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The aim of this talk is to introduce the concept of equivariant cohomology and explain a theorem
of L.N. Mann and J.C. Su as one of its applications. Given a topological space X with a group G
acting on it, the goal of equivariant cohomology is to provide a cohomology theory which apart
from telling us properties of topological space X, it also gives us information on the group action
of G. In order to define the equivariant cohomology of a G-space we will need to review some
facts on principal bundles and to introduce the Milnor construction of a Lie group. There is a lot of
literature on this topic, we will mainly use [1, 2, 3].

The Mann-Su theorem finds a relationship between the cohomology of a compact manifold M and
how "big" certain groups acting on M can be. We will follow their original paper ([4]) and references
therein.

1. Equivariant cohomology

Notation 1.1. In this notes X will always be a CW-complex, M a connected topological manifold and G a
Lie group. If there is a group action of G on X then we will say that X is a G-space. We will also assume that
the group actions are effective.

In order to define the Borel construction and equivariant cohomology we first need to introduce
free group actions and their relationship with principal G-bundles.

Definition 1.2. A group action of G on X is free if Gx = {e} for all x ∈ X, where e denotes the identity
element of G.

Recall that if p : E −→ B is a principal G-bundle then there exists a free action of G on E such that
p induces a homeomorphism B ∼= E/G. Thus, every principal G-bundle induces a free action of G.
Conversely, if we have a group action of G on X, then the orbit map π : X −→ X/G is a principal
G-bundle.

Let X be a G-space and p : E −→ B a principal G-bundle. The associated bundle construction is
a way to construct fiber bundles with fiber X by attaching X to each fiber of a principal G-bundle
using the group action of G on X. More precisely, consider the diagonal G-action on E × X such
that (a, x)g = (ag, g−1x) for all g ∈ G and (a, x) ∈ E × X. Note that this action is free. The quotient
space space (E × X)/G is denoted by E ×G X and its elements by [a, x]. Then, we have a continuous
map q : E ×G F −→ B such that q[e, f ] = p(e), which is a fiber bundle over B with fiber X.

Theorem 1.3. (Milnor, 1956) For any Lie group G there exists a contractible space EG such that G acts
freely on EG.

Remark 1.4. 1. EG is well-defined up to G-homotopy.
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2. The quotient EG/G = BG is called the classifying space of G. This name is a consequence of the fact
that there is a bijection between the set of principal G-bundles over X, PrinG(X), and [X, BG].

3. The principal bundle EG −→ BG is called the universal principal G-bundle.

Before sketching the main ideas of the proof, we will focus on an important example:

Example 1.5. Let p ∈ N. We will construct EG when G = Z/p. Firstly, we consider the sphere

S2n−1 = {(z1, ..., zn) ∈ Cn : |z1|2 + ... + |zn|2 = 1} ⊂ Cn.

There is a group action of Z/p on S2n−1 such that a(z1, ..., zn) = (e
2πia

p z1, ..., e
2πia

p zn) for any a ∈ Z/p
and (z1, ..., zn) ∈ Cn. It is straightforward to check that this action is free.

Moreover, the inclusion maps in,m : S2m−1 −→ S2n−1 such that im,n(z1, ..., zn) = (z1, ..., zn, 0, ..., 0) are Z/p-
equivariant, which means that im,n(a(z1, ..., zn)) = aim,n((z1, ..., zn)) for all a ∈ Z/p and (z1, ..., zn) ∈ Cn.

We have obtained a family of groups actions of Z/p on spaces that are not contractible. We will use them
to construct a Z/p-action on a contractible space. Note that we have a chain of Z/p-equivariant inclusions
S1 ⊆ S3 ⊆ S5 ⊆ · · · . Then we can define the space

S∞ =
⋃

n∈N

S2n−1

with the topology induced by the inclusions. That is, U ⊂ S∞ is open if and only if S2n−1 ∩ U is open in
S2n−1 for all n ∈ N. A point in S∞ is a sequence (z1, z2, . . . ) where zi ∈ C, only finitely many of them are
non-zero and ∑ |zi|2 = 1. The free group actions of Z/p on S2n−1 for n ≥ 1 induce a free group action of
Z/p on S∞. In addition, we have the well-known result:

Lemma 1.6. S∞ is contractible.

