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1.1 Simplicial sets

We denote by ∆ the category whose objects are the sets [n] = {0, 1, . . . , n} for n ≥ 0
and whose morphisms are order-preserving functions [n]→ [m].

A simplicial set is a functor X : ∆op → Set, where Set denotes the category of
sets. A simplicial map f : X → Y between simplicial sets is a natural transforma-
tion. The category of simplicial sets with simplicial maps is denoted by Set∆op

or,
more concisely, as sSet.

For a simplicial set X, we normally write Xn instead of X[n], and call it the
set of n-simplices of X. There are injections δni : [n − 1] → [n] forgetting i and
surjections σni : [n+ 1]→ [n] repeating i for 0 ≤ i ≤ n that give rise to functions

dni : Xn −→ Xn−1, sni : Xn+1 −→ Xn,

called faces and degeneracies respectively. Since every order-preserving function
[n] → [m] is a composite of a surjection followed by an injection, the sets {Xn}n≥0

together with the faces dki and degeneracies s`j determine uniquely a simplicial set X.
Faces and degeneracies satisfy the simplicial identities :

dn−1
i ◦ dnj = dn−1

j−1 ◦ dni if i < j;

dn+1
i ◦ snj =


sn−1
j−1 ◦ dni if i < j;

idXn if i = j or i = j + 1;

sn−1
j ◦ dni−1 if i > j + 1;

sn+1
i ◦ snj = sn+1

j+1 ◦ sni if i ≤ j.

For n ≥ 0, the standard n-simplex is the simplicial set ∆[n] = ∆(−, [n]), that is,

∆[n]m = ∆([m], [n])

for all m ≥ 0. Then the Yoneda Lemma implies that

Xn = X[n] ∼= sSet(∆(−, [n]), X) = sSet(∆[n], X)

for each simplicial set X and n ≥ 0. Consequently, for all simplicial sets X we have

X ∼= colim
(∆ ↓X)

∆[n]

as a special case of the Density Theorem. The comma category (∆ ↓ X) is called
the category of simplicies of X.

For k ≥ 0, the k-skeleton of a simplicial set X is the smallest sub-simplicial-set
of X containing X0, . . . , Xk.
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The boundary of ∆[n], denoted ∂∆[n], is the (n − 1)-skeleton of ∆[n]. The kth
horn Λk[n] is the sub-simplicial-set of ∂∆[n] resulting from removing the kth face.
The horns with 0 < k < n are called inner horns and those with k = 0 and k = n
are outer horns.

The geometric realization of a simplicial set X is defined as

|X| = colim
(∆ ↓X)

∆n

where ∆n = {(t0, . . . , tn) ∈ Rn+1 | 0 ≤ ti ≤ 1, Σti = 1} with the Euclidean topology.
In other words, | − | is the left Kan extension of the functor from ∆ to the category
of topological spaces sending [n] to ∆n.

A simplicial map f : X → Y between simplicial sets is a weak equivalence if the
induced map |X| → |Y | is a weak homotopy equivalence of topological spaces, that
is, if it induces a bijection of connected components and group isomorphisms

πn(X, x) ∼= πn(Y, f(x))

for n ≥ 1 and all x ∈ X0. Two simplicial sets X and Y are called weakly equivalent
(denoted X ' Y ) if there is a zig-zag of weak equivalences between them:

X = W0 → W1 ← W2 → · · · → Wn−1 ← Wn = Y.

1.2 Nerve of a category

The nerve of a small category C is the simplicial set NC : ∆op → Set defined as

NC = Cat(−, C);

that is, the set (NC)n of n-simplices of NC is the set of functors [n] → C where
[n] is viewed as a category by means of its order 0 → 1 → 2 → · · · → n. Faces
and degeneracies of NC come from the injections δni : [n − 1] → [n] and surjec-
tions σni : [n + 1] → [n]. In other words, the n-simplices of NC are sequences of n
composable morphisms:

(NC)n = {X0
f1−→ X1

f2−→ · · · fn−→ Xn},

where the ith face composes fi+1 ◦ fi and the ith degeneracy inserts id : Xi → Xi.
Hence we may view (NC)0 as the set of objects of C and (NC)1 as the set of

morphisms of C. For example, the nerve of [n] is the standard n-simplex ∆[n].
The Yoneda Lemma tells us that the functor N : Cat→ sSet is fully faithful:

sSet(NC, ND) ∼= Cat(C,D),

that is, the functors C → D are in one-to-one correspondence with the simplicial
maps NC → ND. Hence we may think of the category Cat of small categories as a
subcategory of simplicial sets, by identifying a category with its nerve.

