Quasicategories

12 November 2018

1.1 Simplicial sets

We denote by Δ the category whose objects are the sets $[n] = \{0, 1, \ldots, n\}$ for $n \ge 0$ and whose morphisms are order-preserving functions $[n] \to [m]$.

A simplicial set is a functor $X: \Delta^{\text{op}} \to \mathbf{Set}$, where **Set** denotes the category of sets. A simplicial map $f: X \to Y$ between simplicial sets is a natural transformation. The category of simplicial sets with simplicial maps is denoted by $\mathbf{Set}^{\Delta^{\text{op}}}$ or, more concisely, as \mathbf{sSet} .

For a simplicial set X, we normally write X_n instead of X[n], and call it the set of *n*-simplices of X. There are injections $\delta_i^n \colon [n-1] \to [n]$ forgetting i and surjections $\sigma_i^n \colon [n+1] \to [n]$ repeating i for $0 \leq i \leq n$ that give rise to functions

$$d_i^n \colon X_n \longrightarrow X_{n-1}, \qquad s_i^n \colon X_{n+1} \longrightarrow X_n,$$

called *faces* and *degeneracies* respectively. Since every order-preserving function $[n] \rightarrow [m]$ is a composite of a surjection followed by an injection, the sets $\{X_n\}_{n\geq 0}$ together with the faces d_i^k and degeneracies s_j^ℓ determine uniquely a simplicial set X. Faces and degeneracies satisfy the *simplicial identities*:

$$\begin{aligned} &d_i^{n-1} \circ d_j^n = d_{j-1}^{n-1} \circ d_i^n \text{ if } i < j; \\ &d_i^{n+1} \circ s_j^n = \begin{cases} s_{j-1}^{n-1} \circ d_i^n \text{ if } i < j; \\ &\mathrm{id}_{X_n} \text{ if } i = j \text{ or } i = j+1; \\ &s_j^{n-1} \circ d_{i-1}^n \text{ if } i > j+1; \end{cases} \\ &s_i^{n+1} \circ s_j^n = s_{j+1}^{n+1} \circ s_i^n \text{ if } i \leq j. \end{aligned}$$

For $n \ge 0$, the standard n-simplex is the simplicial set $\Delta[n] = \Delta(-, [n])$, that is,

$$\Delta[n]_m = \Delta([m], [n])$$

for all $m \ge 0$. Then the Yoneda Lemma implies that

$$X_n = X[n] \cong \mathbf{sSet}(\Delta(-, [n]), X) = \mathbf{sSet}(\Delta[n], X)$$

for each simplicial set X and $n \ge 0$. Consequently, for all simplicial sets X we have

$$X \cong \operatorname{colim}_{(\Delta \downarrow X)} \Delta[n]$$

as a special case of the Density Theorem. The comma category $(\Delta \downarrow X)$ is called the *category of simplicies* of X.

For $k \ge 0$, the k-skeleton of a simplicial set X is the smallest sub-simplicial-set of X containing X_0, \ldots, X_k .

The boundary of $\Delta[n]$, denoted $\partial\Delta[n]$, is the (n-1)-skeleton of $\Delta[n]$. The *kth* horn $\Lambda^k[n]$ is the sub-simplicial-set of $\partial\Delta[n]$ resulting from removing the *k*th face. The horns with 0 < k < n are called *inner horns* and those with k = 0 and k = n are *outer horns*.

The geometric realization of a simplicial set X is defined as

$$|X| = \operatorname{colim}_{(\Delta \downarrow X)} \Delta^n$$

where $\Delta^n = \{(t_0, \ldots, t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, \Sigma t_i = 1\}$ with the Euclidean topology. In other words, |-| is the left Kan extension of the functor from Δ to the category of topological spaces sending [n] to Δ^n .

