2-CATEGORY THEORY AND THE HOMOTOPY 2-CATEGORY

ROGER GARRIDO VILALLAVE

These notes follow appendices B.1, B.2 and section 1.4 in [2].

1. 2-categories

Definition 1. A **2-category** is a category enriched in the category of categories **Cat**.

More explicitly, this means that a 2-category \mathcal{C} consists of:

- (1) A collection of objects \mathcal{C} .
- (2) For every pair of objects $a, b \in C$, a category C(a, b).
- (3) For every object $a \in C$, a morphism of categories (functor) $\mathrm{id}_a : 1 \to C(a, a)$.
- (4) For every triple of objects $a, b, c \in C$, a morphism of categories (functor)

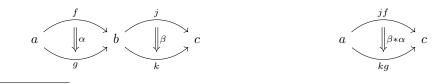
 $\circ: \mathcal{C}(b,c) \times \mathcal{C}(a,b) \to \mathcal{C}(a,c)$

satisfying strict associativity and unit.

Remark 2. Forgetting the category structure of C(x, y) one obtains a 1-category, called the underlying category of the 2-category C.

Given three 1-morphisms $f, g, h : a \to b$ with the same source and target, and two 2-morphisms $\alpha : f \Rightarrow g$ and $\beta : g \Rightarrow h$, since α and β are morphisms in the category $\mathcal{C}(a, b)$ we obtain (via composition in the category $\mathcal{C}(a, b)$) a 2-morphism $\beta \cdot \alpha$. This new 2-morphism is called the **vertical composition** of β with α .

Now suppose given two objects $a, b, c \in C$, two 1-morphisms $f, g : a \to b$, two 1-morphisms $j, k : b \to c$, and two 2-morphisms $\alpha : f \Rightarrow g$ and $\beta : g \Rightarrow h$. Composition $\mathcal{C}(b,c) \times \mathcal{C}(a,b) \to \mathcal{C}(a,c)$ gives a morphism in the category $\mathcal{C}(a,c)$ (a 2-morphism) from $jf := \circ(j, f)$ to $kg := \circ(k, g)$. We denote it by $\beta * \alpha$ and call it the **horizontal composition** of α and β .



Date: 31/10/2023.

The categorical notion of isomorphism becomes the 2-categorical notion of equivalence:

Definition 3. An equivalence between two objects $x, y \in C$ consists of:

- (1) A pair of 1-morphisms $f: x \to y, g: y \to x$.
- (2) A pair of invertible 2-morphisms $\alpha : \mathrm{id}_x \Rightarrow gf, \beta : \mathrm{id}_y \Rightarrow fg.$

If $x, y \in C$ are such that there exists an equivalence between them, we say that they are **equivalent**.

Definition 4. If C and D are 2-categories, a 2-functor $F : C \to D$ consists of:

- (1) A mapping on objects $c \in \mathcal{C} \mapsto Fc \in \mathcal{D}$.
- (2) A mapping on 1-morphisms $(f: x \to y) \in \mathcal{C} \mapsto (Ff: Fx \to Fy) \in \mathcal{D}$.
- (3) A mapping on 2-morphisms $(\alpha : f \Rightarrow g) \in \mathcal{C}(x, y) \mapsto (F\alpha : Ff \Rightarrow Fg) \in \mathcal{D}(Fx, Fy)$ that respects horizontal and vertical composition, and also horizontal and vertical identities.

If we have a diagram

$$a \xrightarrow[b]{\substack{f \\ g \ \downarrow \alpha \\ b}} b \xrightarrow[\ell]{\substack{j \\ \psi \gamma \\ \psi \gamma$$

and we want to obtain a 2-morphism $jf \Rightarrow \ell h$ we can do it in two ways: first applying horizontal composition and then vertical composition, or the other way around. It turns out that the resulting 2-morphism is the same in both cases:

Lemma 5 (Middle-four interchange). The relation $(\delta * \beta) \cdot (\gamma * \alpha) = (\delta \cdot \gamma) * (\beta \cdot \alpha)$ holds.

Proof. We know that

$$(\delta * \beta) \cdot (\gamma * \alpha) = \circ(\delta, \beta) \cdot \circ(\gamma, \alpha),$$

where $\circ : \mathcal{C}(b,c) \times \mathcal{C}(a,b) \to \mathcal{C}(a,c).$

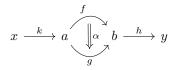
Since \circ is a functor it commutes with the internal compositions in C(a, c) and $C(b, c) \times C(a, b)$. Vertical composition is precisely defined as internal composition, so

$$\circ(\delta,\beta)\cdot\circ(\gamma,\alpha)=\circ(\delta\cdot\gamma,\beta\cdot\alpha).$$

By definition this is precisely $(\delta \cdot \gamma) * (\beta \cdot \alpha)$. This completes the proof.

