BOGOMOLOV-TIAN-TODOROV THEOREM FOR CALABI-YAU MANIFOLDS

JORDI DAURA SERRANO

1. Introduction

Let M be a complex manifold and B a small neighbourhood of 0 in \mathbb{C} . In previous sessions we have seen that giving an almost complex structure on $M \times B$ is equivalent to giving a smooth section $\xi(t) \in A^{01}(M, T_{10}M)$, which corresponds to an integrable almost complex structure over $M \times B$ if and only if it satisfies the Maurer-Cartan equation $\bar{\delta}\xi(t) + \frac{1}{2}[\xi(t), \xi(t)] = 0$ and $\xi(t)$ depends homomorphically on t.

If we assume that $\xi(t) = \sum_{i>1} \xi_i t^i$ with $\xi_i \in A^{01}(M, T_{10})$, we obtain a system of equations:

$$\bar{\partial}\xi_{1} = 0$$

$$\bar{\partial}\xi_{2} + \frac{1}{2}[\xi_{1}, \xi_{1}] = 0$$

$$\bar{\partial}\xi_{3} + \frac{1}{2}[\xi_{1}, \xi_{2}] = 0$$
:

Since ξ_1 is $\bar{\partial}$ -closed it represents a cohomology class $[\xi_1] \in H^{01}(M, T_{10})$, called the Kodaira-Spence class of $\xi(t)$. In consequence, it is natural to ask if given $\alpha \in H^{01}(M, T_{10})$, there exists a solution $\xi(t)$ such that $[\xi_1] = \alpha$.

In general, the solution does not exists. For example, A. Douady showed that $M \times \mathbb{C}P^1$, where M is the Iwasawa manifold, is obstructed ([1]), E. Ghys proved that $SI(2,\mathbb{C})/\Gamma$ is obstructed for some cocompact lattices Γ ([2]) and S. Rollenske showed that there are obstructions for some complex nilmanifolds ([6]).

However if M has extra properties then it may be possible to always solve the Maurer-Cartan equation for any $\alpha \in H^{01}(M, T_{10})$. The aim of this talk is to prove the following theorem:

Theorem 1.1. (Bogomolov-Tian-Todorov) Let M be a Calabi-Yau manifold, then for every $v \in H^1(M, T_{10})$ there exists a solution $\xi(t)$ of the Maurer-Cartan equation such that $[\xi_1] = v$.

2. Calabi-Yau manifolds

2.1. **Contraction on exterior algebras.** Let E be a vector space over \mathbb{K} of dimension n, let E^* be its dual and consider the linear map $E \times E^* \longrightarrow \mathbb{K}$ such that $(v, f) \mapsto f(v)$. Then for any $v \in E$ we define a linear map $i_v : \bigwedge^b E^* \longrightarrow \bigwedge^{b-1} E^*$ such that

$$i_v(f_1 \wedge \cdots \wedge f_b) = \sum_{i=1}^b (-1)^{i-1} f_i(v) f_1 \wedge \cdots \wedge \hat{f}_i \wedge \cdots \wedge f_b.$$

For any $v_1 \wedge \cdots \wedge v_a \in \bigwedge^a E$ we can generalize the above linear map to a linear map $i_{v_1 \wedge \cdots \wedge v_a} : \bigwedge^b E^* \longrightarrow \bigwedge^{b-a} E^*$ by defining $i_{v_1 \wedge \cdots \wedge v_a}(f_1 \wedge \cdots \wedge f_b) = i_{v_1}(i_{v_2}(\dots i_{v_a}(f_1 \wedge \cdots \wedge f_b)\dots))$. Then there is an induced bilinear map

$$\bigwedge^{a} E \times \bigwedge^{b} E^{*} \longrightarrow \bigwedge^{b-a} E^{*}.$$

In particular, for any $\Omega \in \bigwedge^n E^*$ we can define an isomorphism $\eta : \bigwedge^a E \longrightarrow \bigwedge^{n-a} E^*$ such that $\eta(v_1 \wedge \cdots \wedge v_a) = i_{v_1 \wedge \cdots \wedge v_a}(\Omega)$.

