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1.1 Simplicial sets

We denote by A the category whose objects are the sets [n] = {0,1,...,n} forn >0
and whose morphisms are order-preserving functions [n] — [m].

A simplicial set is a functor X : A°? — Set, where Set denotes the category of
sets. A simplicial map f: X — Y between simplicial sets is a natural transforma-
tion. The category of simplicial sets with simplicial maps is denoted by Set®™ or,
more concisely, as sSet.

For a simplicial set X, we normally write X,, instead of X|[n|, and call it the
set of n-simplices of X. There are injections ¢/': [n — 1] — [n] forgetting i and
surjections o': [n + 1] — [n] repeating ¢ for 0 < i < n that give rise to functions

dl: X, — X1, si X1 — X,
called faces and degeneracies respectively. Since every order-preserving function
[n] — [m] is a composite of a surjection followed by an injection, the sets {X,},>0
together with the faces d¥ and degeneracies 3? determine uniquely a simplicial set X.
Faces and degeneracies satisfy the simplicial identities:
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For n > 0, the standard n-simplex is the simplicial set A[n] = A(—, [n]), that is,
Alnlm = A([m], [n])
for all m > 0. Then the Yoneda Lemma implies that
X, = X|[n] = sSet(A(—,[n]), X) = sSet(A[n], X)
for each simplicial set X and n > 0. Consequently, for all simplicial sets X we have

X = colim A[n]
(A4 X)

as a special case of the Density Theorem. The comma category (A | X) is called
the category of simplicies of X.

For k > 0, the k-skeleton of a simplicial set X is the smallest sub-simplicial-set
of X containing X, ..., Xg.



The boundary of A[n], denoted OA[n], is the (n — 1)-skeleton of Aln]. The kth
horn A¥[n] is the sub-simplicial-set of dA[n] resulting from removing the kth face.
The horns with 0 < k£ < n are called inner horns and those with k =0 and k = n
are outer horns.

The geometric realization of a simplicial set X is defined as

| X| = colim A"
(A4 X)
where A™ = {(to,...,t,) € R"™ | 0 <t; <1, Bt; = 1} with the Euclidean topology.
In other words, | — | is the left Kan extension of the functor from A to the category
of topological spaces sending [n] to A™.

A simplicial map f: X — Y between simplicial sets is a weak equivalence if the
induced map | X| — |V is a weak homotopy equivalence of topological spaces, that
is, if it induces a bijection of connected components and group isomorphisms

(X, z) =2 m, (Y, f(z))

for n > 1 and all z € Xy. Two simplicial sets X and Y are called weakly equivalent
(denoted X ~ Y') if there is a zig-zag of weak equivalences between them:

X=Wy—-Wi Wy —--- =W, W, =Y.

1.2 Nerve of a category
The nerve of a small category C is the simplicial set NC: A°? — Set defined as
NC = Cat(—,C);

that is, the set (NC),, of n-simplices of NC is the set of functors [n] — C where
[n] is viewed as a category by means of its order 0 — 1 — 2 — --- — n. Faces
and degeneracies of NC come from the injections ¢7: [n — 1] — [n] and surjec-
tions of": [n + 1] — [n]. In other words, the n-simplices of NC are sequences of n
composable morphisms:

(NC), = {Xo 25 X1 L5 0 I X,

where the 7th face composes f; 1 o f; and the ith degeneracy inserts id: X; — Xj.
Hence we may view (NC), as the set of objects of C and (NC); as the set of
morphisms of C. For example, the nerve of [n] is the standard n-simplex A[n].
The Yoneda Lemma tells us that the functor N: Cat — sSet is fully faithful:

sSet(NC, ND) = Cat(C, D),

that is, the functors C — D are in one-to-one correspondence with the simplicial
maps NC — ND. Hence we may think of the category Cat of small categories as a
subcategory of simplicial sets, by identifying a category with its nerve.

However, N: Cat — sSet is very far from being an equivalence of categories,
since not every simplicial set is isomorphic to the nerve of a category. For example,
for a simplicial set to be a nerve it is necessary that for every pair of consecutive edges
e1: v — Vg and eg: v — v3 there is a (uniquely determined) edge e; 0 e1: v — vs.
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1.3 The Kan condition

A simplicial set X satisfies the Kan condition if every map A*[n] — X admits an
extension A[n] — X (called a filler). Then we also say that X is a Kan complex or
a fibrant simplicial set. In other words, X is a Kan complex if and only if the map

sSet(A[n], X) — sSet(A*[n], X) (1.1)
is surjective for 0 < k < n and for all n.

Example 1.1. If X is a topological space, then the singular simplicial set Sing X has
as n-simplices the continuous maps A™ — X, with faces and degeneracies coming
from those of A[n]. This is an example of a Kan complex, since the geometric
realization of every horn A¥[n] is a strong deformation retract of A™.

