
2-CATEGORY THEORY AND THE HOMOTOPY 2-CATEGORY

ROGER GARRIDO VILALLAVE

These notes follow appendices B.1, B.2 and section 1.4 in [2].

1. 2-categories

Definition 1. A 2-category is a category enriched in the category of categories
Cat.

More explicitly, this means that a 2-category C consists of:

(1) A collection of objects C.
(2) For every pair of objects a, b ∈ C, a category C(a, b).
(3) For every object a ∈ C, a morphism of categories (functor) ida : 1→ C(a, a).

(4) For every triple of objects a, b, c ∈ C, a morphism of categories (functor)

◦ : C(b, c)× C(a, b)→ C(a, c)
satisfying strict associativity and unit.

Remark 2. Forgetting the category structure of C(x, y) one obtains a 1-category,
called the underlying category of the 2-category C.

Given three 1-morphisms f, g, h : a→ b with the same source and target, and two
2-morphisms α : f ⇒ g and β : g ⇒ h, since α and β are morphisms in the category
C(a, b) we obtain (via composition in the category C(a, b)) a 2-morphism β ·α. This
new 2-morphism is called the vertical composition of β with α.

a b a b
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h
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h
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β·α

Now suppose given two objects a, b, c ∈ C, two 1-morphisms f, g : a → b, two
1-morphisms j, k : b → c, and two 2-morphisms α : f ⇒ g and β : g ⇒ h.
Composition C(b, c)× C(a, b)→ C(a, c) gives a morphism in the category C(a, c) (a
2-morphism) from jf := ◦(j, f) to kg := ◦(k, g). We denote it by β ∗ α and call it
the horizontal composition of α and β.
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The categorical notion of isomorphism becomes the 2-categorical notion of equiva-
lence:

Definition 3. An equivalence between two objects x, y ∈ C consists of:

(1) A pair of 1-morphisms f : x→ y, g : y → x.

(2) A pair of invertible 2-morphisms α : idx ⇒ gf , β : idy ⇒ fg.

If x, y ∈ C are such that there exists an equivalence between them, we say that they
are equivalent.

Definition 4. If C and D are 2-categories, a 2-functor F : C → D consists of:

(1) A mapping on objects c ∈ C 7→ Fc ∈ D.

(2) A mapping on 1-morphisms (f : x→ y) ∈ C 7→ (Ff : Fx→ Fy) ∈ D.

(3) A mapping on 2-morphisms (α : f ⇒ g) ∈ C(x, y) 7→ (Fα : Ff ⇒ Fg) ∈
D(Fx, Fy) that respects horizontal and vertical composition, and also hor-
izontal and vertical identites.

If we have a diagram

a b c
g k

h

f j

`

γ

δβ

α

and we want to obtain a 2-morphism jf ⇒ `h we can do it in two ways: first
applying horizontal composition and then vertical composition, or the other way
around. It turns out that the resulting 2-morphism is the same in both cases:

Lemma 5 (Middle-four interchange). The relation (δ ∗β) · (γ ∗α) = (δ · γ) ∗ (β ·α)
holds.

Proof. We know that

(δ ∗ β) · (γ ∗ α) = ◦(δ, β) · ◦(γ, α),

where ◦ : C(b, c)× C(a, b)→ C(a, c).

Since ◦ is a functor it commutes with the internal compositions in C(a, c) and
C(b, c) × C(a, b). Vertical composition is precisely defined as internal composition,
so

◦(δ, β) · ◦(γ, α) = ◦(δ · γ, β · α).

By definition this is precisely (δ · γ) ∗ (β · α). This completes the proof. �

2. Whiskering

Suppose we are in the following situation:

x a b yk

g

f

h
α
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Definition 6. The whiskered composite of the 2-morphism α with the 1-
morphisms k and h, which we denote as hαk, is defined as the horizontal com-
position idh ∗ α ∗ idk.

Take the diagram

a b c

g

f

k

j

α β

A 2-morphism jf ⇒ kg can be obtained by means of the horizontal composition:
β ∗ α : jf ⇒ kg. However we can also do it in a different way. The horizontal
composition β ∗ idf is a 2-morphism jf ⇒ kf , and the horizontal composition
idk ∗ α gives a 2-morphism kf ⇒ kg. We can now apply vertical composition and
obtain another 2-morphism jf ⇒ kg. It turns out that these two procedures for
obtaining the required 2-morphism yield the same result:

Lemma 7 (Naturality of whiskering). The following diagram is commutative:

jf kf

jg kg

β∗idf

idk∗α

β∗idg

idj∗α
β∗α

One can rewrite this commutative diagram in terms of whiskering:

jf kf

jg kg

βf

kα

βg

jα
β∗α

A direct consequence is

Corollary 8. In the previous context, if three of βf , kα, βg, jα are invertible, so
is the fourth.