Recall that we have a similar construction if we have an inner product $\langle \cdot, \cdot \rangle : E \times E \longrightarrow \mathbb{K}$. This inner product induces an inner product on $\bigwedge^k E$ for each k. If we fix an orientation on E, there is a unique $\omega \in \bigwedge^n E$ such that $\langle \omega, \omega \rangle = 1$. Thus we have a liner map

$$*: \bigwedge^a E \longrightarrow \bigwedge^{n-a} E,$$

called the Hodge star operator, which is completely determined by the property that for any $v, w \in \Lambda^a E$ we have that $v \wedge *w = \langle v, w \rangle \omega$.

2.2. **Review on Kähler manifolds.** In order to find a solution $\xi(t) = \sum_{i\geq 0} \xi_i t^i$ we will need to choose ξ_i in a clever way by using the Hodge decomposition and the $\partial\bar{\partial}$ lemma.

Assume that M is a compact complex manifold with and hermitian metric h. Then TM is an orientable vector bundle of real dimension 2n. We can extend the Hodge star operator to vector bundles, $*: \bigwedge^a TM \longrightarrow \bigwedge^{2n-a} TM$. Moreover, one can see that the Hodge star operator induces a map $*: A^{p,q}(M) \longrightarrow A^{n-p,n-q}(M)$. Thus we can define new operators $\partial^* = -*\partial^*: A^{p,q}(M) \longrightarrow A^{p-1,q}(M)$ and $\bar{\partial}^* = -*\bar{\partial}^*: A^{p,q}(M) \longrightarrow A^{p,q-1}(M)$.

Finally, there are operators $\Delta_{\partial} = \partial \partial^* + \partial^* \partial$ and $\Delta_{\bar{\partial}} = \bar{\partial} \bar{\partial}^* + \bar{\partial}^* \bar{\partial}$ and spaces $\mathcal{H}^{p,q}_{\bar{\partial}} = \{\alpha \in A^{p,q}(M) : \Delta_{\bar{\partial}} \alpha = 0\}$ and $\mathcal{H}^{p,q}_{\bar{\partial}} = \{\alpha \in A^{p,q}(M) : \Delta_{\bar{\partial}} \alpha = 0\}$ (a form in any of these spaces is called harmonic). Then we have a way to decompose $A^{p,q}(M)$ by using these subspaces:

Theorem 2.1. (Hodge decomposition theorem) Let (M,h) be a compact Kähler manifold. Then there exists two natural decompositions

$$A^{p,q}(M) = \partial A^{p-1,q}(M) \oplus \mathcal{H}^{p,q}_{\partial}(M) \oplus \partial^* A^{p+1,q}(M)$$

and

$$A^{p,q}(M) = \bar{\partial} A^{p,q-1}(M) \oplus \mathcal{H}^{p,q}_{\bar{\partial}}(M) \oplus \bar{\partial}^* A^{p,q+1}(M).$$

Moreover, we have that $\mathcal{H}^{p,q}_{\bar\partial}(M)=\mathcal{H}^{p,q}_{\bar\partial}(M)\cong H^{p,q}(M).$

We will also use the following relations:

Theorem 2.2. ($\partial \bar{\partial}$ lemma) Let M be a compact Kähler manifold. If α is a d-closed form of type (p,q) then the following are equivalent:

- (1) The form α is d-exact.
- (2) The form α is ∂ -exact.
- (3) The form α is $\bar{\partial}$ -exact.
- (4) The form α is $\partial \bar{\partial}$ -exact.

2.3. Calabi-Yau manifolds.

Definition 2.3. A compact Kähler manifold of dimension n is Calabi-Yau if the canonical line bundle associated to the holomorphic tangent bundle $T_{10}M$, denoted by $K_M = \bigwedge^n T_{10}M$, is trivial.