However, N : Cat → sSet is very far from being an equivalence of categories,
since not every simplicial set is isomorphic to the nerve of a category. For example,
for a simplicial set to be a nerve it is necessary that for every pair of consecutive edges
e1 : v1 → v2 and e2 : v2 → v3 there is a (uniquely determined) edge e2 ◦ e1 : v1 → v3.
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1.3 The Kan condition

A simplicial set X satisfies the Kan condition if every map Λk[n] → X admits an
extension ∆[n]→ X (called a filler). Then we also say that X is a Kan complex or
a fibrant simplicial set. In other words, X is a Kan complex if and only if the map

sSet(∆[n], X) −→ sSet(Λk[n], X) (1.1)

is surjective for 0 ≤ k ≤ n and for all n.

Example 1.1. IfX is a topological space, then the singular simplicial set SingX has
as n-simplices the continuous maps ∆n → X, with faces and degeneracies coming
from those of ∆[n]. This is an example of a Kan complex, since the geometric
realization of every horn Λk[n] is a strong deformation retract of ∆n.

The functor Sing : Top → sSet is right adjoint to the geometric realization
functor, and moreover the counit map |SingX| → X is a weak homotopy equivalence
of topological spaces for every space X, while the unit map K → Sing |K| is a weak
equivalence of simplicial sets for every simplicial set K.

Example 1.2. A group G can be viewed as a small category with a single object
and a morphism for each element of G, with composition corresponding to the
multiplication in G. Then the topological space BG = |NG| is called the classifying
space of the group G and has the property that its fundamental group is isomorphic
to G while all its higher homotopy grops are zero. The nerve NG is a Kan complex.

Proposition 1.3. A simplicial set X satisfies X ∼= NC for some category C if and
only if (1.1) is bijective for 0 < k < n and n ≥ 2.

Proof. The condition given in the statement ensures that all composable arrows
have a unique composite.

Definition 1.4. A simplicial set X is called a quasicategory (or a weak Kan complex,
or an ∞-category) if (1.1) is surjective for 0 < k < n and n ≥ 2.

Hence a simplicial set X is a quasicategory if and only if every map Λk[n]→ X
from an inner horn has a (not necessarily unique) filler ∆[n] → X, for n ≥ 2. If α
is a 2-simplex of X filling

v0
ϕ−→ v1

ψ−→ v2

and φ : v0 → v2 is the face d2
1α, then we say that φ is a composite of ϕ and ψ

witnessed by α. Thus in a quasicategory composites of arrows exist, although they
need not be unique.

Categories and Kan complexes are special cases of quasicategories.

• A category is a quasicategory where fillers for inner horns are unique.

• A Kan complex is a quasicategory where fillers for all horns exist.

A category where all morphisms have inverses is called a groupoid.

Proposition 1.5. A category C is a groupoid if and only if NC is a Kan complex.
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Proof. In NC is a Kan complex, then fillers for maps from the outer horn Λ0[2] yield
inverses, which are unique since C is a category.

A quasicategory which is a Kan complex is called an ∞-groupoid.

Example 1.6. For a topological space X, the fundamental ∞-groupoid π∞X is the
quasicategory whose 0-simplices are the points of X, whose 1-simplices are the paths
in X, and whose n-simplices for n ≥ 2 are the homotopies H : σ → τ where σ and
τ are (n− 1)-simplices.