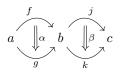
2. Whiskering

Suppose we are in the following situation:



Definition 6. The whiskered composite of the 2-morphism α with the 1-morphisms k and h, which we denote as $h\alpha k$, is defined as the horizontal composition $\mathrm{id}_h * \alpha * \mathrm{id}_k$.

Take the diagram



A 2-morphism $jf \Rightarrow kg$ can be obtained by means of the horizontal composition: $\beta * \alpha : jf \Rightarrow kg$. However we can also do it in a different way. The horizontal composition $\beta * \mathrm{id}_f$ is a 2-morphism $jf \Rightarrow kf$, and the horizontal composition $\mathrm{id}_k * \alpha$ gives a 2-morphism $kf \Rightarrow kg$. We can now apply vertical composition and obtain another 2-morphism $jf \Rightarrow kg$. It turns out that these two procedures for obtaining the required 2-morphism yield the same result:

Lemma 7 (Naturality of whiskering). The following diagram is commutative:

$$\begin{array}{c} jf \xrightarrow{\beta * id_f} kf \\ \downarrow id_j * \alpha \\ jg \xrightarrow{\beta * id_g} kg \end{array}$$

One can rewrite this commutative diagram in terms of whiskering:

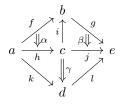
$$\begin{array}{c} jf \xrightarrow{\beta f} kf \\ \downarrow^{\alpha} \downarrow & \swarrow^{\beta * \alpha} \downarrow_{k\alpha} \\ jg \xrightarrow{\beta g} kg \end{array}$$

A direct consequence is

Corollary 8. In the previous context, if three of βf , $k\alpha$, βg , $j\alpha$ are invertible, so is the fourth.

3. Pasting diagrams

Consider the following diagram in a 2-category \mathcal{C} :



The theorem proven in [1] asserts that, whenever we have a diagram of this kind that is *well-formed*, no matter how we compose the 2-morphisms we will always obtain the same resulting 2-morphism from the source 1-morphism (the composite gf) to the target 1-morphism (the composite lk).

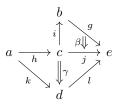
ROGER GARRIDO VILALLAVE

We give a procedure that can be applied to every *well-formed* pasting diagram. First of all, we define:

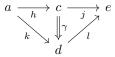
- The source of the diagram is the unique object that never appears as the target of a 1-morphism. In our example it is *a*.
- The target of the diagram is the unique object that never appears as the source of a 1-morphism. In our example it is *e*.
- The source 1-cell of the pasting diagram is the unique composite of 1morphism such that none of its parts appear as the target of a 2-morphism. In our example it is *gf*.
- The target 1-cell of the pasting diagram is the unique composite of 1morphisms such that none of its parts appear as the target of a 2-morphism. In our example it is *lk*.

We proceed as follows:

- (1) Take a 2-cell whose source 1-morphism appears in the source 1-cell of the pasting diagram. In our example we can take α . Using the operation of whiskering we can construct a 2-cell with source gf (the source 1-cell): $\alpha g: gf \Rightarrow gih$.
- (2) Remove the chosen 2-cell, α , from the pasting diagram. We obtain the following pasting diagram, whose source 1-cell is *gih* and whose target 1-cell remains unchanged:



- (3) As before, take a 2-cell whose source 1-morphism appears in the souce 1-cell (gih). We can take β . With the whiskering operation we construct the 2-morphism $h\beta : gih \Rightarrow jh$.
- (4) Remove the chosen 2-cell. The obtained pasting diagram has source 1-cell jh:



- (5) This diagram already gives a 2-morphism $\gamma : jh \Rightarrow lk$.
- (6) We can vertically compose the obtained 2-morphisms,

$$gf \stackrel{\alpha g}{\Longrightarrow} gih \stackrel{h\beta}{\Longrightarrow} jh \stackrel{\gamma}{\Longrightarrow} lk,$$

and finally produce the desired 2-morphism $\gamma \cdot h\beta \cdot \alpha g : gf \Rightarrow lk$.

