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1. INTRODUCTION

Let M be a complex manifold and B a small neighbourhood of 0 in C. In previous sessions we have
seen that giving an almost complex structure on M X B is equivalent to giving a smooth section
&(t) € A%(M, T;oM), which corresponds to an integrable almost complex structure over M x B
if and only if it satisfies the Maurer-Cartan equation 9¢(t) + 3[¢(t),&(t)] = 0 and &(t) depends
homomorphically on t.

If we assume that &(t) = Y;»; &t' with & € A%(M, Tyy), we obtain a system of equations:

91 =0

0%z + 5[¢1,61] =0

083 + 3[81,82) =0

Since ¢ is 0-closed it represents a cohomology class [¢1] € HY (M, Tyg), called the Kodaira-Spence
class of &(t). In consequence, it is natural to ask if given « € HY' (M, Ty), there exists a solution &(t)
such that [§1] = a.

In general, the solution does not exists. For example, A. Douady showed that M x CP!, where M
is the Iwasawa manifold, is obstructed ([1]), E. Ghys proved that SI(2,C)/T is obstructed for some
cocompact lattices I' ([2]) and S. Rollenske showed that there are obstructions for some complex
nilmanifolds ([6]).

However if M has extra properties then it may be possible to always solve the Maurer-Cartan
equation for any &« € HY' (M, Tyg). The aim of this talk is to prove the following theorem:

Theorem 1.1. (Bogomolov-Tian-Todorov) Let M be a Calabi-Yau manifold, then for every v € H'(M, Typ)
there exists a solution {(t) of the Maurer-Cartan equation such that [§1] = v.

2. CALABI-YAU MANIFOLDS

2.1. Contraction on exterior algebras. Let E be a vector space over K of dimension 7, let E* be its
dual and consider the linear map E x E* — K such that (v, f) — f(v). Then for any v € E we
define a linear map i, : AP E* — AP71E* such that

b
(AN Afp) =Y (1) i@ fi A AFiN A S
i=1
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For any v3 A --- Av, € A"E we can generalize the above linear map to a linear map iy r...n0, :
AP E* — AP7% E* by defining iy, p...po, (L A=< A fy) = i, (ioy (.. .do,(fi A=+ A fp)...)). Then there
is an induced bilinear map

a b b—a

NEx NE*— N\ E*
In particular, for any QO € A" E* we can define an isomorphism 7 : A’E — A" " E* such that
77(?)] VANCIERAN Ua) = iUl/\"'/\Uu<Q)‘

Recall that we have a similar construction if we have an inner product (-,-) : E x E — K. This
inner product induces an inner product on A¥E for each k. If we fix an orientation on E, there is a
unique w € A" E such that (w,w) = 1. Thus we have a liner map

a n—a
* 1 /\ E— /\ E,
called the Hodge star operator, which is completely determined by the property that for any v, w €
A" E we have that v A xw = (v, w)w.

2.2. Review on Kihler manifolds. In order to find a solution {(f) = Y5 &t we will need to
choose ¢; in a clever way by using the Hodge decomposition and the 90 lemma.

Assume that M is a compact complex manifold with and hermitian metric ». Then TM is an
orientable vector bundle of real dimension 2n. We can extend the Hodge star operator to vector
bundles, * : A*TM — /\2”_” TM. Moreover, one can see that the Hodge star operator induces a
map * : APA(M) — A" P"79(M). Thus we can define new operators 0* = — % dx : AP1(M) —
AP=UA(M) and 0* = — * 0% : APA(M) — APA1(M).

Finally, there are operators A; = 09* + 00 and Ay = 09* + 0*0 and spaces H:'? = {a € APA(M) :
Ay = 0} and ’Hg’q = {a € APA(M) : Ayja = 0} (a form in any of these spaces is called harmonic).
Then we have a way to decompose AP(M) by using these subspaces:

Theorem 2.1. (Hodge decomposition theorem) Let (M, h) be a compact Kihler manifold. Then there exists
two natural decompositions

APA(M) = 0AP~YI(M) & HLT (M) & 0* APTL(M)

and
APA(M) = 0API~H (M) & HET (M) @ 0 APTTH(M).

Moreover, we have that ”Hg’q(M) = HP(M) = HPA(M).
We will also use the following relations:
Theorem 2.2. (39 lemma) Let M be a compact Kihler manifold. If a is a d-closed form of type (p,q) then
the following are equivalent:
(1) The form « is d-exact.
(2) The form w is d-exact.
(3) The form a is d-exact.
(4) The form « is dd-exact.



2.3. Calabi-Yau manifolds.

Definition 2.3. A compact Kihler manifold of dimension n is Calabi-Yau if the canonical line bundle associ-
ated to the holomorphic tangent bundle TiyM, denoted by Ky = A" T1oM, is trivial.