A simplicial map $f: X \to Y$ between simplicial sets is a *weak equivalence* if the induced map $|X| \to |Y|$ is a weak homotopy equivalence of topological spaces, that is, if it induces a bijection of connected components and group isomorphisms

$$\pi_n(X, x) \cong \pi_n(Y, f(x))$$

for $n \ge 1$ and all $x \in X_0$. Two simplicial sets X and Y are called *weakly equivalent* (denoted $X \simeq Y$) if there is a zig-zag of weak equivalences between them:

$$X = W_0 \to W_1 \leftarrow W_2 \to \dots \to W_{n-1} \leftarrow W_n = Y.$$

1.2 Nerve of a category

The *nerve* of a small category \mathcal{C} is the simplicial set $N\mathcal{C}: \Delta^{\mathrm{op}} \to \mathbf{Set}$ defined as

$$N\mathcal{C} = \operatorname{Cat}(-,\mathcal{C});$$

that is, the set $(N\mathcal{C})_n$ of *n*-simplices of $N\mathcal{C}$ is the set of functors $[n] \to \mathcal{C}$ where [n] is viewed as a category by means of its order $0 \to 1 \to 2 \to \cdots \to n$. Faces and degeneracies of $N\mathcal{C}$ come from the injections $\delta_i^n \colon [n-1] \to [n]$ and surjections $\sigma_i^n \colon [n+1] \to [n]$. In other words, the *n*-simplices of $N\mathcal{C}$ are sequences of *n* composable morphisms:

$$(N\mathcal{C})_n = \{X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} X_n\},\$$

where the *i*th face composes $f_{i+1} \circ f_i$ and the *i*th degeneracy inserts id: $X_i \to X_i$.

Hence we may view $(N\mathcal{C})_0$ as the set of objects of \mathcal{C} and $(N\mathcal{C})_1$ as the set of morphisms of \mathcal{C} . For example, the nerve of [n] is the standard *n*-simplex $\Delta[n]$.

The Yoneda Lemma tells us that the functor $N: Cat \rightarrow \mathbf{sSet}$ is fully faithful:

$$\mathbf{sSet}(N\mathcal{C}, N\mathcal{D}) \cong \mathrm{Cat}(\mathcal{C}, \mathcal{D}),$$

that is, the functors $\mathcal{C} \to \mathcal{D}$ are in one-to-one correspondence with the simplicial maps $N\mathcal{C} \to N\mathcal{D}$. Hence we may think of the category Cat of small categories as a subcategory of simplicial sets, by identifying a category with its nerve.

However, $N: \text{Cat} \to \mathbf{sSet}$ is very far from being an equivalence of categories, since not every simplicial set is isomorphic to the nerve of a category. For example, for a simplicial set to be a nerve it is necessary that for every pair of consecutive edges $e_1: v_1 \to v_2$ and $e_2: v_2 \to v_3$ there is a (uniquely determined) edge $e_2 \circ e_1: v_1 \to v_3$.

1.3 The Kan condition

A simplicial set X satisfies the Kan condition if every map $\Lambda^k[n] \to X$ admits an extension $\Delta[n] \to X$ (called a *filler*). Then we also say that X is a Kan complex or a *fibrant* simplicial set. In other words, X is a Kan complex if and only if the map

$$\mathbf{sSet}(\Delta[n], X) \longrightarrow \mathbf{sSet}(\Lambda^k[n], X)$$
 (1.1)

is surjective for $0 \le k \le n$ and for all n.

Example 1.1. If X is a topological space, then the *singular* simplicial set Sing X has as n-simplices the continuous maps $\Delta^n \to X$, with faces and degeneracies coming from those of $\Delta[n]$. This is an example of a Kan complex, since the geometric realization of every horn $\Lambda^k[n]$ is a strong deformation retract of Δ^n .

The functor Sing: Top \rightarrow **sSet** is right adjoint to the geometric realization functor, and moreover the counit map $|\text{Sing } X| \rightarrow X$ is a weak homotopy equivalence of topological spaces for every space X, while the unit map $K \rightarrow \text{Sing } |K|$ is a weak equivalence of simplicial sets for every simplicial set K.

Example 1.2. A group G can be viewed as a small category with a single object and a morphism for each element of G, with composition corresponding to the multiplication in G. Then the topological space BG = |NG| is called the *classifying space* of the group G and has the property that its fundamental group is isomorphic to G while all its higher homotopy grops are zero. The nerve NG is a Kan complex.