4. The homotopy 2-category of an ∞ -cosmos

Let \mathcal{K} be an ∞ -cosmos. Recall that this means that \mathcal{K} is a category enriched in quasicategories that satisfies a bunch of axioms: the completeness axioms, and

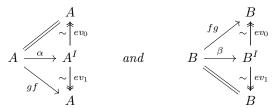
the isofibration axioms. We think of elements in an ∞ -cosmos as ∞ -categories of a particular kind, and for every pair of ∞ -categories $A, B \in \mathcal{K}$ there exists a quasi-category Fun(A, B), called the functor space of A and B.

Definition 9. Let \mathcal{K} be an ∞ -cosmos. Its **homotopy category** is the 2-category $h\mathcal{K}$ defined as follows:

- Objects: It has the same objects as \mathcal{K} (i.e. ∞ -categories).
- 1-morphisms: For every pair of objects, the 1-morphisms between them are the elements in $Fun(A, B)_0$.
- 2-morphisms (∞ -natural transformations): For every pair of 1-morphisms $f, g \in Fun(A, B)_0$, the 2-morphisms between them are the homotopy classes of 1-simplices in Fun(A, B) with source f and target g.

Theorem 10 (Equivalences are equivalences). Let \mathcal{K} be an ∞ -cosmos, and let $f: A \to B$ be an ∞ -functor. The following are equivalent:

- (1) For every object $X \in \mathcal{K}$ the post-composition map $f_* : Fun(X, A) \rightarrow Fun(X, B)$ defines an equivalence of quasi-categories.
- (2) The ∞ -functor f is part of the data of an equivalence in the homotopy 2-category h \mathcal{K} .¹
- (3) There exists an ∞ -functor $g: B \to A$ and maps (in the ∞ -cosmos \mathcal{K})



making the above diagrams commute.

Proof.

(1) \implies (2): The functor f_* induces an equivalence hf_* in the homotopy categories of the quasi-categories.

- If one fixes X = B, the equivalence $hf_* : h\operatorname{Fun}(B, A) \to h\operatorname{Fun}(B, B)$ allows to find some $g \in h\operatorname{Fun}(B, A)$ and an ∞ -natural isomorphism β such that $\beta : hf_*(g) \cong \operatorname{id}_B \in h\operatorname{Fun}(B, B)$. Because $hf_*(g) = fg$ one obtains $\beta : fg \Rightarrow$ id_B .
- Analogously, if one fixes X = A one obtains an ∞ -natural isomorphism $\alpha : gf \Rightarrow id_A$.

The data above implies (2).

(2) \implies (3): Specifying ∞ -natural isomorphisms $\alpha : gf \Rightarrow id_A$ and $\beta : fg \Rightarrow id_B$ gives the data of the diagrams in (3).

(3) \implies (1): The functor Fun(X, -) sends the data of (3) to the data of (1). \Box

¹This means that, in the homotopy category $h\mathcal{K}$, there exists an ∞ -functor $g: B \to A$, and two invertible ∞ -natural isomorphisms $\alpha: \mathrm{id}_A \Rightarrow gf$ and $\beta: \mathrm{id}_y \Rightarrow fg$.

Using this characterization of equivalence of ∞ -categories one can easily show the following, which would be much harder if we didn't have (2):

Corollary 11. Equivalences of ∞ -categories $A' \xrightarrow{\sim} A$ and $B \xrightarrow{\sim} B'$ induce an equivalence of quasicategories $Fun(A, B) \xrightarrow{\sim} Fun(A', B')$.

Proof. The functors $\operatorname{Fun}(A, -) : \mathcal{K} \to \operatorname{\mathbf{qCat}}$ and $\operatorname{Fun}(-, B') : \mathcal{K}^{\operatorname{op}} \to \operatorname{\mathbf{qCat}}$ induce 2-functors $h\operatorname{Fun}(A, -) : h\mathcal{K} \to h\operatorname{\mathbf{qCat}}$ and $h\operatorname{Fun}(-, B') : h\mathcal{K}^{\operatorname{op}} \to h\operatorname{\mathbf{qCat}}$. These 2-functors preserve equivalences, so we immediately deduce the corollary. \Box

Definition 12. Let \mathcal{K} be an ∞ -cosmos, and $A \in \mathcal{K}$ an ∞ -category. Its homotopy category is the 1-category defined as

$$hA := h\operatorname{Fun}(1, A),$$

where 1 denotes the terminal ∞ -category in \mathcal{K} (its existence is guaranteed by the completeness axioms), and hFun(1, A) denotes the homotopy category of the quasi-category Fun(1, A).