Remark 2.4. One can find slightly inequivalent definitions of Calabi-Yau manifolds in the literature. For
example, the next three conditions below have been used to define a Calabi-Yau manifold. Let M be a compact
Kiihler manifold, then:

(1) M is Calabi-Yau if the holonomy is SU(n).
(2) M is Calabi-Yau the canonical bundle is trivial.
(3) M is Calabi-Yau if the first Chern class c1(M) vanishes.

Each condition is weaker than the one above it. For example, condition (2) implies that the holonomy of M
is contained in SU(n) ([4, Corollary 6.2.5]). Hence, a complex tori is Calabi-Yau in the sense of (2) (the
definition that we take) but not in the sense of (1).

Another example of Calabi-Yau manifold is a nonsingular hypersurfaces of degree n + 1 in CP" with n > 3.
Recall that a hypersurface of degree d in CP" is of the form X = {|zo,...,za] : f(20,...,2n) = 0}, where f is
a non-zero homogeneous polynomial of degree d. If X is nonsingular, then X is a compact Kihler manifold of
dimension n — 1 such that c1(X) = 0 if and only if d = n + 1. However, one can see that X has holonomy
SU(n — 1) for n > 3 and therefore it is Calabi-Yau in the sense of (1) (see [4, 6.7] for the details and
generalizations of this construction).

Since the canonical line bundle is trivial, we can fix a trivializing section () & HO(M, Kp), which
we regard as a holomorphic volume form. Then by extending the concept of contractions to vector
bundles, we define an isomorphism

a n—a
n: /\ TioM — /\ TloM*.

More precisely, if in local coordinates we have that (3 = fdz; A --- Adz,, then

q(agl Ao Agl) = (D) &0 fdzy A Nz A Adzi A Adzy
fori; < --- <i,.

This isomorphism induces a canonical isomorphism 7 : A% (M, A? Tyg) — A"~ PA(M).

3. TiaAN-TODOROV LEMMA AND THE PROOF OF BTT THEOREM

We define a new operator in a similar way we defined 0*.
Definition 3.1. The operator /\ : A% (M, \P Tyg) — A% (M, \P~! Tyg) is defined as A =1 odoy.

Remark 3.2. The operator 9 is not well defined in A% (M, \¥ Tyo). Thus, we can think the operator A as

an alternative to 0.
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Warning!: The operator A has no relation with the Laplacians A, Aj and A;. Indeed, we have not
used any metric yet, so strictly speaking, there is no Laplacian.

Lemma 3.3. The operator d commutes with 17, d o 7 = 17 0 d. Moreover, we have that /A 0od = —d o A.

Proof. The first claim is proved locally (see [3, Lemma 6.1.8]). For the second claim, we have that
oA (a) = 77190 (a) = —y~19ona = —9A(a) for any a € A% (M, \¥ Typ). O

Note that A? = (771957)(y719n) = 0. Therefore, it could be used as a differential, but we do not
have the Leibniz rule, as the following lemma shows:

Lemma 3.4. (Tian-Todorov lemma) Let « € A% (M, Tyo) and B € A% (M, Tyg), then
AaAB) = D(a) AP+ (=1)Pa AA(B) + (=1)"[a, Bl.

The proof of the equality is done locally, by setting « = adz; ® a%_ and B = bdz; ® a%-' The main idea
of the proof is that we can reduce the computation to the case where p = g = 0 (for the details see
[3, Lemma 6.1.9]).

Corollary 3.5. Let a € A% (M, Tyg) and B € A% (M, Tyg), then:
(1) If  and B are d-closed, then [a, B] is also d-closed.
(2) If n(a) and 1 (B) are o-closed, then 1w, B] is 0-exact.

Proof. (1) Itis a direct consequence of lemma 3.3 (A 0d = —d o A).

(2) If #(a) and 75(B) are 0-closed, then /A (a) = dn(a) = 0 and nA(B) = 0. Since 7 is an isomor-
phism, we have that A (x A B) = (—1)P*![a, B] which implies that 7], B] = 9(—1)P "5 (a A B).

O
With these results we are ready to proof the BTT theorem.

Theorem 3.6. (Bogomolov-Tian-Todorov theorem) Let M be a Calabi-Yau manifold and let v € H' (M, Ty).
Then there exists a formal power series Y i~ &;t' with & € A% (M, Tyg) which satisfies the Maurer-Cartan
equations, with [&1] = v and such that 11(&;) € A"VY(M) is 0-exact for all i > 1.