The functor Sing: Top — sSet is right adjoint to the geometric realization
functor, and moreover the counit map |Sing X| — X is a weak homotopy equivalence
of topological spaces for every space X, while the unit map K — Sing | K| is a weak
equivalence of simplicial sets for every simplicial set K.

Example 1.2. A group GG can be viewed as a small category with a single object
and a morphism for each element of GG, with composition corresponding to the
multiplication in G. Then the topological space BG = |[NG| is called the classifying
space of the group G and has the property that its fundamental group is isomorphic
to GG while all its higher homotopy grops are zero. The nerve NG is a Kan complex.

Proposition 1.3. A simplicial set X satisfies X = NC for some category C if and
only if (L.1)) is bijective for 0 < k <mn and n > 2.

Proof. The condition given in the statement ensures that all composable arrows
have a unique composite. ]

Definition 1.4. A simplicial set X is called a quasicategory (or a weak Kan complex,
or an oo-category) if ([1.1)) is surjective for 0 < k < n and n > 2.

Hence a simplicial set X is a quasicategory if and only if every map A*[n] — X
from an inner horn has a (not necessarily unique) filler A[n] — X, for n > 2. If «
is a 2-simplex of X filling

»
’Uoi>1)1 — U2

and ¢: vy — vy is the face dia, then we say that ¢ is a composite of ¢ and 1
witnessed by a. Thus in a quasicategory composites of arrows exist, although they
need not be unique.

Categories and Kan complexes are special cases of quasicategories.

e A category is a quasicategory where fillers for inner horns are unique.
e A Kan complex is a quasicategory where fillers for all horns exist.
A category where all morphisms have inverses is called a groupoid.

Proposition 1.5. A category C is a groupoid if and only if NC is a Kan complex.



Proof. In NC is a Kan complex, then fillers for maps from the outer horn A°[2] yield
inverses, which are unique since C is a category. O

A quasicategory which is a Kan complex is called an co-groupoid.

Example 1.6. For a topological space X, the fundamental co-groupoid m. X is the
quasicategory whose 0-simplices are the points of X, whose 1-simplices are the paths
in X, and whose n-simplices for n > 2 are the homotopies H: ¢ — 7 where ¢ and
T are (n — 1)-simplices.

1.4 Homotopy category of a quasicategory

If X is a quasicategory, we call objects of X its O-simplices and morphisms of X the
l-simplices. The face di: X; — Xj is called source map and di: X; — X, is the
target map. We denote by f: x — y a morphism with source x and target y.

Every object x € X, has an identity morphism, namely id, = sjz. Thus id, is a
morphism from z to z since d} o s) = di o s) = idx,.

If f,g: v — y are morphisms in a quasicategory X, we say that f is homotopic
to g, and write f ~ g, if there exists a 2-simplex o € X, (called a homotopy from x
to y) with d3c = g, d?0 = f and d30 = id,. The homotopy relation is an equivalence
relation. The homotopy class of f is denoted by [f].

The homotopy category Ho(X) has X as its set of objects and

Ho(X)(z,y) = {l/]| f: =z = y}.

This is indeed a category since composition [g] o [f] is well defined and unique,
namely [g] o [f] = [h] where h is any filler for

xipyihz.

The extension property for A'[3] < A[3] yields uniqueness of h up to homotopy.
The identity morphism in Ho(X) of an object z € Xj is the homotopy class [sJz].

A morphism f: z — yin X is called an equivalence if [f] is invertible in Ho(X),
that is, if there exists a morphism g: y — « with go f ~id, and f o g ~ id,.

Proposition 1.7 (Joyal). The homotopy category Ho(X) is a groupoid if and only
if X is a Kan complex.

Example 1.8. The homotopy category Ho(m,,X) of the fundamental oo-groupoid
of a topological space X is the fundamental groupoid (or Poincaré groupoid) m (X).

1.5 Simplicial enrichment

Denote by Atk C A[n] the k-simplex spanned by the vertices iy, .. ., i.
A homotopy from a morphism f: x — y to a morphism g: x — y can be viewed
as a simplicial map o: A[2] — X with

0|A{0,1} = idm, U|A{2} =Y,

that is, d20 = sz and djd?o = y.



Definition 1.9. If x and y are objects of a quasicategory X, an n-morphism from
x to y is a simplicial map o: Aln] — X with

U|A{0 ----- n—1} = 1dx7 U|A{"} =Y,

0

that is, "o = sp " 2---sdz and d} - - - d*_,0 = .

Then there is a simplicial set map(x,y) whose set of n-simplices map(x,y), is
the set of (n + 1)-morphisms from x to y for all n > 0. We call it the space of
morphisms from x to y.