Proposition 1.3. A simplicial set X satisfies $X \cong NC$ for some category C if and only if (1.1) is bijective for 0 < k < n and $n \ge 2$.

Proof. The condition given in the statement ensures that all composable arrows have a unique composite. \Box

Definition 1.4. A simplicial set X is called a *quasicategory* (or a *weak Kan complex*, or an ∞ -category) if (1.1) is surjective for 0 < k < n and $n \ge 2$.

Hence a simplicial set X is a quasicategory if and only if every map $\Lambda^k[n] \to X$ from an inner horn has a (not necessarily unique) filler $\Delta[n] \to X$, for $n \ge 2$. If α is a 2-simplex of X filling

$$v_0 \xrightarrow{\varphi} v_1 \xrightarrow{\psi} v_2$$

and $\phi: v_0 \to v_2$ is the face $d_1^2 \alpha$, then we say that ϕ is a *composite* of φ and ψ witnessed by α . Thus in a quasicategory composites of arrows exist, although they need not be unique.

Categories and Kan complexes are special cases of quasicategories.

- A category is a quasicategory where fillers for inner horns are unique.
- A Kan complex is a quasicategory where fillers for all horns exist.

A category where all morphisms have inverses is called a *groupoid*.

Proposition 1.5. A category C is a groupoid if and only if NC is a Kan complex.

Proof. In NC is a Kan complex, then fillers for maps from the outer horn $\Lambda^0[2]$ yield inverses, which are unique since C is a category.

A quasicategory which is a Kan complex is called an ∞ -groupoid.

Example 1.6. For a topological space X, the fundamental ∞ -groupoid $\pi_{\infty}X$ is the quasicategory whose 0-simplices are the points of X, whose 1-simplices are the paths in X, and whose n-simplices for $n \geq 2$ are the homotopies $H: \sigma \to \tau$ where σ and τ are (n-1)-simplices.

1.4 Homotopy category of a quasicategory

If X is a quasicategory, we call *objects* of X its 0-simplices and *morphisms* of X the 1-simplices. The face $d_1^1: X_1 \to X_0$ is called *source map* and $d_0^1: X_1 \to X_0$ is the *target map*. We denote by $f: x \to y$ a morphism with source x and target y.

Every object $x \in X_0$ has an identity morphism, namely $\mathrm{id}_x = s_0^0 x$. Thus id_x is a morphism from x to x since $d_0^1 \circ s_0^0 = d_1^1 \circ s_0^0 = \mathrm{id}_{X_0}$.

If $f, g: x \to y$ are morphisms in a quasicategory X, we say that f is homotopic to g, and write $f \simeq g$, if there exists a 2-simplex $\sigma \in X_2$ (called a homotopy from x to y) with $d_0^2 \sigma = g$, $d_1^2 \sigma = f$ and $d_2^2 \sigma = \mathrm{id}_x$. The homotopy relation is an equivalence relation. The homotopy class of f is denoted by [f].

The homotopy category Ho(X) has X_0 as its set of objects and

$$\operatorname{Ho}(X)(x,y) = \{ [f] \mid f \colon x \to y \}.$$

This is indeed a category since composition $[g] \circ [f]$ is well defined and unique, namely $[g] \circ [f] = [h]$ where h is any filler for

$$x \xrightarrow{f} y \xrightarrow{g} z$$

The extension property for $\Lambda^1[3] \hookrightarrow \Delta[3]$ yields uniqueness of h up to homotopy. The identity morphism in Ho(X) of an object $x \in X_0$ is the homotopy class $[s_0^0 x]$.

A morphism $f: x \to y$ in X is called an *equivalence* if [f] is invertible in Ho(X), that is, if there exists a morphism $g: y \to x$ with $g \circ f \simeq \operatorname{id}_x$ and $f \circ g \simeq \operatorname{id}_y$.

Proposition 1.7 (Joyal). The homotopy category Ho(X) is a groupoid if and only if X is a Kan complex.

Example 1.8. The homotopy category $Ho(\pi_{\infty}X)$ of the fundamental ∞ -groupoid of a topological space X is the fundamental groupoid (or Poincaré groupoid) $\pi_1(X)$.