3. Pasting diagrams

Consider the following diagram in a 2-category C:

b

a c e

d

h

f
i

g

j

k l
γ

βα

The theorem proven in [1] asserts that, whenever we have a diagram of this kind
that is well-formed, no matter how we compose the 2-morphisms we will always
obtain the same resulting 2-morphism from the source 1-morphism (the composite
gf) to the target 1-morphism (the composite lk).
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We give a procedure that can be applied to every well-formed pasting diagram.
First of all, we define:

• The source of the diagram is the unique object that never appears as
the target of a 1-morphism. In our example it is a.

• The target of the diagram is the unique object that never appears as
the source of a 1-morphism. In our example it is e.

• The source 1-cell of the pasting diagram is the unique composite of 1-
morphism such that none of its parts appear as the target of a 2-morphism.
In our example it is gf .

• The target 1-cell of the pasting diagram is the unique composite of 1-
morphisms such that none of its parts appear as the target of a 2-morphism.
In our example it is lk.

We proceed as follows:

(1) Take a 2-cell whose source 1-morphism appears in the source 1-cell of the
pasting diagram. In our example we can take α. Using the operation of
whiskering we can construct a 2-cell with source gf (the source 1-cell):
αg : gf ⇒ gih.

(2) Remove the chosen 2-cell, α, from the pasting diagram. We obtain the
following pasting diagram, whose source 1-cell is gih and whose target 1-
cell remains unchanged:

b

a c e

d

h

i
g

j

k l
γ

β

(3) As before, take a 2-cell whose source 1-morphism appears in the souce 1-
cell (gih). We can take β. With the whiskering operation we construct the
2-morphism hβ : gih⇒ jh.

(4) Remove the chosen 2-cell. The obtained pasting diagram has source 1-cell
jh:

a c e

d

h j

k l
γ

(5) This diagram already gives a 2-morphism γ : jh⇒ lk.

(6) We can vertically compose the obtained 2-morphisms,

gf
αg

=⇒ gih
hβ

=⇒ jh
γ

=⇒ lk,

and finally produce the desired 2-morphism γ · hβ · αg : gf ⇒ lk.

4. The homotopy 2-category of an ∞-cosmos

Let K be an ∞-cosmos. Recall that this means that K is a category enriched
in quasicategories that satisfies a bunch of axioms: the completeness axioms, and
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the isofibration axioms. We think of elements in an ∞-cosmos as ∞-categories
of a particular kind, and for every pair of ∞-categories A,B ∈ K there exists a
quasi-category Fun(A,B), called the functor space of A and B.

Definition 9. Let K be an ∞-cosmos. Its homotopy category is the 2-category
hK defined as follows:

• Objects: It has the same objects as K (i.e. ∞-categories).

• 1-morphisms: For every pair of objects, the 1-morphisms between them are
the elements in Fun(A,B)0.

• 2-morphisms (∞-natural transformations): For every pair of 1-mor-
phisms f, g ∈ Fun(A,B)0, the 2-morphisms between them are the homotopy
classes of 1-simplices in Fun(A,B) with source f and target g.

Theorem 10 (Equivalences are equivalences). Let K be an ∞-cosmos, and let
f : A→ B be an ∞-functor. The following are equivalent:

(1) For every object X ∈ K the post-composition map f∗ : Fun(X,A) →
Fun(X,B) defines an equivalence of quasi-categories.

(2) The ∞-functor f is part of the data of an equivalence in the homotopy
2-category hK.1

(3) There exists an ∞-functor g : B → A and maps (in the ∞-cosmos K)

A B

A AI and B BI

A B

ev1∼

ev0∼

α

gf

β

ev0∼

ev1∼

fg

making the above diagrams commute.

Proof.

(1) =⇒ (2): The functor f∗ induces an equivalence hf∗ in the homotopy categories
of the quasi-categories.

• If one fixes X = B, the equivalence hf∗ : hFun(B,A)→ hFun(B,B) allows
to find some g ∈ hFun(B,A) and an ∞-natural isomorphism β such that
β : hf∗(g) ∼= idB ∈ hFun(B,B). Because hf∗(g) = fg one obtains β : fg ⇒
idB .