Proposition 1.10. If x and y are any two objects of a quasicategory X, then
map(z,y) is a Kan complez.

Hence map(z,y) is also a quasicategory. It follows from the definitions that
Ho(X)(z,y) = mo map(z,y),

where 7y denotes the set of connected components of a simplicial set.

1.6 Equivalences of quasicategories

If X and Y are simplicial sets, then there is a simplicial set Map(X,Y’) with
Map(X,Y), = sSet(A[n| x X,Y)

for all n. Then, for all objects x and y of a quasicategory X, the space of maps
map(z,y) is the pull-back of the source-and-target map

(s,t): Map(A[l], X) — Map(0A[1],X) =X x X

along
(z,y): A[0] — X x X.

This is analogous to the fact that, for a category C and two objects x and y of C,
the set C(x,y) is the pull-back of the source-and-target map Mor(C) — C x C along
the constant map (z,vy).

Proposition 1.11. Let X and Y be simplicial sets.
(i) If Y is a Kan complex, then Map(X,Y) is a Kan complex.
(ii) IfY is a quasicategory, then Map(X,Y) is a quasicategory.

A functor of quasicategories u: X — Y is a map of simplicial sets from X to Y.
Given two functors u,v: X — Y, a natural transformation f: u — v is a 1-simplex
n € Map(X,Y); with din = u and din = v.

If X and Y are quasicategories, then Map(X,Y’) is also denoted by Fun(X,Y)
and called the quasicategory of functors from X to Y. Hence Fun(X,Y) is a sim-
plicial set whose vertices are the functors u: X — Y and whose 1-simplices are the
natural transformations n: u — v.



Recall that an equivalence of categories is a fully faithful functor F': C — D
which is essentially surjective, that is, for every object Y € D there is an object
X € C with FX =Y. Next we define the analogous concept for quasicategories.

A functor u: X — Y of quasicategories is called fully faithful if the induced map

mapy (z,y) — mapy (u(z), u(y))

is a weak equivalence of simplicial sets for all z,y € Xj.

A functor u: X — Y of quasicategories is essentially surjective is for every object
y € Yy there is an object x € Xy and an equivalence u(x) — vy, i.e., if the induced
functor Ho(X) — Ho(Y") is essentially surjective.

Definition 1.12. An equivalence of quasicategories is an essentially surjective fully
faithful functor.

An equivalence of quasicategories is also called a Dwyer—-Kan equivalence. If
u: X — Y is an equivalence of quasicategories, then the induced functor of homo-
topy categories Ho(X) — Ho(Y) is an equivalence, and, moreover,

71—n(rnapX(xa y)a f) = wn(mapy(u(as), u(y)), U(f))
for n > 1 and all morphisms f: z — y in X.

Theorem 1.13 (Joyal). A functor u: X — Y is an equivalence of quasicategories
if and only if the induced functor

Ho(Map(Y, C)) — Ho(Map(X, C))

1s an equivalence of categories for every quasicategory C'.

1.7 Adjunctions

A functor u: X — Y between quasicategories is left adjoint to a functor v: ¥ — X
if there are natural transformations

n:idx — vu, g:uv — idy

for which the composites

*

mapy (u(x), y) = mapy (v(u(@)), v(y)) %5 mapy(z, o(y))

and
mapy (. v(y)) — mapy (u(z), u(v(y))) ©5 mapy (u(z), y)

are weak equivalences of simplicial sets for all x € Xy and y € Yj.
Ifu: X =Y and v: Y — Y form an adjoint pair, then the induced functors

Ho(u): Ho(X) — Ho(Y), Ho(v): Ho(Y) — Ho(X)
form an adjoint pair as well, since there are natural bijections

Ho(Y)(u(x), y) = mo map(u(z),y) = mo map(z, v(y)) = Ho(X)(z, v(y)).
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Definition 1.14. A functor u: X — Y between quasicategories is called a reflection
if it has a fully faithful right adjoint.

The universal property of a reflection can be formulated as follows. If u: X — Y
is a reflection and we consider the class S of morphisms f: a — b in X such that
u(f): u(a) — wu(b) is an equivalence, then, for every quasicategory Z, composing
with u defines a fully faithful functor

Fun(Y, Z) — Fun(X, 2)

whose essential image is the collection of functors v: X — Z such that v(s) is an
equivalence for all s € S.

The composite £: X — X of a reflection X — Y with its right adjoint ¥ — X
is called a localization.

If /: X — X is a localization, then there is a natural transformation n: idy — /¢
such that the morphisms £(n,) and 7y from ¢(z) to £(¢(z)) are homotopic and each
of them is an equivalence.
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