1.5 Simplicial enrichment

Denote by $\Delta^{\{i_0,\ldots,i_k\}} \subseteq \Delta[n]$ the k-simplex spanned by the vertices i_0,\ldots,i_k .

A homotopy from a morphism $f: x \to y$ to a morphism $g: x \to y$ can be viewed as a simplicial map $\sigma: \Delta[2] \to X$ with

$$\sigma|_{\Delta^{\{0,1\}}} = \mathrm{id}_x, \qquad \sigma|_{\Delta^{\{2\}}} = y,$$

that is, $d_2^2 \sigma = s_0^0 x$ and $d_0^1 d_1^2 \sigma = y$.

Definition 1.9. If x and y are objects of a quasicategory X, an *n*-morphism from x to y is a simplicial map $\sigma: \Delta[n] \to X$ with

$$\sigma|_{\Delta^{\{0,\dots,n-1\}}} = \mathrm{id}_x, \qquad \sigma|_{\Delta^{\{n\}}} = y,$$

that is, $d_n^n \sigma = s_0^{n-2} \cdots s_0^0 x$ and $d_0^1 \cdots d_{n-1}^n \sigma = y$.

Then there is a simplicial set $\max(x, y)$ whose set of *n*-simplices $\max(x, y)_n$ is the set of (n + 1)-morphisms from x to y for all $n \ge 0$. We call it the space of morphisms from x to y.

Proposition 1.10. If x and y are any two objects of a quasicategory X, then map(x, y) is a Kan complex.

Hence map(x, y) is also a quasicategory. It follows from the definitions that

$$\operatorname{Ho}(X)(x,y) = \pi_0 \operatorname{map}(x,y),$$

where π_0 denotes the set of connected components of a simplicial set.

1.6 Equivalences of quasicategories

If X and Y are simplicial sets, then there is a simplicial set Map(X, Y) with

$$Map(X,Y)_n = \mathbf{sSet}(\Delta[n] \times X,Y)$$

for all n. Then, for all objects x and y of a quasicategory X, the space of maps map(x, y) is the pull-back of the source-and-target map

$$(s,t): \operatorname{Map}(\Delta[1], X) \longrightarrow \operatorname{Map}(\partial \Delta[1], X) = X \times X$$

along

$$(x, y) \colon \Delta[0] \longrightarrow X \times X.$$

This is analogous to the fact that, for a category \mathcal{C} and two objects x and y of \mathcal{C} , the set $\mathcal{C}(x, y)$ is the pull-back of the source-and-target map $Mor(\mathcal{C}) \to \mathcal{C} \times \mathcal{C}$ along the constant map (x, y).

Proposition 1.11. Let X and Y be simplicial sets.

- (i) If Y is a Kan complex, then Map(X, Y) is a Kan complex.
- (ii) If Y is a quasicategory, then Map(X, Y) is a quasicategory.

A functor of quasicategories $u: X \to Y$ is a map of simplicial sets from X to Y. Given two functors $u, v: X \to Y$, a natural transformation $f: u \to v$ is a 1-simplex $\eta \in \operatorname{Map}(X, Y)_1$ with $d_0^1 \eta = u$ and $d_1^1 \eta = v$.

If X and Y are quasicategories, then Map(X, Y) is also denoted by Fun(X, Y)and called the *quasicategory of functors* from X to Y. Hence Fun(X, Y) is a simplicial set whose vertices are the functors $u: X \to Y$ and whose 1-simplices are the natural transformations $\eta: u \to v$. Recall that an *equivalence of categories* is a fully faithful functor $F: \mathcal{C} \to \mathcal{D}$ which is essentially surjective, that is, for every object $Y \in \mathcal{D}$ there is an object $X \in \mathcal{C}$ with $FX \cong Y$. Next we define the analogous concept for quasicategories.

A functor $u: X \to Y$ of quasicategories is called *fully faithful* if the induced map

$$\operatorname{map}_X(x, y) \longrightarrow \operatorname{map}_Y(u(x), u(y))$$

is a weak equivalence of simplicial sets for all $x, y \in X_0$.

