see [4, 6.7] for the details and
generalizations of this construction).

Since the canonical line bundle is trivial, we can fix a trivializing section Ω ∈ H0(M, KM), which
we regard as a holomorphic volume form. Then by extending the concept of contractions to vector
bundles, we define an isomorphism

η :
a∧

T10M −→
n−a∧

T10M∗.

More precisely, if in local coordinates we have that Ω = f dz1 ∧ · · · ∧ dzn, then

η( ∂
∂zi1
∧ · · · ∧ ∂

∂zir
) = (−1)(∑ ij)−r f dz1 ∧ · · · ∧ ˆdzi1 ∧ · · · ∧ ˆdzir ∧ · · · ∧ dzn

for i1 < · · · < ir.

This isomorphism induces a canonical isomorphism η : A0,q(M,
∧p T10) −→ An−p,q(M).

3. Tian-Todorov lemma and the proof of BTT theorem

We define a new operator in a similar way we defined ∂∗.

Definition 3.1. The operator △ : A0,q(M,
∧p T10) −→ A0,q(M,

∧p−1 T10) is defined as △ = η−1 ◦ ∂ ◦ η.

Remark 3.2. The operator ∂ is not well defined in A0,q(M,
∧p T10). Thus, we can think the operator △ as

an alternative to ∂.
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Warning!: The operator △ has no relation with the Laplacians ∆, ∆∂̄ and ∆∂. Indeed, we have not
used any metric yet, so strictly speaking, there is no Laplacian.

Lemma 3.3. The operator ∂̄ commutes with η, ∂̄ ◦ η = η ◦ ∂̄. Moreover, we have that △ ◦ ∂̄ = −∂̄ ◦ △.

Proof. The first claim is proved locally (see [3, Lemma 6.1.8]). For the second claim, we have that
∂̄△(α) = η−1∂∂̄η(α) = −η−1∂̄∂ηα = −∂̄△(α) for any α ∈ A0,q(M,

∧p T10). □

Note that △2 = (η−1∂η)(η−1∂η) = 0. Therefore, it could be used as a differential, but we do not
have the Leibniz rule, as the following lemma shows:

Lemma 3.4. (Tian-Todorov lemma) Let α ∈ A0,p(M, T10) and β ∈ A0,q(M, T10), then

△(α ∧ β) = △(α) ∧ β + (−1)pα ∧△(β) + (−1)p+1[α, β].

The proof of the equality is done locally, by setting α = adz̄I ⊗ ∂
∂zi

and β = bdz̄J ⊗ ∂
∂zj

. The main idea
of the proof is that we can reduce the computation to the case where p = q = 0 (for the details see
[3, Lemma 6.1.9]).

Corollary 3.5. Let α ∈ A0,p(M, T10) and β ∈ A0,q(M, T10), then:

(1) If α and β are ∂̄-closed, then [α, β] is also ∂̄-closed.

(2) If η(α) and η(β) are ∂-closed, then η[α, β] is ∂-exact.

Proof. (1) It is a direct consequence of lemma 3.3 (△ ◦ ∂̄ = −∂̄ ◦ △).

(2) If η(α) and η(β) are ∂-closed, then η△(α) = ∂η(α) = 0 and η△(β) = 0. Since η is an isomor-
phism, we have that△(α∧ β) = (−1)p+1[α, β] which implies that η[α, β] = ∂(−1)p+1η(α∧ β).

□

With these results we are ready to proof the BTT theorem.

Theorem 3.6. (Bogomolov-Tian-Todorov theorem) Let M be a Calabi-Yau manifold and let v ∈ H1(M, T10).
Then there exists a formal power series ∑i≥1 ξiti with ξi ∈ A0,1(M, T10) which satisfies the Maurer-Cartan
equations, with [ξ1] = v and such that η(ξi) ∈ An−1,1(M) is ∂-exact for all i > 1.

Proof. We construct the formal power series recursively, so we need to start by choosing a good
candidate for ξ1. Let ζ ∈ A0,1(M, T10) be any representative of v. Then ζ is ∂̄-closed, which implies
that the form η(ζ) is also ∂̄-closed. We can choose a representative of v whose image by η is
also harmonic (and therefore ∂-closed). Indeed, since ∂̄η(ζ) = 0, we have that η(ζ) = ∂̄ϕ + w ∈
∂̄An−1,0(M) ⊕Hn−1,1

∂̄
(M). Then, we have that ζ − η−1∂̄ϕ is the desired representative. Hence we

choose ξ1 to be a representative of v such that η(ξ1) is harmonic. Now we want to solve the equation
∂̄ξ2 = −[ξ1, ξ1].

Since M is compact Kähler we have that η(ξ1) ∈ Hn−1,1
∂̄

(M) = Hn−1,1
∂ (M), which implies that η(ξ1)

is ∂-closed. By corollary 3.5, we have that η[ξ1, ξ1] is ∂̄-closed and ∂-exact. In consequence, η[ξ1, ξ1]
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is d-closed and by the ∂∂̄-lemma, there exists γ ∈ An−2,0(M) such that ∂̄∂γ = η[ξ1, ξ1]. Then we can
choose ξ2 = −η−1(∂γ).