Example 13. Take the ∞ -cosmos of quasi-categories $\mathcal{K} = \mathbf{qCat}$. This notion of homotopy category of a quasicategory $A \in \mathbf{qCat}$ coincides with the previously defined notion. Since the terminal object of \mathbf{qCat} is $\Delta[0]$,

$$hA = h\operatorname{Fun}(1, A) = h\operatorname{Map}(\Delta[0], A) = h\{\operatorname{Hom}_{\operatorname{\mathbf{Set}}}(\Delta[0] \times \Delta[n], A)\}_n \cong$$
$$\cong h\{\operatorname{Hom}_{\operatorname{\mathbf{Set}}}(\Delta[n], A)\}_n \cong hA,$$

where the first occurrence of hA denotes the homotopy category of the ∞ -category A in the ∞ -cosmos **qCat**, and latter one denotes the homotopy category of the quasi-category A.

5. An example

The category of categories **Cat** can be seen as a 2-category as follows:

- (1) Objects: All categories.
- (2) 1-morphisms: A 1-morphism between two objects (categories) A and B is a functor $F: A \to B$.
- (3) 2-morphisms: If $A, B \in \mathbf{Cat}$ are two objects (categories) and $F, G : A \to B$ are two 1-morphisms (functors), a 2-morphism from F to G is a natural transformation $\eta : F \Rightarrow G$.

This data does not define a 2-category. We still need to define the identity functor $id_A : \mathbb{1} \to \mathbf{Cat}(A, A)$ and the composition rule $\circ : \mathbf{Cat}(B, C) \times \mathbf{Cat}(A, B) \to \mathbf{Cat}(A, C)$.

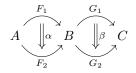
For every object (category) $A \in \mathbf{Cat}$ the functor id_a is defined as

- The unique object in 1 is sent to the identity morphism from the category A to itself.
- The unique arrow in 1 is sent to the identity natural transformation from the identity functor of A to the identity functor of A.

For every three objects (categories) $A, B, C \in \mathbf{Cat}$ the composition \circ is defined as

REFERENCES

- If $G \in \mathbf{Cat}(B, C)$ and $F \in \mathbf{Cat}(A, B)$ are 1-morphisms (functors), $\circ(G, F)$ is defined as the composite functor.
- If $\alpha : G_1 \Rightarrow G_2$ is a 2-morphism (natural transformation) between the 1morphisms $G_1, G_2 \in \mathbf{Cat}(B, C)$, and $\beta : F_1 \Rightarrow F_2$ is a 2-morphism (natural transformation) between the 1-morphisms $F_1, F_2 \in \mathbf{Cat}(A, C)$, the composition $\circ(\alpha, \beta)$ is the 2-morphism from $\circ(G_1, F_1)$ to $\circ(G_2, F_2)$ given by the Godement product² of the natural transformations α and β .



Strict associativity and unit axioms should be checked. Vertical composition is given by composition of functors, and horizontal composition is given by the Godement product.

Given a diagram

$$X \xrightarrow{K} A \underbrace{ \bigcup_{\alpha}^{F}}_{G} B \xrightarrow{L} Y$$

the whiskered composite $L\alpha K$ is the following 2-morphism (natural transformation):

$$x \in X$$
, $(L\alpha K)_x = (\mathrm{id}_L * \alpha * \mathrm{id}_K)_x = (\mathrm{id}_L)_{K(x)} = \cdots = L(\alpha_{K(x)}).$

An equivalence from $A \in \mathbf{Cat}$ to $B \in \mathbf{Cat}$ is a pair of 1-morphisms (functors) $F: A \to B$ and $G: B \to A$ together with invertible 2-morphisms (natural isomorphisms) $\varepsilon: \mathrm{id}_B \Rightarrow FG$ and $\eta: \mathrm{id}_A \Rightarrow GF$. This notion recovers the usual definition of equivalent categories.

References

[1] Power. "A 2-Categorical Pasting Theorem". In: Journal of Algebra (1990).

[2] E. Riehl and D. Verity. Elements of ∞ -category theory.

²With the notations above, the Godement product of α and β is defined, on an element $a \in A$ of the category A, as $(\beta * \alpha)_a := \beta_{F_2(\alpha)} \circ G_1(\alpha_a)$