Proof. Let 1 : S∞ −→ S∞ be the constant map 1(z1, z2, . . . ) = (1, 0, . . . ) and let σ : S∞ −→ S∞ be
the continuos shift map such that σ(z1, z2, . . . ) = (0, z1, z2, . . . ). Then, one can see that the map
H : S∞ × I −→ S∞ such that

H(z, t) =
(1 − t)z + t1(z) + (t − t2)σ(z)
|(1 − t)z + t1(z) + (t − t2)σ(z)|

is the desired homotopy which makes S∞ contractible.

□

In consequence, we have that EZ/p ∼= S∞. The quotients S2n−1/(Z/p) ∼= Ln
p are known as lens spaces.

Thus, BZ/p is usually denoted by L∞
p .

Note that the action of Z/p on S2n−1 is the restriction of the action of S1 ⊂ C∗ on S2n−1. We can use the
same reasoning to show that ES1 ∼= S∞ and BS1 ∼= CP∞.

Recall that given two topological spaces X and Y, we define the join X ∗ Y to be X × Y × I/ ∼,
where we have the equivalence relation (x, y, 0) ∼ (x, y′, 0) and (x, y, 1) ∼ (x′, y, 1) for all x, x′ ∈ X
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and y, y′ ∈ Y. Moreover, if X and Y are G-spaces then X ∗ Y is is a G-space where the action fulfils
that g[x, y, t] = [gx, gy, t] for all [x, y, t] ∈ X ∗ Y and g ∈ G.

We are now ready to explain the Milnor construction of EG for an arbitrary Lie group G. Firstly, note
that G (as a group) acts freely on itself (as a topological space) by right multiplication. Explicitly,
given g, h ∈ G we have that g(h) = gh. We set EG(0) = G and EG(n) = EG(n − 1) ∗ G. The
free action of G on G induces a free action of G on each EG(n). On the other hand, EG(n) is
n − 1-connected for n ≥ 1.

We have a sequence of G-equivariant inclusions EG(0) ⊆ EG(1) ⊆ EG(2) ⊆ · · · . Therefore, like in
the above example, we can define EG to be the colimit of these inclusions. The space EG can be
constructed as the infinite join G ∗ G ∗ G ∗ · · · . This space is contractible and has a free action of G.

Example 1.7. We can compute the Milnor construction when G = Z/2. Since Z/2 ∼= S0, we can use
that Sm ∗ Sn ∼= Sm+n+1 to conclude that EZ/2(n) = Sn for all n ≥ 0. It can also be seen that the action
of Z/2 induced on EZ/2(n) is the antipodal action (in consequence EZ/2(n)/(Z/2) ∼= RPn). Therefore
EZ/2 ∼= S∞ and BZ/2 ∼= RP∞.

Z/2
Z/2

Z/2 ∗ Z/2 ∼= S1

Remark 1.8. If G1 and G2 are two Lie groups, then E(G1 × G2) ∼= EG1 × EG2 and B(G1 × G2) ∼=
BG1 × BG2.

Definition 1.9. Let X be a G-space, the Borel construction of X is the space XG = EG×G X. The equivariant
cohomology of X is

H∗
G(X) = H∗(XG).

Remark 1.10. 1. By using the universal principal G-bundle and the associated bundle construction, we
can find a fibration

X −→ XG −→ BG.

This fibration is known as the Borel fibration.

2. If the action of G on X is free, we can use the principal G-bundle π : X −→ X/G to construct a
fibration

EG −→ XG −→ X/G.

Since EG is contractible, then H∗
G(X) ∼= H∗(X/G).

3. If X = {pt}, then H∗
G(X) = H∗(BG). More in general, the map XG −→ BG induces a structure of

H∗(BG)-module on H∗
G(X).
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4. If G is a discrete group, then H∗(BG) coincides with the group cohomology H∗(G). For example, if
p is a prime then Hi(BZ/p, Z/p) = Z/p for all i ≥ 0.

2. Bounding elementary p-group actions

In this section p will always denote a prime number. An elementary p-group is a a group of the
form (Z/p)r (they are also called p-tori). The number r is called the rank of the group. In this
section we will explain some results that find a relationship between the cohomology of a space and
the rank of the elementary p-groups acting on it.