Assume that we have found the firsts ξ1, ξ2, ..., ξk−1 ∈ A0,1(M, T10) of the formal power series satis-
fying the conditions of the theorem. Firstly, note that η[ξi, ξk−i] is ∂-exact for 0 < i < k by corollary
3.5. To repeat the same argument as above we need to see that ∑0<i<k[ξi, ξk−i] is ∂̄-closed. We have

∂̄( ∑
0<i<k

[ξi, ξk−i]) = ∑
0<i<k

([∂̄ξi, ξk−i] + [ξi, ∂̄ξk−i]).

By induction hypothesis, we have that ∂̄ξi = −∑0<j<i[ξ j, ξi−j] for all 0 < i < k. By using these
relations in the equation above an reordering, we obtain

∂̄( ∑
0<i<k

[ξi, ξk−i]) = − ∑
0<i<k

∑
0<j<i

[[ξ j, ξi−j], ξk−i] + ∑
0<i<k

∑
0<l<i

[ξk−i, [ξl , ξl−i]].

Then, we use that [α, β] = −[β, α] for α ∈ A0,2(M, T10) to conclude that the last equation is 0 and
∑0<i<k[ξi, ξk−i] is ∂̄-closed.

Finally, by the ∂∂̄-lemma, there exists γk ∈ An−2,0(M) such that ∂̄∂γk = η(∑0<i<k[ξi, ξk−i]). Therefore
ξk = η−1∂γk is the next coefficient of the power formal series. □

Remark 3.7. (1) There may be other solutions of Maurer-Cartan equation which do not satisfy the extra
condition that η(ξi) is ∂-exact for i > 1. In fact, η(xi) do not need to be ∂-closed in general. Even
with the extra assumption that η(ξ1) is harmonic the constructed solution is not unique, since in any
step we may change η(ξk) by a ∂∂̄-exact form.

(2) There is a procedure to transform any solution to a convergent solution by using analysis. The main
idea is that the formal solution converges if ξi are ∂̄∗-exact for all i.

(3) The BTT theorem is surprising in the following sense. Recall that we have seen that the obstructions
to construct the formal power series are in H2(M, T10) (in particular the formal power series always
exists if H2(M, T10) = 0). If M is Calabi-Yau, then H2(M, T10) ∼= Hn−1,2(M), which is usually
non-zero. For example if M is a Calabi-Yau 3-fold, then H2(M, T10) is dual to H1,1(M), which is
always non-zero since M is Kähler.

(4) The condition of M being Kähler is necessary. For example Sl(2, C)/Γ from [2] or the nilmanifolds
from [6] have trivial canonical bundle but they are obstructed.

4. The BTT theorem from the viewpoint of DGLA

Let L be a DGLA and A a local artinian C-algebra (in our case A = C[t]/(tn) or C[|t|]). Recall that
we have defined functors MCL : Art −→ Set such that MCL(A) = {x ∈ L1 ⊗ma : dx + 1

2 [x, x] = 0}
and De fL : Art −→ Set such that De fL(A) = MCL(A)/ ∼, where two elements x, y ∈ MCL(A) are
equivalent if and only if there exists a ∈ L0 ⊗mA such that

y− x =
∞

∑
n=0

[a, [a, x]− da]n

(n + 1)!
.
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We have also seen that if L and L′ are two weakly equivalent DGLA then De fL ∼= De fL′ . This result
is helpful when L′ has some extra properties that allows us to simplify the deformation functor. For
example, if L is abelian (the Lie bracket vanishes) then De fL(A) = H1(L)⊗mA.

In our case, the DGLA is KSM = (
⊕

i≥0 A0,i(M, T10), [·, ·], ∂̄).

Theorem 4.1. Let M be a Calabi-Yau manifold, then KSM is quasi-isomorphic to an abelian DGLA.

We provide a sketch of the proof (see [5, Theorem VII.11] for the details).

Proof. Firstly, we use the map η to induce a DGLA structure on Ln−1,∗ =
⊕

i≥0 An−1,i(M), which
is isomorphic to KSM. Because of corollary 3.5 (2) of the Tian-Todorov lemma, we have that Q∗ =
Ker ∂ ∩ Ln−1,∗ is a DGL subalgebra of Ln−1,∗.

We consider the complex (R∗, ∂̄), where Ri = Qi

∂Ln−2,i . If we endow (R∗, ∂̄) with the trivial Lie bracket,
then the projection Q∗ −→ R∗ is a DGLA morphism by the Tian-Todorov lemma.

The last step is to see that the DGLA morphisms

Ln−1,∗ ←− Q∗ −→ R∗

are quasi-isomorphisms, but this is a consequence of the ∂∂̄-lemma. □

Corollary 4.2. Let M be a Calabi-Yau manifold. Then

De fM(C[t]/(tn+1)) −→ De fM(C[t]/(t2))

is surjective for every n ≥ 2.
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