1.4 Homotopy category of a quasicategory

If X is a quasicategory, we call objects of X its 0-simplices and morphisms of X the
1-simplices. The face d1

1 : X1 → X0 is called source map and d1
0 : X1 → X0 is the

target map. We denote by f : x→ y a morphism with source x and target y.
Every object x ∈ X0 has an identity morphism, namely idx = s0

0x. Thus idx is a
morphism from x to x since d1

0 ◦ s0
0 = d1

1 ◦ s0
0 = idX0 .

If f, g : x → y are morphisms in a quasicategory X, we say that f is homotopic
to g, and write f ' g, if there exists a 2-simplex σ ∈ X2 (called a homotopy from x
to y) with d2

0σ = g, d2
1σ = f and d2

2σ = idx. The homotopy relation is an equivalence
relation. The homotopy class of f is denoted by [f ].

The homotopy category Ho(X) has X0 as its set of objects and

Ho(X)(x, y) = {[f ] | f : x→ y}.

This is indeed a category since composition [g] ◦ [f ] is well defined and unique,
namely [g] ◦ [f ] = [h] where h is any filler for

x
f−→ y

g−→ z.

The extension property for Λ1[3] ↪→ ∆[3] yields uniqueness of h up to homotopy.
The identity morphism in Ho(X) of an object x ∈ X0 is the homotopy class [s0

0x].
A morphism f : x→ y in X is called an equivalence if [f ] is invertible in Ho(X),

that is, if there exists a morphism g : y → x with g ◦ f ' idx and f ◦ g ' idy.

Proposition 1.7 (Joyal). The homotopy category Ho(X) is a groupoid if and only
if X is a Kan complex.

Example 1.8. The homotopy category Ho(π∞X) of the fundamental ∞-groupoid
of a topological space X is the fundamental groupoid (or Poincaré groupoid) π1(X).

1.5 Simplicial enrichment

Denote by ∆{i0,...,ik} ⊆ ∆[n] the k-simplex spanned by the vertices i0, . . . , ik.
A homotopy from a morphism f : x→ y to a morphism g : x→ y can be viewed

as a simplicial map σ : ∆[2]→ X with

σ|∆{0,1} = idx, σ|∆{2} = y,

that is, d2
2σ = s0

0x and d1
0d

2
1σ = y.
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Definition 1.9. If x and y are objects of a quasicategory X, an n-morphism from
x to y is a simplicial map σ : ∆[n]→ X with

σ|∆{0,...,n−1} = idx, σ|∆{n} = y,

that is, dnnσ = sn−2
0 · · · s0

0x and d1
0 · · · dnn−1σ = y.

Then there is a simplicial set map(x, y) whose set of n-simplices map(x, y)n is
the set of (n + 1)-morphisms from x to y for all n ≥ 0. We call it the space of
morphisms from x to y.

Proposition 1.10. If x and y are any two objects of a quasicategory X, then
map(x, y) is a Kan complex.

Hence map(x, y) is also a quasicategory. It follows from the definitions that

Ho(X)(x, y) = π0 map(x, y),

where π0 denotes the set of connected components of a simplicial set.

1.6 Equivalences of quasicategories

If X and Y are simplicial sets, then there is a simplicial set Map(X, Y ) with

Map(X, Y )n = sSet(∆[n]×X, Y )

for all n. Then, for all objects x and y of a quasicategory X, the space of maps
map(x, y) is the pull-back of the source-and-target map

(s, t) : Map(∆[1], X) −→ Map(∂∆[1], X) = X ×X

along
(x, y) : ∆[0] −→ X ×X.

This is analogous to the fact that, for a category C and two objects x and y of C,
the set C(x, y) is the pull-back of the source-and-target map Mor(C)→ C × C along
the constant map (x, y).

Proposition 1.11. Let X and Y be simplicial sets.

(i) If Y is a Kan complex, then Map(X, Y ) is a Kan complex.

(ii) If Y is a quasicategory, then Map(X, Y ) is a quasicategory.

A functor of quasicategories u : X → Y is a map of simplicial sets from X to Y .
Given two functors u, v : X → Y , a natural transformation f : u→ v is a 1-simplex
η ∈ Map(X, Y )1 with d1

0η = u and d1
1η = v.