Theorem 2.1. (Mann-Su, 1962) Let M be a compact manifold of dimension n. Let Bp = ∑n
i=0 dim Hi(M, Z/p).

There exist a number Cp only depending on n and Bp such that if (Z/p)r acts effectively on M then r ≤ Cp.

We will only give a sketch of the proof of this theorem. Assume that we have an effective action of
G = (Z/p)r on M, then:

1. We can reduce to the study of the case where the action is free. If we only consider topolog-
ical manifolds and continuous group actions, we need to study actions of (Z/p)r with fixed
points an use results by A. Borel. If we put the extra assumption that M is a smooth manifold
and the action of (Z/p)r is smooth then we can construct an invariant Riemannian metric on
M and lift the action on M to an free action of (Z/p)r on the total space of the orthonormal
frame bundle Fr(M) (which is a principal O(n)-bundle). Since O(n) is a compact Lie group,
Fr(M) is still a compact manifold. These reductions will change the value of Cp, but we can
control this change using only n and Bp.

2. We can use the Borel fibration M −→ MG −→ BG together with the Serre spectral sequence
to obtain a convergent spectral sequence

Es,t
2 = Hs(BG,Ht(M, Z/p)) =⇒ Hs+t

G (M),

where we use the calligraphic letter H to denote the cohomology with local coefficients.

3. Since Hi(M, Z/p) = 0 for all i > n, the spectral sequence collapses at the page n + 1. We
have that E∞ = En+1.

4. Since the action is free, we have that Hi
G(M) = Hi(M/G) = 0 for all i > n. Using this fact

and doing some computations on the spectral sequence, we obtain the inequality

dim Es+1,0
2 ≤

n

∑
j=0

dim Es−j,j
2 .

5. On the other hand

dim Es,t
2 ≤

(
s − r − 1

r − 1

)
dim Ht(M, Z/p),

where the first part is precisely dim Hs(BG, Z/p), which can be computed using the Künneth
formula. Moreover

dim En+1,0
2 =

(
n − r
r − 1

)
.
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6. By using the inequalities of points 4 and 5 and doing some computations we can find that

r ≤

√
n2 + 4n(n + 1)Bp − n

2
= Cp.

Remark 2.2. 1. We only need M to be a manifold to be able to reduce the theorem to the study of free
actions. If we assume that the action is free we can assume that the G-space is a CW-complex with
some finiteness conditions on the cohomology. Nevertheless, in the general case the condition of M
being a manifold is necessary. For any r > 0 we can construct a contractible 2-complex Xr which
admits an action of (Z/p)r as shown in the image below. Each component of (Z/p)r rotates one of
the disks and fixes the line through the origin.

X3

(Z/p)3

2. We cannot find a constant Cp bounding r which only depends on the dimension. For any r > 0, it is
possible to construct a surface Sr which admit an action of (Z/p)2r.

3. We can ask how sharp is this bound. For example, if M = S1 (so n = 1 and Bp = 2) then Cp ≃ 1, 47.
Therefore, if (Z/p)r acts freely on S1 then r = 1, as it was already known. However, it is possible to
find much better bounds if we only focus on some specific manifold:

Theorem 2.3. (Smith, 1960) Assume that (Z/p)r acts on Sn, then

r ≤
{

n+1
2 p odd

n + 1 p = 2
.

Note that this bound is also for non-free group actions.

Finally, we will state a similar theorem by Carlsson and Baumgarter. Assume that X is a G-space.
Then we have a linear action of G on the cohomology H∗(X, k), where k is a field. In particular,
H∗(X, k) has a structure of k[G]-module. Given a k[G]-module A, we define

l(A) = min{l ∈ N : I l A = 0},

where I denotes the augmentation ideal of k[G]. Then:

Theorem 2.4. (Carlsson, 1983 (p = 2), Baumgarter, 1990 (p odd)) Let G = (Z/p)r and let X be free
G-space such that there exist n ∈ N which fulfils that Hi(X/G, Z/p) = 0 for all i > n. Then

∞

∑
i=0

l(Hi(M, Z/p)) ≥ r + 1.

Corollary 2.5. If the cohomology of X is isomorphic to the cohomology of the product of s spheres of dimension
m, Sm × · · · × Sm, and the action of G on X induces a trivial action on the cohomology then s ≥ r.
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