A functor $u: X \to Y$ of quasicategories is *essentially surjective* is for every object $y \in Y_0$ there is an object $x \in X_0$ and an equivalence $u(x) \to y$, i.e., if the induced functor $Ho(X) \to Ho(Y)$ is essentially surjective.

Definition 1.12. An *equivalence* of quasicategories is an essentially surjective fully faithful functor.

An equivalence of quasicategories is also called a *Dwyer–Kan equivalence*. If $u: X \to Y$ is an equivalence of quasicategories, then the induced functor of homotopy categories $Ho(X) \to Ho(Y)$ is an equivalence, and, moreover,

$$\pi_n(\operatorname{map}_X(x,y),f) \cong \pi_n(\operatorname{map}_Y(u(x),u(y)),u(f))$$

for $n \ge 1$ and all morphisms $f: x \to y$ in X.

Theorem 1.13 (Joyal). A functor $u: X \to Y$ is an equivalence of quasicategories if and only if the induced functor

$$\operatorname{Ho}(\operatorname{Map}(Y, C)) \longrightarrow \operatorname{Ho}(\operatorname{Map}(X, C))$$

is an equivalence of categories for every quasicategory C.

1.7 Adjunctions

A functor $u: X \to Y$ between quasicategories is *left adjoint* to a functor $v: Y \to X$ if there are natural transformations

$$\eta\colon \mathrm{id}_X \longrightarrow vu, \qquad \varepsilon\colon uv \longrightarrow \mathrm{id}_Y$$

for which the composites

$$\operatorname{map}_Y(u(x), y) \xrightarrow{v} \operatorname{map}_X(v(u(x)), v(y)) \xrightarrow{(\eta_x)^*} \operatorname{map}_X(x, v(y))$$

and

$$\operatorname{map}_X(x, v(y)) \xrightarrow{u} \operatorname{map}_Y(u(x), u(v(y))) \xrightarrow{(\varepsilon_y)_*} \operatorname{map}_Y(u(x), y)$$

are weak equivalences of simplicial sets for all $x \in X_0$ and $y \in Y_0$.

If $u: X \to Y$ and $v: Y \to Y$ form an adjoint pair, then the induced functors

$$\operatorname{Ho}(u) \colon \operatorname{Ho}(X) \longrightarrow \operatorname{Ho}(Y), \qquad \operatorname{Ho}(v) \colon \operatorname{Ho}(Y) \longrightarrow \operatorname{Ho}(X)$$

form an adjoint pair as well, since there are natural bijections

$$Ho(Y)(u(x), y) = \pi_0 map(u(x), y) \cong \pi_0 map(x, v(y)) = Ho(X)(x, v(y)).$$

Definition 1.14. A functor $u: X \to Y$ between quasicategories is called a *reflection* if it has a fully faithful right adjoint.

The universal property of a reflection can be formulated as follows. If $u: X \to Y$ is a reflection and we consider the class S of morphisms $f: a \to b$ in X such that $u(f): u(a) \to u(b)$ is an equivalence, then, for every quasicategory Z, composing with u defines a fully faithful functor

$$\operatorname{Fun}(Y,Z) \longrightarrow \operatorname{Fun}(X,Z)$$

whose essential image is the collection of functors $v: X \to Z$ such that v(s) is an equivalence for all $s \in S$.

The composite $\ell: X \to X$ of a reflection $X \to Y$ with its right adjoint $Y \to X$ is called a *localization*.

If $\ell: X \to X$ is a localization, then there is a natural transformation $\eta: \operatorname{id}_X \to \ell$ such that the morphisms $\ell(\eta_x)$ and $\eta_{\ell(x)}$ from $\ell(x)$ to $\ell(\ell(x))$ are homotopic and each of them is an equivalence.

References:

- D.-C. Cisinski, Higher Categories and Homotopical Algebra, to appear in Cambridge Studies in Advanced Mathematics, http://www.mathematik.uni-regensburg.de/cisinski/publikationen.html
- 2. M. Groth, A short course on ∞ -categories, arXiv:1007.2925.
- 3. V. Hinich, Lectures on infinity categories, arXiv:1709.06271.
- 4. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies 170, Princeton University Press, Princeton and Oxford, 2009.