Remark 2.4. One can find slightly inequivalent definitions of Calabi-Yau manifolds in the literature. For example, the next three conditions below have been used to define a Calabi-Yau manifold. Let M be a compact Kähler manifold, then:

- (1) M is Calabi-Yau if the holonomy is SU(n).
- (2) M is Calabi-Yau the canonical bundle is trivial.
- (3) M is Calabi-Yau if the first Chern class $c_1(M)$ vanishes.

Each condition is weaker than the one above it. For example, condition (2) implies that the holonomy of M is contained in SU(n) ([4, Corollary 6.2.5]). Hence, a complex tori is Calabi-Yau in the sense of (2) (the definition that we take) but not in the sense of (1).

Another example of Calabi-Yau manifold is a nonsingular hypersurfaces of degree n + 1 in $\mathbb{C}P^n$ with $n \geq 3$. Recall that a hypersurface of degree d in $\mathbb{C}P^n$ is of the form $X = \{[z_0,...,z_n]: f(z_0,...,z_n)=0\}$, where f is a non-zero homogeneous polynomial of degree d. If X is nonsingular, then X is a compact Kähler manifold of dimension n-1 such that $c_1(X)=0$ if and only if d=n+1. However, one can see that X has holonomy SU(n-1) for $n \geq 3$ and therefore it is Calabi-Yau in the sense of (1) (see [4, 6.7] for the details and generalizations of this construction).

Since the canonical line bundle is trivial, we can fix a trivializing section $\Omega \in H^0(M, K_M)$, which we regard as a holomorphic volume form. Then by extending the concept of contractions to vector bundles, we define an isomorphism

$$\eta: \bigwedge^a T_{10}M \longrightarrow \bigwedge^{n-a} T_{10}M^*.$$

More precisely, if in local coordinates we have that $\Omega = f dz_1 \wedge \cdots \wedge dz_n$, then

$$\eta(\frac{\partial}{\partial z_{i_1}} \wedge \cdots \wedge \frac{\partial}{\partial z_{i_r}}) = (-1)^{(\sum i_j) - r} f dz_1 \wedge \cdots \wedge d\hat{z}_{i_1} \wedge \cdots \wedge d\hat{z}_{i_r} \wedge \cdots \wedge dz_n$$

for $i_1 < \cdots < i_r$.

This isomorphism induces a canonical isomorphism $\eta: A^{0,q}(M, \bigwedge^p T_{10}) \longrightarrow A^{n-p,q}(M)$.

3. Tian-Todorov Lemma and the proof of BTT theorem

We define a new operator in a similar way we defined ∂^* .

Definition 3.1. The operator $\triangle: A^{0,q}(M, \bigwedge^p T_{10}) \longrightarrow A^{0,q}(M, \bigwedge^{p-1} T_{10})$ is defined as $\triangle = \eta^{-1} \circ \partial \circ \eta$.

Remark 3.2. The operator ∂ is not well defined in $A^{0,q}(M, \bigwedge^p T_{10})$. Thus, we can think the operator \triangle as an alternative to ∂ .

Warning!: The operator \triangle has no relation with the Laplacians Δ , $\Delta_{\bar{\partial}}$ and Δ_{∂} . Indeed, we have not used any metric yet, so strictly speaking, there is no Laplacian.

Lemma 3.3. The operator $\bar{\partial}$ commutes with η , $\bar{\partial} \circ \eta = \eta \circ \bar{\partial}$. Moreover, we have that $\triangle \circ \bar{\partial} = -\bar{\partial} \circ \triangle$.

Proof. The first claim is proved locally (see [3, Lemma 6.1.8]). For the second claim, we have that $\bar{\partial}\triangle(\alpha) = \eta^{-1}\partial\bar{\partial}\eta(\alpha) = -\eta^{-1}\bar{\partial}\partial\eta\alpha = -\bar{\partial}\triangle(\alpha)$ for any $\alpha \in A^{0,q}(M, \bigwedge^p T_{10})$.