Proof. We construct the formal power series recursively, so we need to start by choosing a good
candidate for &;. Let { € A% (M, Typ) be any representative of v. Then { is d-closed, which implies
that the form 7({) is also d-closed. We can choose a representative of v whose image by 7 is
also harmonic (and therefore d-closed). Indeed, since d7(Z) = 0, we have that 7({) = dp +w €
dAO(M) @ Hgfl’l(M). Then, we have that { — 7710¢ is the desired representative. Hence we
choose &7 to be a representative of v such that 7(¢7) is harmonic. Now we want to solve the equation

96 = —[G1, 1]

Since M is compact Kédhler we have that (&) € Hg_l’l (M) = Hg’_l'l(M), which implies that #(&;)

is 9-closed. By corollary 3.5, we have that 77[¢7, ¢1] is 0-closed and d-exact. In consequence, 17[¢1, &1
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is d-closed and by the d0-lemma, there exists v € A"~>%(M) such that 99y = 7[¢1,&1]. Then we can
choose & = —1~1(d7).

Assume that we have found the firsts ¢1,¢5, ..., (k1 € Ao'l(M, Tip) of the formal power series satis-
fying the conditions of the theorem. Firstly, note that #[¢;, {x_;] is d-exact for 0 < i < k by corollary
3.5. To repeat the same argument as above we need to see that Y (_;[&;, &x_;] is 0-closed. We have

a( Y (8 Gk-i) = Y ([0 Cki] + [Gi) OCk—i])-

o<i<k o<i<k

By induction hypothesis, we have that 9¢; = — Y0<j<ilCj, Gi—j] for all 0 < i < k. By using these
relations in the equation above an reordering, we obtain

o( Y, &) =— Y Y &, cicil =il + Y. ) [Gk—i (81, 8-l

O<i<k 0<i<k 0<j<i 0<i<k 0<I<i

Then, we use that [&, 8] = —[B,a] for & € A%?(M, Tyg) to conclude that the last equation is 0 and
Yo<i<klGi, Gx—i is d-closed.

Finally, by the d0-lemma, there exists 7, € A">%(M) such that 09y = 17(Xo<i<k[&i, &_i]). Therefore
& = 17197y is the next coefficient of the power formal series. U

Remark 3.7. (1) There may be other solutions of Maurer-Cartan equation which do not satisfy the extra
condition that 1(G;) is 0-exact for i > 1. In fact, y(x;) do not need to be d-closed in general. Even
with the extra assumption that 17(&1) is harmonic the constructed solution is not unique, since in any
step we may change 1(&y) by a d0-exact form.

(2) There is a procedure to transform any solution to a convergent solution by using analysis. The main
idea is that the formal solution converges if &; are d*-exact for all i.

(3) The BTT theorem is surprising in the following sense. Recall that we have seen that the obstructions
to construct the formal power series are in H*>(M, Tyg) (in particular the formal power series always
exists if H* (M, Tyo) = 0). If M is Calabi-Yau, then H*>(M, Tyg) = H"~12(M), which is usually
non-zero. For example if M is a Calabi-Yau 3-fold, then H*(M, Tyo) is dual to H'(M), which is
always non-zero since M is Kihler.

(4) The condition of M being Kihler is necessary. For example S1(2,C) /T from [2] or the nilmanifolds
from [6] have trivial canonical bundle but they are obstructed.

4. Tue BTT THEOREM FROM THE VIEWPOINT OF DGLA

Let L be a DGLA and A a local artinian C-algebra (in our case A = C[t]/(#") or C[|¢|]). Recall that
we have defined functors MCy : Art —» Set such that MC1(A) = {x € L' ®m, : dx + }[x,x] = 0}
and Def : Art — Set such that Def; (A) = MCL(A)/ ~, where two elements x,y € MC[(A) are
equivalent if and only if there exists a € L ® m4 such that

> [a,[a, x] — da]"

y_x:n;) (n+1)!
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We have also seen that if L and L' are two weakly equivalent DGLA then Def;, = Def;,. This result
is helpful when L’ has some extra properties that allows us to simplify the deformation functor. For
example, if L is abelian (the Lie bracket vanishes) then Def; (A) = H(L) @ m4.

In our case, the DGLA is KSy = (B9 A% (M, Tyo), [+, ], ).
Theorem 4.1. Let M be a Calabi-Yau manifold, then KSy, is quasi-isomorphic to an abelian DGLA.

We provide a sketch of the proof (see [5, Theorem VIL.11] for the details).

Proof. Firstly, we use the map 7 to induce a DGLA structure on L"~* = ;5 A" /(M), which
is isomorphic to KSy;. Because of corollary 3.5 (2) of the Tian-Todorov lemma, we have that Q* =
Kerd N L"~1* is a DGL subalgebra of L"~1*.

We consider the complex (R*,d), where R = aL%iZl If we endow (R*,d) with the trivial Lie bracket,

then the projection Q* — R* is a DGLA morphism by the Tian-Todorov lemma.

The last step is to see that the DGLA morphisms
Lnfl,* -« Q* N R*

are quasi-isomorphisms, but this is a consequence of the dd-lemma. O

Corollary 4.2. Let M be a Calabi-Yau manifold. Then
Defu(C[t)/(#+1)) — Defu(C[t]/ (1))

is surjective for every n > 2.
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