If X and Y are quasicategories, then Map(X, Y ) is also denoted by Fun(X, Y )
and called the quasicategory of functors from X to Y . Hence Fun(X, Y ) is a sim-
plicial set whose vertices are the functors u : X → Y and whose 1-simplices are the
natural transformations η : u→ v.
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Recall that an equivalence of categories is a fully faithful functor F : C → D
which is essentially surjective, that is, for every object Y ∈ D there is an object
X ∈ C with FX ∼= Y . Next we define the analogous concept for quasicategories.

A functor u : X → Y of quasicategories is called fully faithful if the induced map

mapX(x, y) −→ mapY (u(x), u(y))

is a weak equivalence of simplicial sets for all x, y ∈ X0.
A functor u : X → Y of quasicategories is essentially surjective is for every object

y ∈ Y0 there is an object x ∈ X0 and an equivalence u(x) → y, i.e., if the induced
functor Ho(X)→ Ho(Y ) is essentially surjective.

Definition 1.12. An equivalence of quasicategories is an essentially surjective fully
faithful functor.

An equivalence of quasicategories is also called a Dwyer–Kan equivalence. If
u : X → Y is an equivalence of quasicategories, then the induced functor of homo-
topy categories Ho(X)→ Ho(Y ) is an equivalence, and, moreover,

πn(mapX(x, y), f) ∼= πn(mapY (u(x), u(y)), u(f))

for n ≥ 1 and all morphisms f : x→ y in X.

Theorem 1.13 (Joyal). A functor u : X → Y is an equivalence of quasicategories
if and only if the induced functor

Ho(Map(Y,C)) −→ Ho(Map(X,C))

is an equivalence of categories for every quasicategory C.

1.7 Adjunctions

A functor u : X → Y between quasicategories is left adjoint to a functor v : Y → X
if there are natural transformations

η : idX −→ vu, ε : uv −→ idY

for which the composites

mapY (u(x), y)
v−→ mapX(v(u(x)), v(y))

(ηx)∗−→ mapX(x, v(y))

and

mapX(x, v(y))
u−→ mapY (u(x), u(v(y)))

(εy)∗−→ mapY (u(x), y)

are weak equivalences of simplicial sets for all x ∈ X0 and y ∈ Y0.
If u : X → Y and v : Y → Y form an adjoint pair, then the induced functors

Ho(u) : Ho(X) −→ Ho(Y ), Ho(v) : Ho(Y ) −→ Ho(X)

form an adjoint pair as well, since there are natural bijections

Ho(Y )(u(x), y) = π0 map(u(x), y) ∼= π0 map(x, v(y)) = Ho(X)(x, v(y)).
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Definition 1.14. A functor u : X → Y between quasicategories is called a reflection
if it has a fully faithful right adjoint.

The universal property of a reflection can be formulated as follows. If u : X → Y
is a reflection and we consider the class S of morphisms f : a → b in X such that
u(f) : u(a) → u(b) is an equivalence, then, for every quasicategory Z, composing
with u defines a fully faithful functor

Fun(Y, Z) −→ Fun(X,Z)

whose essential image is the collection of functors v : X → Z such that v(s) is an
equivalence for all s ∈ S.

The composite ` : X → X of a reflection X → Y with its right adjoint Y → X
is called a localization.

If ` : X → X is a localization, then there is a natural transformation η : idX → `
such that the morphisms `(ηx) and η`(x) from `(x) to `(`(x)) are homotopic and each
of them is an equivalence.

References:

1. D.-C. Cisinski, Higher Categories and Homotopical Algebra, to appear in Cam-
bridge Studies in Advanced Mathematics,
http://www.mathematik.uni-regensburg.de/cisinski/publikationen.html

2. M. Groth, A short course on ∞-categories, arXiv:1007.2925.

3. V. Hinich, Lectures on infinity categories, arXiv:1709.06271.

4. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton
University Press, Princeton and Oxford, 2009.

7

http://www.mathematik.uni-regensburg.de/cisinski/publikationen.html

	Simplicial sets
	Nerve of a category
	The Kan condition
	Homotopy category of a quasicategory
	Simplicial enrichment
	Equivalences of quasicategories
	Adjunctions