Note that $\triangle^2 = (\eta^{-1}\partial\eta)(\eta^{-1}\partial\eta) = 0$. Therefore, it could be used as a differential, but we do not have the Leibniz rule, as the following lemma shows:

Lemma 3.4. (*Tian-Todorov lemma*) Let $\alpha \in A^{0,p}(M,T_{10})$ and $\beta \in A^{0,q}(M,T_{10})$, then

$$\triangle(\alpha \wedge \beta) = \triangle(\alpha) \wedge \beta + (-1)^p \alpha \wedge \triangle(\beta) + (-1)^{p+1} [\alpha, \beta].$$

The proof of the equality is done locally, by setting $\alpha = ad\bar{z}_I \otimes \frac{\partial}{\partial z_i}$ and $\beta = bd\bar{z}_J \otimes \frac{\partial}{\partial z_j}$. The main idea of the proof is that we can reduce the computation to the case where p = q = 0 (for the details see [3, Lemma 6.1.9]).

Corollary 3.5. *Let* $\alpha \in A^{0,p}(M, T_{10})$ *and* $\beta \in A^{0,q}(M, T_{10})$ *, then:*

- (1) If α and β are $\bar{\partial}$ -closed, then $[\alpha, \beta]$ is also $\bar{\partial}$ -closed.
- (2) If $\eta(\alpha)$ and $\eta(\beta)$ are ∂ -closed, then $\eta[\alpha, \beta]$ is ∂ -exact.

Proof. (1) It is a direct consequence of lemma 3.3 ($\triangle \circ \bar{\partial} = -\bar{\partial} \circ \triangle$).

(2) If $\eta(\alpha)$ and $\eta(\beta)$ are ∂ -closed, then $\eta \triangle (\alpha) = \partial \eta(\alpha) = 0$ and $\eta \triangle (\beta) = 0$. Since η is an isomorphism, we have that $\triangle (\alpha \wedge \beta) = (-1)^{p+1} [\alpha, \beta]$ which implies that $\eta[\alpha, \beta] = \partial (-1)^{p+1} \eta(\alpha \wedge \beta)$.

With these results we are ready to proof the BTT theorem.

Theorem 3.6. (Bogomolov-Tian-Todorov theorem) Let M be a Calabi-Yau manifold and let $v \in H^1(M, T_{10})$. Then there exists a formal power series $\sum_{i\geq 1} \xi_i t^i$ with $\xi_i \in A^{0,1}(M, T_{10})$ which satisfies the Maurer-Cartan equations, with $[\xi_1] = v$ and such that $\eta(\xi_i) \in A^{n-1,1}(M)$ is ∂ -exact for all i > 1.

Proof. We construct the formal power series recursively, so we need to start by choosing a good candidate for ξ_1 . Let $\zeta \in A^{0,1}(M,T_{10})$ be any representative of v. Then ζ is $\bar{\partial}$ -closed, which implies that the form $\eta(\zeta)$ is also $\bar{\partial}$ -closed. We can choose a representative of v whose image by η is also harmonic (and therefore ∂ -closed). Indeed, since $\bar{\partial}\eta(\zeta)=0$, we have that $\eta(\zeta)=\bar{\partial}\phi+w\in \bar{\partial}A^{n-1,0}(M)\oplus \mathcal{H}^{n-1,1}_{\bar{\partial}}(M)$. Then, we have that $\zeta-\eta^{-1}\bar{\partial}\phi$ is the desired representative. Hence we choose ξ_1 to be a representative of v such that $\eta(\xi_1)$ is harmonic. Now we want to solve the equation $\bar{\partial}\xi_2=-[\xi_1,\xi_1]$.