• Analogously, if one fixes X = A one obtains an ∞-natural isomorphism
α : gf ⇒ idA.

The data above implies (2).

(2) =⇒ (3): Specifying ∞-natural isomorphisms α : gf ⇒ idA and β : fg ⇒ idB
gives the data of the diagrams in (3).

(3) =⇒ (1): The functor Fun(X,−) sends the data of (3) to the data of (1). �

1This means that, in the homotopy category hK, there exists an ∞-functor g : B → A, and
two invertible ∞-natural isomorphisms α : idA ⇒ gf and β : idy ⇒ fg.
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Using this characterization of equivalence of ∞-categories one can easily show the
following, which would be much harder if we didn’t have (2):

Corollary 11. Equivalences of ∞-categories A′
∼→ A and B

∼→ B′ induce an
equivalence of quasicategories Fun(A,B)

∼→ Fun(A′, B′).

Proof. The functors Fun(A,−) : K → qCat and Fun(−, B′) : Kop → qCat induce
2-functors hFun(A,−) : hK → hqCat and hFun(−, B′) : hKop → hqCat. These
2-functors preserve equivalences, so we immediately deduce the corollary. �

Definition 12. Let K be an∞-cosmos, and A ∈ K an∞-category. Its homotopy
category is the 1-category defined as

hA := hFun(1, A),

where 1 denotes the terminal ∞-category in K (its existence is guaranteed by the
completeness axioms), and hFun(1, A) denotes the homotopy category of the quasi-
category Fun(1, A).

Example 13. Take the ∞-cosmos of quasi-categories K = qCat. This notion
of homotopy category of a quasicategory A ∈ qCat coincides with the previously
defined notion. Since the terminal object of qCat is ∆[0],

hA = hFun(1, A) = hMap(∆[0], A) = h{HomSet(∆[0]×∆[n], A)}n ∼=
∼= h{HomSet(∆[n], A)}n ∼= hA,

where the first occurrence of hA denotes the homotopy category of the ∞-category
A in the ∞-cosmos qCat, and latter one denotes the homotopy category of the
quasi-category A.

5. An example

The category of categories Cat can be seen as a 2-category as follows:

(1) Objects: All categories.

(2) 1-morphisms: A 1-morphism between two objects (categories) A and B is
a functor F : A→ B.

(3) 2-morphisms: If A,B ∈ Cat are two objects (categories) and F,G : A→ B
are two 1-morphisms (functors), a 2-morphism from F to G is a natural
transformation η : F ⇒ G.

This data does not define a 2-category. We still need to define the identity functor
idA : 1 → Cat(A,A) and the composition rule ◦ : Cat(B,C) × Cat(A,B) →
Cat(A,C).

For every object (category) A ∈ Cat the functor ida is defined as

• The unique object in 1 is sent to the identity morphism from the category
A to itself.

• The unique arrow in 1 is sent to the identity natural transformation from
the identity functor of A to the identity functor of A.

For every three objects (categories) A,B,C ∈ Cat the composition ◦ is defined as
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• If G ∈ Cat(B,C) and F ∈ Cat(A,B) are 1-morphisms (functors), ◦(G,F )
is defined as the composite functor.

• If α : G1 ⇒ G2 is a 2-morphism (natural transformation) between the 1-
morphisms G1, G2 ∈ Cat(B,C), and β : F1 ⇒ F2 is a 2-morphism (natural
transformation) between the 1-morphisms F1, F2 ∈ Cat(A,C), the compo-
sition ◦(α, β) is the 2-morphism from ◦(G1, F1) to ◦(G2, F2) given by the
Godement product2 of the natural transformations α and β.

A B C

F1

F2

G1

G2

α β

Strict associativity and unit axioms should be checked. Vertical composition is given
by composition of functors, and horizontal composition is given by the Godement
product.

Given a diagram

X A B Y

F

G

K L
α

the whiskered composite LαK is the following 2-morphism (natural transforma-
tion):

x ∈ X, (LαK)x = (idL ∗ α ∗ idK)x = (idL)K(x) = · · · = L(αK(x)).

An equivalence from A ∈ Cat to B ∈ Cat is a pair of 1-morphisms (functors)
F : A→ B and G : B → A together with invertible 2-morphisms (natural isomor-
phisms) ε : idB ⇒ FG and η : idA ⇒ GF . This notion recovers the usual definition
of equivalent categories.
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2With the notations above, the Godement product of α and β is defined, on an element a ∈ A
of the category A, as (β ∗ α)a := βF2(α) ◦G1(αa)