Since M is compact Kähler we have that $\eta(\xi_1) \in \mathcal{H}^{n-1,1}_{\bar{\partial}}(M) = \mathcal{H}^{n-1,1}_{\partial}(M)$, which implies that $\eta(\xi_1)$ is $\bar{\partial}$ -closed. By corollary 3.5, we have that $\eta[\xi_1,\xi_1]$ is $\bar{\partial}$ -closed and $\bar{\partial}$ -exact. In consequence, $\eta[\xi_1,\xi_1]$

is *d*-closed and by the $\partial\bar{\partial}$ -lemma, there exists $\gamma\in A^{n-2,0}(M)$ such that $\bar{\partial}\partial\gamma=\eta[\xi_1,\xi_1]$. Then we can choose $\xi_2=-\eta^{-1}(\partial\gamma)$.

Assume that we have found the firsts $\xi_1, \xi_2, ..., \xi_{k-1} \in A^{0,1}(M, T_{10})$ of the formal power series satisfying the conditions of the theorem. Firstly, note that $\eta[\xi_i, \xi_{k-i}]$ is $\bar{\partial}$ -exact for 0 < i < k by corollary 3.5. To repeat the same argument as above we need to see that $\sum_{0 < i < k} [\xi_i, \xi_{k-i}]$ is $\bar{\partial}$ -closed. We have

$$\bar{\partial}(\sum_{0 < i < k} [\xi_i, \xi_{k-i}]) = \sum_{0 < i < k} ([\bar{\partial}\xi_i, \xi_{k-i}] + [\xi_i, \bar{\partial}\xi_{k-i}]).$$

By induction hypothesis, we have that $\bar{\partial}\xi_i = -\sum_{0 < j < i} [\xi_j, \xi_{i-j}]$ for all 0 < i < k. By using these relations in the equation above an reordering, we obtain

$$\bar{\partial}(\sum_{0 < i < k} [\xi_i, \xi_{k-i}]) = -\sum_{0 < i < k} \sum_{0 < j < i} [[\xi_j, \xi_{i-j}], \xi_{k-i}] + \sum_{0 < i < k} \sum_{0 < l < i} [\xi_{k-i}, [\xi_l, \xi_{l-i}]].$$

Then, we use that $[\alpha, \beta] = -[\beta, \alpha]$ for $\alpha \in A^{0,2}(M, T_{10})$ to conclude that the last equation is 0 and $\sum_{0 < i < k} [\xi_i, \xi_{k-i}]$ is $\bar{\partial}$ -closed.

Finally, by the $\partial \bar{\partial}$ -lemma, there exists $\gamma_k \in A^{n-2,0}(M)$ such that $\bar{\partial} \partial \gamma_k = \eta(\sum_{0 < i < k} [\xi_i, \xi_{k-i}])$. Therefore $\xi_k = \eta^{-1} \partial \gamma_k$ is the next coefficient of the power formal series.

- **Remark 3.7.** (1) There may be other solutions of Maurer-Cartan equation which do not satisfy the extra condition that $\eta(\xi_i)$ is ∂ -exact for i > 1. In fact, $\eta(x_i)$ do not need to be ∂ -closed in general. Even with the extra assumption that $\eta(\xi_1)$ is harmonic the constructed solution is not unique, since in any step we may change $\eta(\xi_k)$ by a $\partial\bar{\partial}$ -exact form.
 - (2) There is a procedure to transform any solution to a convergent solution by using analysis. The main idea is that the formal solution converges if ξ_i are $\bar{\partial}^*$ -exact for all i.
 - (3) The BTT theorem is surprising in the following sense. Recall that we have seen that the obstructions to construct the formal power series are in $H^2(M, T_{10})$ (in particular the formal power series always exists if $H^2(M, T_{10}) = 0$). If M is Calabi-Yau, then $H^2(M, T_{10}) \cong H^{n-1,2}(M)$, which is usually non-zero. For example if M is a Calabi-Yau 3-fold, then $H^2(M, T_{10})$ is dual to $H^{1,1}(M)$, which is always non-zero since M is Kähler.
 - (4) The condition of M being Kähler is necessary. For example $Sl(2,\mathbb{C})/\Gamma$ from [2] or the nilmanifolds from [6] have trivial canonical bundle but they are obstructed.

4. The BTT theorem from the viewpoint of DGLA

Let L be a DGLA and A a local artinian C-algebra (in our case $A = \mathbb{C}[t]/(t^n)$ or $\mathbb{C}[|t|]$). Recall that we have defined functors $MC_L : \mathbf{Art} \longrightarrow \mathbf{Set}$ such that $MC_L(A) = \{x \in L^1 \otimes \mathfrak{m}_a : dx + \frac{1}{2}[x,x] = 0\}$ and $Def_L : \mathbf{Art} \longrightarrow \mathbf{Set}$ such that $Def_L(A) = MC_L(A)/\sim$, where two elements $x,y \in MC_L(A)$ are equivalent if and only if there exists $a \in L^0 \otimes \mathfrak{m}_A$ such that

$$y - x = \sum_{n=0}^{\infty} \frac{[a, [a, x] - da]^n}{(n+1)!}.$$

We have also seen that if L and L' are two weakly equivalent DGLA then $Def_L \cong Def_{L'}$. This result is helpful when L' has some extra properties that allows us to simplify the deformation functor. For example, if L is abelian (the Lie bracket vanishes) then $Def_L(A) = H^1(L) \otimes \mathfrak{m}_A$.

In our case, the DGLA is $KS_M = \bigoplus_{i>0} A^{0,i}(M, T_{10}), [\cdot, \cdot], \bar{\partial}$.

Theorem 4.1. Let M be a Calabi-Yau manifold, then KS_M is quasi-isomorphic to an abelian DGLA.

We provide a sketch of the proof (see [5, Theorem VII.11] for the details).

Proof. Firstly, we use the map η to induce a DGLA structure on $L^{n-1,*} = \bigoplus_{i \geq 0} A^{n-1,i}(M)$, which is isomorphic to KS_M . Because of corollary 3.5 (2) of the Tian-Todorov lemma, we have that $Q^* = \text{Ker } \partial \cap L^{n-1,*}$ is a DGL subalgebra of $L^{n-1,*}$.

We consider the complex $(R^*, \bar{\partial})$, where $R^i = \frac{Q^i}{\partial L^{n-2,i}}$. If we endow $(R^*, \bar{\partial})$ with the trivial Lie bracket, then the projection $Q^* \longrightarrow R^*$ is a DGLA morphism by the Tian-Todorov lemma.

The last step is to see that the DGLA morphisms

$$L^{n-1,*} \longleftarrow O^* \longrightarrow R^*$$

are quasi-isomorphisms, but this is a consequence of the $\partial\bar{\partial}$ -lemma.

Corollary 4.2. Let M be a Calabi-Yau manifold. Then

$$Def_M(\mathbb{C}[t]/(t^{n+1})) \longrightarrow Def_M(\mathbb{C}[t]/(t^2))$$

is surjective for every $n \geq 2$.

REFERENCES

- [1] Douady, Adrien. Obstruction primaire á la déformation, Séminaire Henri Cartan 13.1, 1960, 1-19.
- [2] Ghys, Étienne. Déformations des structures complexes sur les espaces homogènes de SL (2,C). J. Reine Angew. Math. 468, 1995, 113-138.
- [3] Huybrechts, Daniel. Complex geometry: an introduction. Vol. 78. Berlin: Springer, 2005.
- [4] Joyce, Dominic D. Compact manifolds with special holonomy. Oxford University Press on Demand, 2000.
- [5] Manetti, Marco. Lectures on deformations of complex manifolds. arXiv preprint math/0507286, 2005.
- [6] Rollenske, Sönke. *The Kuranishi space of complex parallelisable nilmanifolds*, Journal of the European Mathematical Society 13.3, 2011, 513-531.